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Abstract: NAD+ is a fundamental molecule in metabolism and redox signaling. In diabetes and 

its complications, the balance between NADH and NAD+ can be severely perturbed. On one hand, 

NADH is overproduced due to influx of hyperglycemia to the glycolytic and Krebs cycle pathways 

and activation of the polyol pathway. On the other hand, NAD+ can be diminished or depleted 

by overactivation of poly ADP ribose polymerase that uses NAD+ as its substrate. Moreover, 

sirtuins, another class of enzymes that also use NAD+ as their substrate for catalyzing protein 

deacetylation reactions, can also affect cellular content of NAD+. Impairment of NAD+ regen-

eration enzymes such as lactate dehydrogenase in erythrocytes and complex I in mitochondria 

can also contribute to NADH accumulation and NAD+ deficiency. The consequence of NADH/

NAD+ redox imbalance is initially reductive stress that eventually leads to oxidative stress and 

oxidative damage to macromolecules, including DNA, lipids, and proteins. Accordingly, redox 

imbalance-triggered oxidative damage has been thought to be a major factor contributing to the 

development of diabetes and its complications. Future studies on restoring NADH/NAD+ redox 

balance could provide further insights into design of novel antidiabetic strategies.

Keywords: mitochondria, complex I, reactive oxygen species, polyol pathway, poly ADP 

ribosylation, sirtuins, oxidative stress, oxidative damage

Introduction
Chronic elevation of blood glucose, known as diabetic hyperglycemia, is a hallmark 

of diabetes mellitus.1–4 This persistent hyperglycemia can lead to long term dam-

age to tissues such as the kidney, eyes, nerves, blood vessels, and heart. 3,5,6 For 

non-insulin-dependent tissues, a high level of blood glucose would mean a high 

level of glucose metabolism as glucose entry into the cells is not limited by insulin 

deficiency.7,8 Since one of the major purposes of glucose metabolism is to provide 

electrons that are stored mainly in NADH and FADH
2
 for ATP production via the 

processes of glycolysis and mitochondrial metabolic pathways, NADH would be in 

an oversupply state when glucose overload occurs. This excess NADH can break the 

redox balance between NADH and NAD+, and eventually can lead to oxidative stress 

and a variety of metabolic syndromes.9–13 Hence, it suffices to say that diabetes is a 

redox imbalance disease.14,15

In this review, we delineate the sources and the pathways that contribute to NADH/

NAD+ redox imbalance, and the potential consequences of this redox imbalance in 

diabetes. Regarding pathways that contribute to NADH/NAD+ redox imbalance, we 

focus on both the conventional glucose metabolic pathways and polyol pathway that get 
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activated by high level of blood glucose.16–18 We also discuss 

the pathways that utilize NAD+ as substrates such as sirtuins 

deacetylation pathways19,20 and poly ADP ribosylation path-

way.21,22 Additionally, NADH/NAD+-recycling enzymes such 

as lactate dehydrogenase (LDH) and mitochondrial complex I 

(NADH-ubiquinone oxidoreductase23,24) are also discussed. 

We believe that the consequences triggered by NADH/NAD+ 

redox imbalance are eventually reflected by oxidative stress 

and cell death that are known to be involved in the patho-

genesis of diabetes and its complications.

NADH production by the 
conventional glucose metabolic 
pathways
The pair of NADH and NAD+ plays a crucial role in metabo-

lism and redox signaling.25–30 The central pathways involved 

in complete glucose breakdown and electron storage in 

NADH are the glycolytic pathway and the Krebs cycle. As 

shown in Figure 1, glyceraldehyde 3-phosphate dehydroge-

nase in the glycolytic pathway makes NADH from NAD+. 

This is followed by pyruvate dehydrogenase complex that 

also makes NADH from NAD+, whereby the actual enzyme 

catalyzing NADH formation is dihydrolipoamide dehydroge-

nase.31,32 After acetyl-CoA enters into the Krebs cycle, more 

molecules of NADH are produced, which can be ascribed 

to the action of isocitrate dehydrogenase, α-ketoglutarate 

dehydrogenase, and malate dehydrogenase, respectively. 

Fatty acid β-oxidation fueling the production of acetyl-CoA 

can also be a significant source of NADH.33 Additionally, 

glutamate dehydrogenase, a central enzyme involved in 

α-ketoglutarate formation from glutamate,34 can also make 

NADH from NAD+.35,36 Under hyperglycemic conditions, 

both the glycolytic pathway and the Krebs cycle can be 

intensively fluxed by glucose.37 Therefore, NADH can be 

overproduced in diabetes via these pathways,38 and excess 

NADH is known to cause reductive stress.13,39–43

NADH production by 
polyol pathway
The polyol pathway, as shown in Figure 2, involves two con-

secutive reactions that are catalyzed by aldose reductase and 

sorbitol dehydrogenase, respectively. This pathway is usually 

rather inactive under euglycemic condition16 but can become 

a highly active glucose disposal pathway under diabetic 

hyperglycemic condition.44,45 The major feature of this path-

way is the production of NADH, sorbitol, and fructose.16,46–48 

Each of these intermediates or products plays a role in the 

pathogenesis of diabetes and its complications.16,46–49 For 

example, sorbitol can accumulate in retinal and renal tissues 

and causes osmotic stress and cell death,50,51 and fructose 

can cause nonenzymatic protein glycation or nitration52,53 

and contributes to pathogenesis of nonalcoholic fatty liver 

disease.54 More importantly, a massive NADH production by 

this pathway is known to perturb redox imbalance between 

NADH and NAD+, and consumption of NADPH can impair 

the function of glutathione reductase, leading to accumulation 

of oxidized form of glutathione and further accentuation of 

redox imbalance.13,55 As such, inhibition or deletion of aldose 

reductase, a rate-limiting enzyme in the polyol pathway, has 

been demonstrated to be antidiabetic.56–60

NAD+-degradation pathways
NAD+ is not only an electron acceptor but can also serve 

as a substrate and be degraded during enzyme-catalyzed 

reactions. Two major enzymatic pathways that use NAD+ as 

their substrate are sirtuins and poly ADP ribose polymerases 

(PARPs).27,61 As shown in Figure 3A, sirtuins use NAD+ for 

their deacetylation reactions, whereby NAD+ is degraded 

and nicotinamide and 2′-O-acetyl-ADP ribose are formed. 

Sirtuins are inducible enzymes.62,63 Therefore, if NAD+ level 

Figure 1 Metabolic pathways and enzymes involved in NADH production using 
NAD+ as their cofactor.
Notes: The enzymes are glyceraldehyde 3-phosphate dehydrogenase in the 
glycolytic pathway, pyruvate dehydrogenase complex catalyzing the formation 
of acetyl-CoA from pyruvate, and the isocitrate dehydrogenase, α-ketoglutarate 
dehydrogenase, and malate dehydrogenase in the Krebs cycle. Additionally, fatty 
acid oxidation that yields one molecule of NADH per one molecule of acetyl-CoA 
produced is also shown.
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is low, sirtuin protein content would be low.63,64 As acetylated 

proteins usually exhibit impaired functions,65,66 deacetylation 

by sirtuins usually improve the function of the target pro-

teins.67 Therefore, sirtuins can be activated by starvation or 

caloric restriction to safeguard cell survival.68,69 On the other 

hand, overnutrition such as in diabetes that usually produces 

excess NADH with diminished NAD+ content can often 

lead to attenuation of sirtuin protein content.20,70 Therefore, 

enhancing sirtuin expression in diabetic tissues has been 

suggested as a therapeutic approach for treating diabetes 

and its complications.71,72 It should be noted that among the 

seven members of the sirtuin family,19,73 sirtuin 4 does not 

possess deacetylation activity but rather exhibits mono- or 

poly ADP ribosyltransferase activity.74

Figure 2 Polyol pathway.
Notes: Shown are the two reactions catalyzed, respectively, by aldose reductase and sorbitol dehydrogenase. The pathway makes sorbitol from glucose, fructose from 
sorbitol, and NADH from NADPH via NAD+. Sorbitol can trigger osmotic stress and cell death; fructose can induce nonenzymatic glycation or contributes to nonalcoholic 
fatty liver disease. NADH can cause reductive stress that eventually leads to oxidative stress. Additionally, NADPH depletion can also impair glutathione reductase resulting 
in accumulation of oxidized glutathione that can further impair cellular redox balance.
Abbreviations: GSSG, oxidized glutathione; GSH, reduced glutathione.
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Figure 3 Two enzyme systems that are involved in NAD+ degradation.
Notes: (A) Sirtuins that catalyze protein deacetylation using NAD+ as a substrate. (B) Poly ADP ribose polymerase that catalyzes protein poly ADP ribosylation at the cost 
of NAD+. In both reactions, nicotinamide is formed.
Abbreviation: 2′-O-acetyl-ADPR, 2′-O-acetyl-ADP ribose.
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While numerous studies demonstrate that elevating sirtuin 

protein content, such as that of sirtuin 3, ameliorates diabetes 

and its complications,67,75–77 a question arising is that whether 

it is possible that elevated levels of sirtuins consume more 

NAD+ and make the redox imbalance situation worse. This 

seemingly is not the case. It is probable that elevated levels 

of sirtuins alter the profiles of a given acetylated/deacetylated 

proteome, rendering metabolic pathways more efficient, 

which leads to more NADH utilization and thus more NAD+ 

regeneration.74 It has been reported that deacetylation by sir-

tuin protein can enhance NADPH production, which may be 

involved in restoring cellular redox balance.78 Nonetheless, 

whether elevation of sirtuin levels in diabetes could restore 

or improve NADH/NAD+ redox balance needs to be further 

thoroughly investigated.

Another enzyme system that consumes and degrades 

NAD+ is PARPs, especially PARP-179 that can be activated 

by DNA damage.22,80 As shown in Figure 3B, the products of 

PARP-catalyzed reaction are poly ADP ribosylated proteins 

and nicotinamide derived from NAD+. The problem caused 

by activation of PARP in diabetes is that the enzyme is often 

overactivated,81–83 resulting in potential depletion of NAD+, 

which would further perturb NADH/NAD+ redox balance, 

leading to cell death.21,79,84,85 PARP has been touted as a 

promising target for antidiabetic therapy. Indeed, knocking 

out or knocking down PARP expression can prevent animals 

from developing diabetes.86–88 Drugs that inhibit PARP 

activity have also been developed and tested for antidiabetic 

therapy.89–93 For example, 1,5-isoquinolinediol as a PARP 

inhibitor has been shown to improve corneal epithelial inner-

vation in diabetic rats,94 and PARP inhibition could improve 

erectile function in diabetic rodents.95

Regeneration of NAD+ from NADH
For metabolism to continue, NAD+ has to be regenerated from 

NADH. There are two major pathways that can achieve this 

task, namely, LDH8 and mitochondrial complex I that is the 

first electron entry point in the electron transport chain.96–98 

In anaerobic metabolism such as in erythrocytes where no 

mitochondria exist, LDH is responsible for NAD+ regenera-

tion8,99 (Figure 4A). Under aerobic condition, however, mito-

chondrial complex I is responsible for NAD+ regeneration8,98 

(Figure 4B). Hence, it is imaginable that NADH oversupply 

could overwhelm LDH100 or complex I.101 Indeed, it has been 

shown that diabetic hyperglycemia increases the enzyme 

activity of LDH in red blood cells and in small platelets to 

handle NADH over-influx.102,103 On the other hand, changes 

in complex I function in diabetes and its complications 

remain very sketchy. Nonetheless, it has been reported that 

complex I activity is decreased in diabetic skeletal muscles104 

but increased in diabetic kidneys.105 Therefore, it seems that 

changes in complex I activity are tissue dependent in diabetic 

subjects. It would be interesting to survey complex I activity 

from tissue to tissue in diabetic rodents or possibly humans.

Detrimental effects of redox 
imbalance in diabetes
When excess NADH accumulates, the enzymes that pro-

duce NADH from NAD+ will be inhibited. For example, 

both glyceraldehyde 3-phosphate dehydrogenase and 

dihydrolipoamide dehydrogenase in the pyruvate dehydro-

genase complex can be inhibited by NADH,106,107 leading to 

potential reactive oxygen species (ROS) production.82,108,109 

Moreover, mitochondrial electron transport chain can be 

overloaded by this electron donor.110 The direct pressure 

of this NADH overload would be on complex I, which is a 

major site for generation of ROS.111–116 The feature of this 

45-subunit complex117 in ROS production is that the more 

NADH it oxidizes, the more ROS it will produce.112,114,118–120 

Therefore, oxidants will overwhelm cellular antioxidant 

systems, leading to mitochondrial membrane permeability 

transition pore opening121,122 and mitochondrial dysfunc-

tion that are concurrent with extensive oxidative damage to 

proteins, DNA, and lipids123–127 (Figure 5). These oxidized 

Figure 4 Major cellular enzymes involved in NAD+ regeneration.
Notes: Shown are (A) lactate dehydrogenase in red blood cells or under hypoxic 
conditions and (B) mitochondrial complex I that is the major site for aerobic NAD+ 
regeneration.
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macromolecules can accumulate over time, manifest dia-

betic glucotoxicity,128–131 and eventually lead to insulin 

resistance,132–135 β-cell insulin deficiency,136–138 and global 

cell death and tissue dysfunction.82,139–144 Indeed, oxidative 

damage and oxidative stress have been demonstrated to be 

involved in the pathogenesis of diabetes and its complica-

tions.145–148 Relevantly, inhibition of complex I has been 

shown to activate 5′-AMP-activated protein kinase and 

improves glucose metabolism in diabetes,149–152 supporting 

the observation that complex I ROS production plays a 

role in diabetes.153–157 Therefore, restoring redox balance or 

attenuating oxidative stress should be a promising approach 

to treating these chronic age-related diseases. Additionally, 

roles of antioxidants in antidiabetic therapy should also be 

highly appreciated as antioxidants usually work by ultimately 

improving redox balance.158–163

Summary and future perspectives
As has been discussed earlier, there is a severe redox imbal-

ance problem occurring in diabetes and its complications. 

For cells whose glucose uptake is not dependent on insulin, 

glucose oversupply can lead to NADH overproduction by both 

the conventional glucose combustion pathways (Figure 1) and 

the polyol pathway (Figure 2). On the other hand, overacti-

vation of PARP can diminish or deplete the cellular NAD+ 

pool (Figure 3B), thereby potentially downregulating sirtuins 

expression and making the redox imbalance situation worse. 

While drugs inhibiting aldose reductase in the polyol path-

way164,165 or PARP89,90 will continue to remain as active areas 

of investigation in the future, NAD+ regeneration enzymes 

such as complex I should also be studied38 to provide insights 

into how excess NADH can be oxidized under glucose over-

load conditions. Additionally, administration of NAD+ precur-

sors or analogs166,167 can also serve as an approach to treating 

diabetes and its complications. The ultimate goals of all these 

prospective studies are to restore NADH/NAD+ redox balance 

in diabetes and its complications for therapeutic purposes.
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