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Abstract: Robust circadian rhythms in metabolic processes have been described in both 

humans and animal models, at the whole body, individual organ, and even cellular level. 

 Classically, these time-of-day-dependent rhythms have been considered secondary to fluc-

tuations in energy/nutrient supply/demand associated with feeding/fasting and wake/sleep 

cycles. Renewed interest in this field has been fueled by studies revealing that these rhythms 

are driven, at least in part, by intrinsic mechanisms and that disruption of metabolic synchrony 

invariably increases the risk of cardiometabolic disease. The objectives of this paper are to 

provide a comprehensive review regarding rhythms in glucose, lipid, and protein/amino acid 

metabolism, the relative influence of extrinsic (eg, neurohumoral factors) versus intrinsic 

(eg, cell autonomous circadian clocks) mediators, the physiologic roles of these rhythms in 

terms of daily fluctuations in nutrient availability and activity status, as well as the pathologic 

consequences of dyssynchrony.

Keywords: circadian rhythm, circadian clocks, metabolic homeostasis, neurohumoral factors, 

dyssynchrony, time-of-day-dependent rhythms

Introduction
Metabolism can be broadly defined as the chemical processes that occur within a 

living organism to maintain life. Substrate/energy metabolism refers to the process 

of conversion or transfer of carbon/energy from one molecule to another. This is 

achieved through highly dynamic and strictly regulated metabolic pathways com-

posed of a series of enzyme-catalyzed reactions, facilitating conversion of an initial 

substrate to a final end product. It is essential that these processes retain sufficient 

flexibility, thereby maintaining nutrient and energy balance within a physiologic range 

(ie, metabolic homeostasis). By definition, metabolism is in constant flux, requiring 

consideration of the fourth dimension (ie, time). This consideration highlights the 

need for consideration of temporal orchestration of metabolism at the whole body, 

tissue, and substrate-specific levels. Circadian (derived from the Latin terms circa- 

and -diem, meaning “around the day”) rhythms refer to processes that occur in an 

approximately 24-hour timescale. The purpose of this paper is, therefore, to provide 

a comprehensive overview of circadian rhythms in metabolic homeostasis, includ-

ing the relative contributions of extrinsic (eg, insulin) and intrinsic (eg, circadian 

clocks) factors governing these rhythms, and highlight the pathologic consequences 

following their disruption.
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Rhythms in metabolism
Given the focus of this paper, it is important to define 

“circadian rhythms in metabolism”. Technically, to be 

considered “circadian”, processes must 1) oscillate with 

a periodicity of 24 hours under constant conditions (ie, in 

the absence of external cues); 2) be entrainable to external 

cues; and 3) persist across a range of physiological tem-

peratures.1 In reality, the majority of studies investigate 

diurnal or time-of-day-dependent, as opposed to circadian, 

rhythms because of the presence of external cues (eg, light/

dark cycle). Nomenclature has developed to refer to these 

paradigms separately, where zeitgeber time (ZT) defines the 

time during light/dark cycles (ZT0 being the beginning of 

the light phase) and circadian time defines the time during 

constant conditions (eg, constant darkness). Accordingly, 

here we consider both circadian and diurnal rhythms. 

Metabolic flux through a pathway can be assessed in vivo, 

ex vivo, and in vitro through a number of methodologies 

including, but not limited to, following the rate of substrate 

utilization (eg, oxygen consumption in isolated mitochon-

dria, cells, permeabolized tissues, or in vivo respirometry) 

or product generation (eg, accumulation of labeled products 

in cells/tissues). In the latter case, both stable isotopes 

and radiolabeled tracers have been utilized successfully in 

intact tissues and cells. Collectively, these parameters are 

considered primary measures of metabolism (Figure 1). 

Metabolite analysis, both unbiased (metabolomics), and/

or candidate  assessments offer supplemental information. 

However, since these assessments are at “steady-state” 

levels, they may not directly indicate the flux of carbon 

through a pathway, and are thus considered secondary 

measures. This point is exemplified by intramyocellular 

adenosine triphosphate (ATP) levels; during exercise, ATP 

levels decrease slightly in cardiac muscle (ie, steady-state 

metabolite), yet rates of ATP synthesis (ie, flux) increase 

dramatically to meet energetic demands.2 Similar to metab-

olite measures, the assessment of the activity of an enzyme 

in an in vitro assay is considered a secondary measure of 

metabolism (as enzymatic activity in situ is dependent on 

substrate and allosteric effector levels, subcellular localiza-

tion, and protein–protein interactions, which are not reca-

pitulated in in vitro assays). In contrast, protein and gene 

expression (as well as posttranslational modifications) are 

far removed from metabolic fluxes and can be considered 

tertiary measures, which have the potential to provide 

mechanistic insight with regards to causes (and in some 

cases, consequences) of perturbations in metabolic fluxes. 

The following subsections will focus initially on rhythms in 

macronutrient (ie, carbohydrate, lipid, and protein) utiliza-

tion in numerous tissues involved in metabolic homeostasis 

(eg, intestine, liver, adipose, and skeletal muscle). Figure 

2 summarizes the information explained in this section, 

and highlights time-of-day-dependent metabolic rhythms 

in ad libitum fed rodents. In all cases, hypotheses will be 

Figure 1 Measures and mediators of metabolic flux.
Abbreviations: SUMO, sumoylation; Ub, ubiquitination; GlcNAc, O-linked N-acetylglucosamine; P, phosphorylation.
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provided regarding the potential physiologic advantage of 

temporal synchronization of these processes.

Carbohydrate
Carbohydrates are complex biomolecules (mono-, di-, and 

polysaccharides) representing the most abundant carbon 

source on Earth; for the sake of simplicity, we will focus 

on glucose metabolism. As with other nutrients, glucose 

homeostasis is the product of dietary intake and digestion/

absorption, endogenous production, and tissue utilization. 

To maintain blood glucose levels within a physiological 

range, these processes must work in concert, an  undertaking 

Figure 2 Time-of-day-dependent rhythms in glucose, lipid, and protein/amino acid metabolism in rodent models.
Abbreviation: NEFAs, nonesterified fatty acids.
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 involving the interplay of multiple organ systems. Diurnal 

patterns of feeding and concomitant rhythms in blood 

glucose levels have been observed in humans and animal 

models.  Carbohydrate preference is increased early in 

the feeding period (with a later shift toward proteins and 

fats).3–5 Following ingestion, polysaccharides (eg, starch) 

are hydrolyzed to di- and monosaccharides by α-amylase. 

Parotid and pancreatic α-amylase activities exhibit a rhythm 

in both fed and fasted rats, peaking during the middle of the 

light phase,6–8 likely in anticipation of food intake. The rate 

of glucose absorption in the small intestine also fluctuates 

throughout the day;9 glucose uptake in the intestine (duode-

num, jejunum, and ileum) is increased during the middle of 

the active period, both in vivo (in situ intestinal loop) and 

ex vivo (isolated tissues).10–13 These findings are consistent 

with increased gene and protein expression of intestinal 

sodium–glucose cotransporter 1  and GLUT5, as well as 

GLUT2 (which is responsible for exporting monosaccha-

rides from intestinal epithelial cells into the bloodstream) 

at the beginning of the active period.13–15 Collectively, these 

findings illustrate temporal synchrony between anticipation 

of food intake (α-amylase), carbohydrate preference, and 

glucose absorption.

Circulating glucose levels are a function of reciprocal 

rates of glucose import into, and export from, the blood. Inter-

estingly, following a bolus infusion of glucose, circulating 

glucose levels increase to different extents depending on the 

time of day,16 with the lowest increment at the beginning of the 

active period in both rodents and humans,17 reflecting time-

of-day-dependent differences in rates of glucose disposal by 

tissues, such as liver, skeletal muscle, and adipose.18–20 Upon 

uptake into target tissues, glucose has multiple oxidative and 

nonoxidative fates. This includes storage as glycogen. In both 

the liver and skeletal muscle, glycogen synthesis peaks at 

the end of the active period (whereas glycogen breakdown 

peaks at the end of the sleep period).21–25 In isolated skeletal 

muscle, rhythms in insulin-mediated glucose disposal have 

been reported; glycogen synthesis exhibits a biphasic pattern 

in rat soleus muscle, peaking at both the onset of the active 

and sleep phases.26 During periods of fasting, hepatic glucose 

output increases to help maintain homeostasis, in part, due 

to increased gluconeogenesis. Importantly, tracer studies 

have revealed that gluconeogenic flux peaks at the end of 

the sleep (fasting) period, which is associated with greater 

hepatic phosphoenolpyruvate carboxykinase expression.27

Collectively, rhythms in carbohydrate metabolism are 

apparent at multiple levels, likely optimizing performance 

and homeostasis during daily fluctuations in energetic 

demands (eg, increase blood glucose at the beginning of 

active period in anticipation of foraging for food, avoiding 

predation, etc) and feeding status (eg, increased production 

of α-amylase and insulin at the beginning of the active period 

to maximize efficient carbohydrate digestion and glucose 

uptake).

Lipid
As with other nutrients, protein and amino acid homeostasis 

is achieved through a balance between ingestion/digestion/

absorption, de novo synthesis, and utilization. Evidence for 

stringent protein homeostasis includes observations that mice 

given foods of differing protein content modify their food 

intake to consume the same total protein amount.3 In terms 

of rhythms, preference for protein-enriched foods increases 

later in the active period.4 Following ingestion, proteins are 

hydrolyzed by digestive enzymes and broken down into di- 

and tripeptides, as well as amino acids. Pepsinogen, a major 

digestive enzyme, is secreted in a time-of-day-dependent 

manner, peaking in the middle of the rest period. Conversely, 

pepsinogen activation peaks during the active period due 

to increased acid secretion at this time.28 Similarly, chy-

motrypsin secretion peaks during the active period in rats. 

Interestingly, rhythms in the profile of pancreatic secretions 

persisted, albeit severely attenuated, during 48 hours fasting29 

suggesting anticipation, as opposed to response, of food 

consumption. Meal feeding-induced pancreatic secretions 

also exhibit a time-of-day dependence in pigs, with greater 

responses during the active period.30 Peptide and amino 

acid absorption in the small intestine occurs in a diurnal 

fashion, peaking during the active phase, in association with 

increased gene13 and protein31 expression (peak at ZT12, 

both) of peptide transporter 1. Rhythms in circulating levels 

of amino acids (asparagine and tryptophan) are present in 

humans and rodents, with increased levels in the late active 

period compared to waking.32–35 When healthy human sub-

jects consumed a high protein load in the morning (8 am), a 

greater acute increase of amino acids in the circulation was 

observed, compared to the same protein load in the evening 

(8 pm).32 However, the peak in circulating amino acid levels is 

independent of total dietary protein intake and is unchanged 

by either high or low protein diets.32

Circulating amino acids are not only derived from pro-

tein digestion and absorption; multiple tissues generate and 

release distinct amino acids in a quantitatively appreciable 

manner. Two examples include alanine and glutamine. In 

the latter case, skeletal muscle is considered a major site of 

glutamine synthesis and release, which appears to occur in 
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a time-of-day-dependent manner.36–38 Proteolysis is also a 

significant means of mobilizing “stored” amino acids. Two 

major mechanisms involved in protein and organelle turnover 

include the proteasome and autophagy.39,40 Remarkably, little 

information is available regarding time-of-day-dependent 

rhythms in proteasome-mediated protein breakdown. Indirect 

evidence stems from microarray studies, having identified 

a number of ubiquitin ligases and proteasome components 

as fluctuating at a gene expression level in a time-of-day-

dependent manner.41 Accumulating evidence suggests that 

autophagic degradation of subcellular constituents occurs in 

a diurnal fashion. Electron micrographs initially revealed that 

autophagic vacuole accumulation varies over the course of 

the day, suggesting greatest autophagy during the sleep phase 

in the rat liver (and heart).42,43 Furthermore, injecting mice 

with a lysosomal protease inhibitor leupeptin (which inhib-

its terminal stages of autophagosome breakdown) exposed 

increased autophagic flux in the liver during the sleep phase.44

Circulating amino acids are taken up and utilized by cells 

for a number of purposes, including catabolism, conversion to 

other nitrogen-containing compounds (eg, carnitine, creatine, 

neurotransmitters, etc), and incorporation into protein. The 

latter process appears to be time-of-day dependent. Protein 

synthesis in skeletal muscle peaks during the dark phase, 

corresponding to a period of increased food intake, increased 

circulating amino acids, and increased insulin in nocturnal 

rodents.45 In contrast, protein synthesis appears to peak at 

the end of the active period in the liver, and in the middle of 

the sleep phase for the heart.46,47 Collectively, these observa-

tions suggest that time-of-day-dependent rhythms in amino 

acid metabolism differ in distinct tissues, which is likely 

important for whole-body homeostasis. However, several 

questions remain unanswered, including details regarding 

the importance of circadian rhythms in protein turnover and 

the relative contributions of amino acid utilization versus de 

novo synthesis in circulating level rhythms.

Lipid
Lipids are more than just a metabolic fuel source, serving also 

as membrane constituents and modulators of transcription/

translation, signaling transduction, and cell death. Accord-

ingly, perturbations in lipid homeostasis can lead to a host of 

pathologies, including diabetes mellitus and cardiovascular 

disease. Rhythms in processes affecting lipid homeostasis 

have been reported at multiple levels. For example, macro-

nutrient preference studies indicate a greater desire for fat-

enriched foods later in the active period.3 Upon ingestion, 

lipids are emulsified by bile salts and enzymatically digested 

by lipases into fatty acids and monoacylglycerides. Diurnal 

rhythms in bile acid synthesis were identified decades ago 

in rats, peaking during the dark period,48 immediately fol-

lowing peak expression of cholesterol 7α-hydroxylase – the 

rate-limiting enzyme in bile acid synthesis.49–52 Rhythms in 

total bile acid synthesis in rats in vivo persist during fasting, 

suggesting anticipation of food intake.48 These rhythms were 

similar for individual bile acids (cholate, chenodeoxycholate, 

α/β-muricholate) investigated, which all reached a maximum 

during the active phase.48 Likewise, rhythms in lipoprotein 

lipase (LPL) activity in the heart and skeletal muscle are 

highest during the active period.53 Following digestion, fatty 

acids and monoacylglycerides are absorbed into the intestinal 

enterocytes for further processing and packaging. Using in 

situ loops of small intestine, greater rates of cholesterol and 

lipid absorption have been reported during the active phase.13 

Dietary lipids are then packaged into chylomicrons within 

enterocytes, before being secreted into the lymphatics. Pack-

aging/secretion of chylomicrons is regulated in part by the 

intestinal microsomal triglyceride transfer protein (MTP); 

MTP mRNA, protein, and activity increase during the active 

phase in enterocytes.13,54

Diurnal rhythms in circulating lipid species have been 

reported in humans and animal models.55–60 Liquid chroma-

tography/gas chromatography–mass spectroscopy analysis of 

blood samples taken from males under “constant conditions” 

(40 hours constant dim light, hourly nutrition, enforced pos-

ture with no sleep) revealed peak circulating lipids between 

morning and noon.55 Interestingly, in a lipidomic study in 

healthy humans, a significant variation of peaks of differ-

ent lipid species measured between individuals was found, 

suggesting the existence of metabolomic chronotypes.56 In 

order for esterified fatty acids within circulating triglyceride 

to enter a tissue, it must be released, a reaction catalyzed by 

LPL; LPL activity exhibits a diurnal pattern in various tis-

sues, peaking during the active phase in adipose.61 De novo 

fatty acid synthesis requires enzymes such as acetyl-CoA 

carboxylase, fatty acid synthase, and fatty acid-binding pro-

tein, which are all more abundant during the active phase.62 

Synthesis of triglycerides in the liver occurs in a rhythmic 

fashion, increasing during the feeding period.63,64 Conversely, 

breakdown of triglycerides and mobilization of free fatty 

acids from adipose tissue also fluctuate rhythmically, which 

are increased during the light phase in ad libitum fed rats.65

Extrinsic mediators
Circadian rhythms in metabolism could be driven by vari-

ous extrinsic or intrinsic mediators. A collection of extrinsic 
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factors known to regulate metabolic processes oscillate in 

a time-of-day-dependent manner, often being considered a 

reflection of environmental and/or behavioral rhythms. Diur-

nal rhythms in neuroendocrine factors, and/or target tissue 

sensitivity, undoubtedly serve to optimize diverse metabolic 

demands throughout daily cycles of feeding and fasting, as 

well as rest and activity. Here, four key metabolically relevant 

neurohumoral factors (ie, insulin, cortisol, growth hormone, 

epinephrine/norepinephrine) will be discussed, although others 

likely play important roles (eg, melatonin, ghrelin, adiponectin, 

leptin, testosterone).

Insulin
Insulin, produced/secreted by pancreatic β-cells, plays an 

important role in nutrient sensing.66 During the postprandial 

state, increased insulin secretion stimulates nutrient uptake, 

utilization, and storage in metabolically active tissues, includ-

ing the liver, adipose tissue, and muscle.66 For example, insu-

lin: 1) increases glucose uptake via translocation of GLUT4 

to the membrane in muscle and adipose; 2) attenuates hepatic 

gluconeogenesis; 3) stimulates glyconeogenesis in liver and 

muscle; and 4) activates protein synthesis in numerous tissues. 

Circulating insulin levels fluctuate in a time-of-day-dependent 

manner (peaking late in the active period). Increased food 

intake during the active period does not appear to be the sole 

determinant of these rhythms, as insulin secretion rhythms 

persist when food is equally distributed over the day.67–70 In 

addition, rats given six discrete meals throughout the day 

(calories consumed were not different between meals) showed 

the greatest insulin secretion 2 hours into the active period.19,68 

Whole-body insulin sensitivity also exhibits a time-of-day 

dependence, peaking in the middle of the active period. Inter-

estingly, both insulin and glucose levels acutely increase in 

the circulation immediately prior to waking, independent of 

feeding, an event termed the “Dawn Phenomenon”.71,72 This 

surge in blood glucose in the period prior to waking is likely 

secondary to relative hepatic insulin resistance, thus preparing 

the animal for the transition to activity (and increased glucose 

utilization). Collectively, insulin secretion and sensitivity 

appear to be temporally organized, likely in anticipation of 

increased activity upon waking, as well as increased food 

intake during the active period.

Cortisol
Cortisol is a catabolic glucocorticoid hormone secreted by 

the adrenal glands in the hypothalamic–pituitary–adrenal 

axis; hypothalamic release of corticotropin-releasing hor-

mone stimulates pituitary release of adrenocorticotropic 

hormone, which in turn stimulates cortisol secretion. 

 Cortisol modulates numerous metabolic processes, includ-

ing stimulation of glycogenolysis, lipolysis, and proteolysis. 

Cortisol elicits a biphasic effect on glucose homeostasis, 

acutely inhibiting insulin secretion, and chronically induc-

ing insulin resistance.73,74 In humans, circulating cortisol 

levels peak in the early morning (~1 am),75,76 promoting 

fuel mobilization at this time.77 The impact of corticoste-

rone on metabolic homeostasis is time-of-day-dependent; 

hydrocortisone infused at 1 pm (elevated at abnormal time) 

versus 5 am (elevated at normal time) results in augmented 

plasma glucose and insulin levels in humans.74 Collectively, 

diurnal rhythms in cortisol secretion and sensitivity likely 

serve to increase fuel availability at the beginning of the 

active period, in anticipation of increased energy expendi-

ture upon waking.

Growth hormone
Growth hormone (GH) is an anabolic hormone produced/

secreted from the anterior pituitary gland. GH has pro-

nounced effects on glucose, lipid, and protein metabolism. 

In essence, GH serves to promote protein synthesis, lipoly-

sis (thereby shifting reliance toward fat oxidation), and 

gluconeogenesis, as well as eliciting insulin resistance.78 

Circulating GH levels exhibit an ultradian pattern, which 

is species-, sex-, age-, and time-of-day-dependent.79–81 GH 

secretion is triggered by GH- releasing hormone and is 

reduced by somatostatin; time-of-day-dependent rhythms in 

GH correspond more closely with GH- releasing hormone 

(relative to somatostatin).82,83 Increased GH levels during the 

rest/sleep period potentially function to increase circulating 

fatty acids, attenuating glucose (and amino acid) oxidation, 

thereby contributing toward increased glucose availability 

upon waking.84–86 Morning versus evening administration of 

GH (in GH-deficient subjects) showed differential effects, 

suggesting that only evening GH restored the metabolic 

profile of GH-proficient individuals.87 Collectively, circadian 

rhythms in GH appear to maintain metabolic homeostasis 

during sleep and may contribute to the anticipatory increase 

in blood glucose prior to waking.

Epinephrine/norepinephrine
Epinephrine and norepinephrine are catecholamines syn-

thesized from the amino acids tyrosine and phenylalanine. 

Epinephrine and norepinephrine are produced in the adrenal 

medulla and serve to mobilize energy by increasing glyco-

genolysis in liver and skeletal muscle, as well as lipolysis, 

following sympathetic nervous stimulation (ie, during 
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the fight-or-flight response or exercise). Early findings in 

humans and animals have shown diurnal and circadian 

rhythms for both catecholamines in the circulation, with 

a trough during the relative rest phase.88,89 Scheer et al90 

found that exercise performed in the morning resulted in an 

accentuated increase in catecholamine release in humans. 

Interestingly, a diurnal rhythm in adipose tissue sensitivity 

to epinephrine-stimulated lipolysis is highest at the end of 

the active period in rats.91 Norepinephrine also functions as 

an important neurotransmitter in the sympathetic nervous 

system and has central effects on feeding behavior; admin-

istration of hypothalamic norepinephrine suppresses feeding 

behavior in the dark phase and stimulates feeding behavior 

in the light phase of rats.92

Intrinsic mediators
Various metabolically relevant neurohumoral factors oscil-

late in a time-of-day-dependent manner. Many of these 

neurohumoral factors oscillate concomitantly with daily 

fluctuations in behaviors and are associated with predicted 

timing of distinct metabolic processes (eg, increased 

hepatic glycogen synthesis during the awake period, when 

insulin levels are elevated in ad libitum-fed animals). Such 

observations have led to models suggesting that rhythms 

in metabolic parameters are consequent to behavioral fluc-

tuations, while neurohumoral factors serve as mediators. 

This “response” or “adaptation” model, therefore, relies on 

alterations in extrinsic factors to initiate perturbations in 

metabolism. However, this dogmatic model has been chal-

lenged in recent years, in light of observations that intrinsic 

mechanisms play a significant role. For example, multiple 

metabolic oscillations persist during constant conditions 

and/or dyssynchrony of organisms from a normal 24-hour 

environment. In the latter case, enforcing either 20-hour or 

28-hour sleep/wake and feeding/fasting cycles in human 

subjects reveals persistent 24-hour rhythms in circulating 

nutrients (eg, glucose, lipids) and neurohumoral factors 

(eg, norepinephrine).90,93 As such, an “intrinsic” or “anticipa-

tion” model has developed, wherein modulation of metabolic 

processes over the course of the day occurs independently 

of fluctuations in the environment. In reality, both models 

likely work in a coordinated fashion, facilitating metabolic 

homeostasis in the face of predicted fluctuations in energy 

supply/demand, yet ensuring sufficient flexibility in the 

event of abrupt changes in the environment. The “Circadian 

clocks” section reviews evidence that circadian clocks serve 

as an intrinsic mechanism modulating metabolic processes 

over the course of the day.

Circadian clocks
Circadian clocks are transcriptionally based cell autonomous 

mechanisms modulating biological processes in a temporally 

appropriate manner.1 This mechanism enables anticipation 

of environmental/extracellular/extrinsic stimuli and stresses 

prior to their onset. Circadian clocks have been identified 

in various organisms, ranging from distinct bacteria to both 

plants and animals.94 The mammalian circadian clock is com-

posed of more than 15 transcriptional modulators, forming 

an interconnecting series of positive and negative feedback 

loops, with a free-running periodicity of approximately 

24 hours.1,94 Central to the mechanism reside two bHLH-

PAS-containing transcription factors, CLOCK and BMAL1. 

Upon heterodimerization, CLOCK/BMAL1 binds to E-boxes 

within promoters of target genes, invariably resulting in 

induction.95,96 These target genes include core clock compo-

nents that generate negative feedback loops, such as multiple 

Period (PER1/2/3) and Cryptochrome (CRY1/2) isoforms, 

as well as REV-ERBα.97–99 Once these proteins accumulate, 

PER/CRY heterodimers and REV-ERBα translocate back 

into the nucleus and negatively affect the CLOCK/BMAL1 

heterodimer. More specifically, PER/CRY bind directly to 

CLOCK/BMAL1 (interfering with induction of target genes), 

while REV-ERBα binds to the promoter of the BMAL1 gene 

(repressing expression).97–99 Additional negative feedback 

loop components likely exist (eg, DEC1/2).100

Several aspects of the mammalian circadian clock warrant 

brief discussion. First, significant redundancy exists within 

the mechanism; overlapping functions of several core clock 

components include cryptochromes, periods, and CLOCK 

(redundancy with NPAS2). Indeed, mouse models of core 

clock component homozygous deletion reveal that only 

BMAL1 is essential for complete operation of the mam-

malian circadian clock (ie, clock function remains following 

genetic manipulation of other components, albeit with dif-

ferences in the timing [ie, periodicity]).101 Second, although 

the clock mechanism is transcriptionally based, a number 

of posttranslational modifications are essential for normal 

operation (ie, correct phase and periodicity). For example, 

CK1α-mediated phosphorylation affects the stability of the 

Period isoforms, which is essential for delaying accumulation 

of this negative loop protein (relative to mRNA).102 Additional 

posttranslational modifications of clock components have 

been described, including acetylation, SUMoylation, ADP-

ribosylation, and O-GlcNAcylation.37,103–107 Indeed, CLOCK 

possesses a histone acetyltransferase domain, which appears 

to be important for modulating acetylation and transcriptional 

activity of BMAL1.108 Third, circadian clocks have been 
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described in essentially all mammalian cells, and can be clas-

sified depending upon tissue location. The central circadian 

clock is composed of a collection of approximately 10,000 

specialized neurons within a region of the hypothalamus 

known as the suprachiasmatic nucleus (SCN).109 Peripheral 

circadian clocks are located in non-SCN cells (including other 

central nervous system regions). Although cell autonomous 

in nature, a hierarchy appears to exist, in a manner in which 

the SCN orchestrates the peripheral clocks. Entrainment of 

the SCN (primary example includes light entrainment via 

the retinohypothalamic tract), which results in neurohumoral 

fluctuations (via direct neural connections from the SCN, 

humoral factors released from the SCN, and/or behavior-

induced changes in non-SCN-derived entrainment factors), 

is believed to modulate peripheral oscillator timing.1,109 

However, it is noteworthy that SCN and peripheral clocks can 

be dissociated remarkably easily through various behaviors, 

including alteration of food intake patterns (as discussed in 

the following sections).

Clock components influence a multitude of target genes 

(beyond the clock mechanism itself), known as clock output 

or controlled genes, which in turn modulate cellular func-

tions. It has been estimated that circadian clocks regulate as 

much as 13% of the transcriptome, in both a time-of-day- and 

tissue-dependent manner.110 Unbiased microarray and bioin-

formatics approaches suggest that clock-controlled genes can 

be assigned to a diverse set of biological/cellular functions, 

including transcription, translation, signal transduction, and 

metabolism.110–113 Clock control of transcriptional activators/

repressors allows amplification of a number of genes regu-

lated by this mechanism (albeit indirectly). Translation (and 

protein degradation) is essential not only for the circadian 

clock to influence cellular functions (ie, daily turnover of 

proteins/enzymes within a functional cascade) but also for 

the normal operation of the clock mechanism itself. Clock 

control of signal transduction is likely critical for anticipa-

tion, allowing appropriate responsiveness to a stimulus/stress 

in a temporally appropriate manner. Circadian regulation 

of  metabolic processes likely allows the cell to anticipate 

 fluctuations in nutrient/energy supply and demand. Evidence 

in support of direct clock control of metabolism will now 

be discussed.

Clock control of metabolism
The hypothesis that circadian clocks regulate metabolic 

homeostasis, both directly (eg, expression of enzymes within 

a distinct metabolic pathway) and indirectly (eg, secretion 

of metabolically relevant neurohumoral factors) has received 

increasing interest over the past several decades. Here, we 

will focus primarily on cell and animal model (surgical 

and genetic)-based evidence suggesting a potential role for 

circadian clocks in metabolic homeostasis and discuss how 

they likely work in synchrony with extrinsic influences. In 

the latter case, significant attention will be given to insulin 

because of its established governing activity over intermedi-

ary metabolism. As before, only studies directly interrogating 

metabolic processes/parameters remain a major focus, while 

alterations in gene/protein expression will be considered 

possible mechanistic mediators (Figure 1). Although not 

discussed in detail here, it is important to note that circadian 

clock components (such as BMAL1 and CLOCK) may influ-

ence gene expression and metabolic processes independent 

of their circadian clock function.

Whole body
Disruption of circadian clock function influences metabolic 

homeostasis at multiple levels. At the whole-body level, 

both markers of acute (eg, nutrient clearance) and chronic 

(eg, body weight), metabolic perturbations have been inter-

rogated. Initial SCN-ablation studies (a strategy that impairs 

not only central but also peripheral clock function) reported 

altered body weight in various rodent models.114–116 This inter-

vention also results in profound alterations in glucose homeo-

stasis, affecting both insulin-dependent and independent 

glucose disposal.16 Animal models of genetic manipulation 

of circadian clock components have also been investigated. 

Of these, germline CLOCK∆19 mutant (loss of Exon 19 of 

the CLOCK gene, resulting in a dominant negative mutant) 

and BMAL1 null mice have been investigated to the largest 

extent (due to marked impact on circadian clock function); 

it is noteworthy that metabolic parameters have been inves-

tigated in other genetic models (eg, knockout [KO]/mutation 

of various PER and CRY isoforms), albeit to a lesser extent. 

In terms of body weight regulation, CLOCK∆19 mutant mice 

present with increased adiposity (on the B6 background), 

while BMAL1 null mice are more susceptible to high-fat-

diet-induced adiposity (at a young age).117,118 Both CLOCK∆19 

mutant and BMAL1 null mice exhibit decreased glucose 

tolerance, as indicated by an elevated amount of glucose in 

the circulation following an acute (<2 hours) glucose load.119 

Conversely, lipid tolerance is increased in CLOCK∆19 mutant 

(ie, decreased triglyceride in circulation following an acute 

lipid load).120 Collectively, these data suggest that disruption 

of circadian clocks alters both long- (eg, adiposity) and short-

term (eg, glucose/lipid tolerance) metabolic homeostasis. In 

contrast, an extensive literature search was unable to identify 
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information regarding the impact of circadian clock disrup-

tion on protein/amino acid tolerance.

Consistent with the f irst law of thermodynamics, 

alterations in adiposity/body weight suggest an imbalance 

between caloric intake and energy expenditure. This could 

arise through perturbations in food intake, digestion, and/or 

absorption following circadian clock disruption, as well as the 

balance between catabolic and anabolic pathways involved 

in nutrient/energy homeostasis. Evidence exists suggesting 

clock control of all these parameters. For example, CLOCK∆19 

mutant and BMAL1 null mice exhibit abnormalities in 

day–night patterns of food intake, such that a more even 

distribution of caloric intake is observed over the 24-hour 

day (as opposed to typical food intake predominance during 

the active/dark phase).117,121 Somewhat surprisingly, when 

both food intake and energy expenditure were investigated 

in BMAL1 null mice, no differences in total daily values of 

these parameters were found (although day–night differences 

were abolished).121 These data suggest that normal rhythms 

are important for metabolic homeostasis. Indeed, when 

sleep phase feeding is enforced in wild-type mice, increased 

adiposity is observed.122,123 Robust alterations in digestion/

absorption have been reported, particularly for CLOCK∆19 

mutant mice; these mice present with impaired lipid absorp-

tion, particularly on the Jcl:ICR background, likely due to 

clock control of MTP in intestinal epithelial cells.13,54,58,120 

Collectively, these data lead to speculation that differences 

in digestion/absorption following circadian clock disruption 

contribute to increased weight gain, in the absence of daily 

total caloric intake and/or energy expenditure.

Glucose homeostasis following an acute glucose load 

illustrates the importance of balancing anabolic and catabolic 

processes, being orchestrated by fluctuations in insulin secre-

tion and sensitivity. Amassing evidence suggests circadian 

clock control of insulin secretion. CLOCK∆19 mutant mice 

exhibit decreased insulin levels during glucose tolerance tests 

compared to wild-type mice (when the glucose challenge is 

given either orally or intraperitoneally, thereby eliminating 

contributions of absorption).124 Similarly, islets isolated 

from these mice have blunted glucose-stimulated insulin 

secretion.124 Consistent with direct clock control, 24-hour 

oscillations in insulin gene expression persist in serum 

synchronized insulinoma cells.125 Furthermore, rhythms in 

insulin secretion persist during constant conditions, including 

continuous nutrition.68 Importantly, β-cell-specific BMAL1 

null mice exhibit impaired insulin secretion.70,124 Collectively, 

these data strongly support the concept that the circadian 

clock within the pancreatic β-cell directly modulates insulin 

secretion. In contrast to insulin secretion, the regulation of 

insulin sensitivity by cell autonomous clocks appears to be 

less conclusive. Insulin sensitivity oscillates over the course 

of the day, at both the whole-body and individual tissue level. 

With regards to control of these oscillations by circadian 

clocks, insulin tolerance tests suggested increased insulin 

sensitivity in CLOCK∆19 mutant and BMAL1 null mice.119,126 

However, utilization of hyperinsulinemic–euglycemic clamps 

(a more sensitive method for the assessment of whole-body 

insulin sensitivity) revealed decreased insulin-mediated glu-

cose disposal in BMAL1 null mice (associated with decreased 

activation of insulin signaling components in the liver).118 As 

outlined, investigation of clock control of insulin signaling in 

distinct tissues suggests cell type-specific regulation.

The aforementioned studies strongly support the concept 

that circadian clocks affect metabolic homeostasis at multiple 

levels. Important questions relate to the relative roles of cell-

type-specific circadian clocks, as well as how they integrate 

with extrinsic signals (eg, insulin) in an intact animal over 

the course of the day. Recent studies utilizing mouse models 

of tissue-specific circadian clock disruption have provided 

significant insight. Given known roles for liver, muscle, and 

adipose tissue, insights provided from models of genetic 

manipulation of circadian clocks within these tissues will 

be discussed next.

Liver
The liver plays a pivotal role in glucose, lipid, and protein/

nitrogen homeostasis. Anatomically, the liver serves as a first 

pass for dietary carbohydrate and amino acids, receiving 

these nutrients via the hepatic portal vein. Postprandial rise 

in both circulating nutrients and insulin suppresses hepatic 

glucose production, concomitant with stimulation of anabolic 

processes, such as glycogenesis and lipogenesis. Potential 

regulation of liver metabolism by circadian clocks has been 

implied through use of germline genetic manipulations 

(eg, CLOCK∆19 mutant, BMAL1 null, and Cry1/2 double 

KO mice), resulting in perturbations of hepatic levels of 

lipogenesis, gluconeogenesis, and fatty acid β-oxidation, 

concomitant with alterations in insulin signaling compo-

nents.119,127–130 To address a potential role for the hepatocyte 

circadian clock, both tissue-specific genetic manipulations in 

vivo and isolated cell culture systems have been employed. 

Lamia et al131 reported that hepatocyte-specific BMAL1 

null mice exhibit increased glucose and insulin tolerance, 

as well as a propensity for fasting-induced hypoglycemia; 

this was associated with decreased expression of genes 

involved in gluconeogenesis (eg, glucose 6-phosphatase and 
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glucose transporter 2). These observations are consistent 

with at least two scenarios, wherein the hepatocyte circadian 

clock: 1) directly regulates gluconeogenic enzymes and/or 

2) indirectly modulates hepatic sensitivity to neurohumoral 

factors known to influence gluconeogenesis (eg, β-adrenergic 

and insulin stimulation). However, knockdown of BMAL1 

in isolated hepatocytes decreases insulin-stimulated AKT 

activation (which would promote, not attenuate, gluco-

neogenesis).128 In contrast, the decrease in hepatic insulin 

sensitivity following liver-specific BMAL1 disruption is 

associated with decreased lipogenesis, as well as expression 

of enzymes known to regulate this metabolic process.128 It 

is noteworthy that Lipton et al46 have recently suggested a 

role for BMAL1 in protein synthesis regulation, potentially 

through direct interaction with the translation machinery. 

However, germline BMAL1 null mice were investigated, and 

as such, the relative role of the hepatocyte circadian clock in 

protein turnover in vivo remains to be established.

Muscle 
Skeletal muscle is a metabolically diverse organ, capable of 

utilizing various substrates, depending on the conditions. Fol-

lowing ingestion of a carbohydrate-rich meal, skeletal muscle 

is responsible for approximately 60% of postprandial glucose 

disposal (ie, insulin-mediated). Insulin sensitivity and glucose 

utilization exhibit time-of-day-dependent oscillations in both 

intact skeletal muscle ex vivo as well as cultured myocytes 

in vitro.26,132 These data led Dyar et al133 to investigate the 

potential role of the skeletal myocyte circadian clock as a 

modulator of these processes. Through use of both constitutive 

and inducible skeletal myocyte-specific BMAL1 null mouse 

models, insulin-mediated skeletal muscle glucose uptake and 

oxidation were found to be dependent on the myocyte circa-

dian clock. This was associated with clock control of GLUT4 

(insulin-responsive glucose transporter), TBC1D1 (modulator 

of GLUT4 translocation), as well as PDP1 (a regulator of the 

pyruvate dehydrogenase complex). Somewhat surprisingly, no 

major differences in glucose or insulin tolerance were observed 

following ablation of BMAL1 in skeletal muscle, nor were dif-

ferences in insulin-mediated AKT activation.133 Collectively, 

these findings suggest that the skeletal myocyte circadian clock 

directly regulates muscle glucose utilization but is not essential 

for maintenance of whole-body glucose homeostasis. However, 

it is important to note that time-of-day-dependent rhythms in 

insulin-mediated glucose utilization were not assessed, leav-

ing the role of cell autonomous clocks on rhythms in skeletal 

muscle glucose utilization unanswered. Interestingly, cardiac 

muscle from cardiomyocyte-specific BMAL1 KO mice (CBK), 

as well as cardiomyocyte-specific CLOCK∆19 mutant mice 

(CCM), also exhibits decreased glucose uptake and oxidation, 

associated with a loss of time-of-day-dependent rhythms in 

metabolism, suggesting that intramyocellular circadian clocks 

influence glucose utilization in all striated muscles over the 

course of the day.37,112,134 In contrast, little is known regarding 

the role of the myocyte circadian clock on lipid, ketone body, 

and/or protein metabolism. Studies in CBK and CCM hearts 

reveal increased fatty acid oxidation, decreased triglyceride 

synthesis, decreased ketone body oxidation, decreased leucine 

oxidation, and increased protein synthesis, suggesting that the 

intramyocyte clock likely influences muscle metabolism at 

multiple levels.37,112,134,135

Adipose tissue
White and brown adipocytes have distinct roles in metabolic 

homeostasis. White adipocytes play an important role in 

the storage of excess nutrients in the form of triglyceride, 

as well as serving as an endocrine organ for a number of 

metabolically active adipokines (eg, leptin, adiponectin). 

Brown adipocytes are enriched with mitochondria, playing 

an important role in thermogenesis and energy expenditure. 

Given that both circulating nutrients and body temperature 

are circadian regulated, it is not surprising that emerging 

evidence suggests regulation of metabolic homeostasis by 

the circadian clock within the adipocyte. One of the first 

studies specifically investigating the contribution of the 

adipocyte circadian clock was in Drosophila, wherein tar-

geted disruption of this mechanism through genetic means 

resulted in increased food intake during the inactive/sleep 

phase.136 More recently, Paschos et al137 made similar observa-

tions in mice; adipocyte-specific BMAL1 null mice exhibit 

increased adiposity and inappropriate food intake during the 

inactive phase. The latter study suggested that altered fatty 

acid processing in adipocyte-specific BMAL1 null mice led 

to an imbalance in circulating polyunsaturated fatty acids, 

which in turn perturbed rhythmic feeding patterns. Despite 

increased adiposity, no differences in insulin sensitivity 

were identified between adipocyte-specific BMAL1 null 

mice and littermate controls.137 The precise impact of the 

adipocyte circadian clock on de novo fatty acid synthesis or 

triglyceride turnover remains unknown. In terms of brown 

adipocytes and  thermogenesis, both germline and adipocyte-

specific BMAL1 null mice exhibit increased brown adipose 

tissue mass and are more cold tolerant, relative to wild-type 

controls.138,139 Studies by Gerhart-Hines et al140 suggest that 

REV-ERBα likely serves as a mediator of clock control of 

thermogenesis.
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Physiologic roles and pathologic 
consequences
Temporal partitioning is important for sequestering processes 

ranging from behaviors (such as feeding, activity, and sleep) 

to cellular processes (such as transcription, translation, and 

metabolism). In doing so, circadian regulation increases 

an organism’s potential to be evolutionarily successful.141 

A selective advantage exists for organisms that have the 

ability to anticipate time-of-day-dependent demands, thus 

being better prepared for the onset of predictable stressors. 

Examples include the availability or absence of food dur-

ing feeding and fasting cycles, as well as physical activity 

associated with hunting, foraging, and avoiding predation. 

Rhythms in feeding and activity exist in both nocturnal and 

diurnal animals, and while anticipation to these behaviors is 

conferred by circadian clocks, both behaviors also fine-tune 

circadian rhythms in peripheral tissues.142,143 More specifi-

cally, the time at which food is consumed, or when exercise 

is performed, can entrain circadian clocks and therefore 

modulate rhythms in metabolism. Conversely, abnormali-

ties in these behaviors will lead to circadian misalignment, 

associated with development of a host of cardiometabolic 

diseases. This section discusses the interrelationship between 

anticipation of, and entrainment to, behaviors such as food 

intake and exercise, in the context of circadian regulation 

of metabolism, as well as pathological consequences due to 

impairment of this relationship.

Food intake
Rhythms in feeding
It is essential to the survival of an organism to successfully 

acquire sufficient calories to match the energetic demands 

of life. Organisms have evolved various mechanisms to 

obtain, process, and store nutrients, many of which are under 

circadian control (illustrated in Figure 2). Under normal 

conditions, animals generally consume the majority of their 

calories during the active period (corresponding to the dark 

phase for nocturnal rodents).4,117,144,145 In anticipation of 

feeding, animals will acutely increase spontaneous activity 

(known as food-anticipatory activity), likely to maximize 

food availability opportunities.146 Food-anticipatory activity 

is dampened during ad libitum feeding schedules, as seen in 

the majority of laboratory-based conditions, but is evident 

during time-restricted feeding schedules.147–149

Through the use of genetically modified mouse models, 

the roles of circadian clocks on feeding patterns have been 

investigated. For example, CLOCK∆19 mutant mice display 

hyperphagia, associated with diminished time-of-day-

dependent rhythms in feeding, consuming equal amounts of 

food during the daytime and the night.117 Similarly, deletion 

of Per2 in mice (mPer2−/−) abolished feeding rhythms, result-

ing in an increase in the amount of food consumed during 

the sleep (light) phase. Daytime hyperphagia in mPer2−/− 

mice was linked with α-melanocyte-stimulating hormone 

(a neuroendocrine factor important in appetite regulation), 

which is normally increased during the sleep phase. Acute 

α-melanocyte-stimulating hormone supplementation at the 

onset of sleep restored rhythmic food intake in mPer2−/− 

mice.150 Liu et al151 have also highlighted a role for Per1 

phosphorylation in diurnal feeding patterns; mutation of Per1 

(at S714 residue) shortened the period of feeding, resulting 

in dyssynchrony between feeding and metabolic rhythms. As 

mentioned earlier, rhythms in food intake are also disrupted in 

adipocyte-specific BMAL1 null mice, resulting in increased 

food intake during the sleep phase.137 Collectively, these 

observations strongly support circadian clock influence over 

time-of-day-dependent rhythms in food intake.

Feeding-induced clock entrainment
Circadian clocks undoubtedly aid in the synchronization of 

anticipated food availability with metabolic processes. To 

maintain this selective advantage, clocks, therefore, must 

remain sufficiently responsive to fluctuations in the timing of 

food availability, to maintain synchronization. It is, therefore, 

not surprising that the timing of food intake has emerged 

as one of the strongest entrainment factors (zeitgeber) of 

peripheral circadian clocks. Evidence for such a concept was 

first described by Damiola et al,143 who reported phase shifts 

in clock component gene oscillations in the liver, kidney, and 

heart following restriction of food intake to the sleep phase. In 

contrast, the central (SCN) clock retained synchrony with the 

light/dark cycle (as opposed to feeding/fasting cycle). These 

initial studies also suggested that the rate of resynchroniza-

tion of peripheral clocks in response to food intake was tissue 

specific, with the most rapid rate of resynchronization in the 

liver.143 Feeding-induced resynchronization has subsequently 

been reported in multiple studies.152,153 Collectively, these 

studies suggest that restricted feeding influences not only the 

phase but also the amplitude of clock gene oscillations in a 

tissue-specific manner. Such observations suggest differential 

responsiveness of organs to feeding-derived entrainment 

factors, relative to other signals (eg, direct innervation from 

the SCN). To date, the identity of a single feeding-derived 

entrainment factor is unknown, although multiple candidates 
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have been proposed, including nutrient-derived signals (eg, 

O-GlcNAcylation).37

Cardiometabolic consequence of disrupting the 
feeding–clock relationship
Under physiologic conditions, synchrony is achieved between 

rhythms in feeding/fasting and metabolic processes, mediated 

in large part by circadian clocks. When dyssychrony occurs, 

through perturbations in the timing of food intake and/or 

circadian clock function, metabolic homeostasis is invariably 

disrupted, resulting in cardiometabolic diseases. Evidence for 

this concept stems from studies investigating metabolic per-

turbations during time-of-day-restricted feeding regimes and/

or following specific disruption of circadian clocks. Multiple 

indices of whole-body metabolism, including body tempera-

ture, oxygen consumption (VO
2
), and respiratory exchange 

ratio (RER or respiratory quotient [RQ]), display robust circa-

dian rhythms during ad libitum fed conditions, all of which are 

higher during the active period. Restricting food intake to the 

sleep phase revealed pronounced phase shifts of time-of-day-

dependent rhythms in these parameters, tending to increase 

during the light phase concomitant with food intake.154–158 In a 

study by Vollmers et al,159 light phase-restricted feeding shifted 

the peak, and increased the amplitude of the oscillation in RQ 

compared to ad libitum fed mice. Importantly, Bray et al152 

revealed that not all parameters shifted to the same extent in 

response to light phase-restricted feeding, wherein substrate 

utilization (RQ) shifted by 10.3 hours (similar to food intake), 

rhythms in physical activity hardly shifted (only 0.5 hour), 

whereas rhythms in energy expenditure shifted by an inter-

mediate level (6.6 hours). Thus, light phase-restricted feeding 

results in metabolic dyssynchrony at the whole-body level. 

Additional markers of dyssynchrony/metabolic perturbation 

following light phase-restricted feeding include phase shifts 

and/or loss of the rhythms of circulating glucose, insulin, 

cortisol, and triglycerides, as well as increased adiposity. 

These impairments in metabolic homeostasis are associated 

with differential clock gene shifts in distinct tissues, resulting 

in circadian dyssynchrony between organs.152 Interestingly, 

genetic manipulation of circadian clock gene components 

invariably results in impaired metabolic homeostasis and adi-

posity (as already detailed). Collectively, these observations 

suggest that light phase-restricted feeding impairs metabolic 

homeostasis, potentially through disruption of circadian 

clocks in a tissue-specific manner.

Unlike rodents, humans tend to eat discrete meals at dis-

tinct times of the day. In addition, few individuals consume 

all their calories during the inactive/sleep period. For these 

reasons, several studies have been designed to investigate 

whether consumption of calorically dense meals and/or of 

specific macronutrient content at certain time windows within 

the active period affects cardiometabolic parameters. In mice, 

consumption of a high-fat meal at the end of the active period 

was associated with increased adiposity, decreased glucose 

tolerance, hyperinsulinemia, and decreased cardiac function 

(relative to mice fed the same high-fat meal during the begin-

ning of the active period).123,160 Interestingly, when placed on 

a high-fat diet in an ad libitum fashion, mice consume an 

abnormally high proportion of calories during the sleep phase, 

associated with phase and amplitude effects on peripheral 

circadian clock gene oscillations, as well as increased adipos-

ity and depressed glucose and insulin tolerance.62 However, 

limiting consumption of a high diet only to the active period 

resulted in improvements in these cardiometabolic param-

eters (relative to ad libitum high-fat feeding), and increased 

the amplitude of circadian clock gene expression in multiple 

metabolically relevant peripheral tissues (eg, liver).52

Exercise
Rhythms in exercise
Spontaneous physical activity clearly exhibits a circadian 

rhythm. When presented with a running wheel, mice vol-

untarily run for a greater amount during the awake period; 

persistence of this rhythm in constant darkness reveals that 

these rhythms are driven by circadian clocks. Similarly, a 

number of studies have reported time-of-day-dependent 

rhythms in exercise performance.161–166 For example, sprint 

swim times,167 as well as running speed, power, and distance 

covered,165 are all faster in humans during afternoon trials. 

Interestingly, this corresponds to a time of day at which body 

temperature is increased. However, normalizing afternoon 

and morning body temperatures (ie, actively or passively 

cooling the body in the afternoon or heating in the morning) 

only partially accounts for performance.168,169 Rhythms in heat 

dissipation capacity (ie, vasodilation and sweating) during 

exercise may also modulate performance.170,171  Evidence 

suggests that the intrinsic properties within muscle, such as 

calcium handling and ATPase activity, contribute in a sig-

nificant manner.172,173 Interestingly, recent findings suggest 

that individuals may achieve maximal exercise performance 

(assessed by cardiovascular endurance test) at different times 

of day, depending on their chronotype (ie, their individual 

tendency toward being a morning lark or night owl).174 Such 

observations suggest that intrinsic mechanisms (eg, circadian 

clocks) modulate exercise performance in a time-of-day-

dependent fashion.
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Exercise-induced clock entrainment
Exercise has emerged as a potent nonphotic zeitgeber in 

both animal models and humans.175–178 Mice exercised 

under constant darkness phase advance in response to 

exercise bouts during the subjective day, suggesting effects 

on the SCN clock.179 Furthermore, blinded mice also phase 

advance when given access to a running wheel.180 Exer-

cise performed during the morning versus evening can 

differentially regulate core body temperature, melatonin, 

and parasympathetic tone in humans, in such a way that 

suggests exercise in the morning may benefit, whereas 

exercise in the evening may negatively impact, rhythms 

and sleep in humans.181 Indeed, nocturnal exercise of 

both high and low intensity significantly phase delays 

rhythms in melatonin and thyroid-stimulating hormone 

in humans.182 Exercise also influences the expression of 

clock genes in rodent peripheral tissues, consistent with 

entrainment.183,184 Furthermore, exercise directly increases 

clock gene expression in human and equine muscles.185,186 

The temporal prescription of exercise can also be used to 

reduce entrainment time to a shift in light/dark cycle; re-

entrainment occurred more rapidly following intermittent 

access to a running wheel during the beginning of the new 

active period,176,187,188 but was slower when running wheel 

access was restricted to the light phase.187,188 Collectively, 

these data support the concept that exercise entrains both 

central and peripheral clocks, which in turn likely maintains 

synchrony between metabolic processes and anticipated 

periods of energetic demand.

Consequence of disrupting the exercise–clock 
relationship
It is somewhat difficult to dissociate the role of circadian clocks 

in exercise performance and adaptation, as numerous models of 

genetically disrupted clock function display underlying pathol-

ogy. For example, cardiac and skeletal muscles in CLOCK∆19 

mutant, as well as Bmal1 and Rev-erb-α null, mice exhibit 

disorganized ultrastructure, defective contractile function, 

decreased mitochondrial volume, and impaired mitochondrial 

respiration.112,134,189–192 To dissociate potential adverse develop-

mental effects, a recent study utilized an inducible Bmal1 KO 

restricted to skeletal muscle. Compared to constitutive skeletal 

muscle-specific Bmal1−/− mice, the inducible model did not 

display the same ultrastructural or contractile abnormalities.133 

In fact, muscle-specific Bmal1−/− mice displayed reduced in 

vivo contractile force, while inducible Bmal1−/− mice were 

similar to controls. However, adaptation to exercise was not 

investigated. Interestingly,  Pastore et al193 exercised CLOCK∆19 

mutant mice for 8 weeks and found that, despite having initially 

reduced exercise capacity (perhaps attributable to underlying 

deficits in cardiac and skeletal muscles), these mice were still 

able to adapt to exercise training (voluntary wheel running). 

Collectively, these findings suggest that a functional clock may 

be important in development and basal exercise performance, 

but may not be essential for adaptation. Additional studies are 

required to address this further, as well as related questions, 

such as whether the cardiometabolic benefits of exercise (eg, 

improved insulin sensitivity) are mediated in part by synchro-

nizing circadian clocks, whether cell autonomous clocks influ-

ence time-of-day-dependent rhythms in exercise performance 

(perhaps through regulation of metabolic processes), and/or 

whether circadian clocks play a significant role in cardiovascu-

lar benefits of exercise (eg, physiologic cardiac hypertrophy).

Summary
Circadian rhythms in metabolism undoubtedly play critical 

roles in metabolic homeostasis. These rhythms appear to 

be the product of both anticipation of, and adaptation to, 

fluctuations in energy/nutrient supply/demand (secondary 

to changes in feeding and activity status). Accordingly, 

disruption of synchrony (through environmental and/or 

genetic means) invariably leads to impairment of metabolic 

homeostasis (evidenced by obesity, diabetes mellitus). Future 

studies are required to address multiple unanswered questions 

related to mediation of these rhythms (eg, relative roles of 

extrinsic versus intrinsic factors), their impact on exercise 

performance, and whether disruption contributes to cardio-

metabolic diseases in humans.
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