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Abstract: Hemophilia B is an X-linked genetic deficiency of coagulation factor IX (FIX) activity 

associated with recurrent deep tissue and joint bleeding that may lead to long-term disability. 

FIX replacement therapy using plasma-derived protein or recombinant protein has significantly 

reduced bleeding and disability from hemophilia B, particularly when used in a prophylactic 

fashion. Although modern factor replacement has excellent efficacy and safety, barriers to the 

broader use of prophylaxis remain, including the need for intravenous (IV) access, frequent 

dosing, variability in individual pharmacokinetics, and cost. To overcome the requirement for fre-

quent factor dosing, novel forms of recombinant FIX have been developed that possess extended 

terminal half-lives. Two of these products (FIXFc and rIX-FP) represent fusion proteins with 

the immunoglobulin G1 (IgG1) Fc domain and albumin, respectively, resulting in proteins that 

are recycled in vivo by the neonatal Fc receptor. The third product has undergone site-specific 

PEGylation on the activation peptide of FIX, similarly resulting in a long-lived FIX form. 

Clinical trials in previously treated hemophilia B patients have demonstrated excellent efficacy 

and confirmed less-frequent dosing requirements for the extended half-life forms. However, 

gaps in knowledge remain with regard to the risk of inhibitor formation and allergic reactions 

in previously untreated patient populations, safety in elderly patients with hemophilia, effects 

on in vivo FIX distribution, and cost-effectiveness. Additional strategies designed to rebalance 

hemostasis in hemophilia patients include monoclonal-antibody-mediated inhibition of tissue 

factor pathway inhibitor activity and siRNA-mediated reduction in antithrombin expression 

by the liver. Both of these approaches are long acting and potentially involve subcutaneous 

administration of the drug. In this review, we will discuss the biology of FIX, the evolution of 

FIX replacement therapy, the emerging FIX products possessing extended half-lives, and novel 

“rebalancing” approaches to hemophilia therapy.
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Introduction
Hemophilia B is an X-linked genetic deficiency of coagulation factor IX (FIX) activity, 

which leads to recurrent and disabling bleeding complications.1 FIX is the zymogen 

of factor IXa (FIXa), a serine protease critical to amplification of blood coagulation. 

Numerous mutations in the FIX gene, located on the long arm of chromosome X, 

are associated with this disorder. In contrast to hemophilia A, FIX deficiency is most 

commonly caused by single base pair substitutions, resulting in missense, nonsense, 

or frameshift mutations. Deletions are the second most common gene defect seen in 

this population.2 The predominance of point mutations, as opposed to the large gene 

inversions found in hemophilia A, means that a substantial proportion of patients 
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with hemophilia B express some hypofunctioning or non-

functional protein. The higher prevalence of protein expres-

sion in hemophilia B is likely reflected in the lower rates of 

inhibitor formation (1%–5%) compared to hemophilia A 

(25%–35%).3,4

Hemophilia B is classified into severe (,1%), moderate 

(1%–5%), or mild (5%–40%) phenotypes based on the 

plasma FIX activity of affected individuals.5 The severe 

phenotype is characterized by spontaneous and recurrent 

bleeding episodes into joints and muscles, with hemarthroses 

being the predominant cause of long-term disability.6 The 

moderate phenotype is characterized by occasional spon-

taneous bleeds and prolonged bleeding with minor trauma 

or surgery. Finally, patients with the mild phenotype rarely 

demonstrate spontaneous bleeding but may have significant 

bleeding with major trauma or surgery. Aggressive factor 

replacement is required primarily for patients with moderate 

and severe hemophilia B phenotypes.

Factor replacement therapy may be provided either 

“on demand” for symptoms related to bleeding or as “pro-

phylaxis” in which scheduled infusions are undertaken in an 

attempt to prevent hemorrhage. Primary prophylaxis refers to 

factor replacement that is started to prevent clinical bleeding 

episodes in the infant or young child, while secondary pro-

phylaxis refers to replacement therapy that is initiated in 

response to recurrent bleeding symptoms. Prophylaxis has the 

potential to change the landscape in hemophilia B by reducing 

debilitating musculoskeletal complications in patients with 

severe hemophilia and improving quality of life.7,8 Current 

clinical research and development efforts are predominantly 

aimed at manipulating the pharmacokinetic and physiologic 

properties of FIX to prolong the biological half-life and/or 

enhance in vivo hemostatic function. Alternative approaches 

seek to “rebalance” the coagulation response via long-acting 

agents. Finally, although gene therapy for hemophilia B 

remains an active area of preclinical and early phase clinical 

investigation, it is beyond the scope of this review.

Biology of FIX
Biosynthesis, activation, and mechanism 
of action
FIX is synthesized by hepatocytes as a 461-amino acid 

precursor polypeptide that undergoes extensive post-

translational modifications including proteolytic removal 

of the 46-amino acid prepropeptide sequence; vitamin 

K-dependent γ-carboxylation of selected glutamic acid 

residues in the N-terminal GLA domain of the mature 

protein; partial β-hydroxylation of Asp 64; O-linked 

glycosylation at Ser 61 and 63, Thr 159, 169, 172, and 179; 

and N-glycosylation (Asn 157 and Asn 167), sulfation (Tyr 

155), and phosphorylation (Ser 158) within the activation 

peptide (Figure 1A–C).9,10 Zymogen FIX (molecular weight 

=55,000) is secreted into the circulation and may undergo 

activation to protease (FIXa) by proteolytic cleavage fol-

lowing Arg 145 and Arg 180, with release of the heavily 

glycosylated activation peptide. FIXa may be generated by 

the tissue factor–factor VIIa (TF–FVIIa) complex during 

the initiation phase or by FXIa during the propagation phase 

of blood coagulation. In the presence of the cofactor factor 

VIIIa, calcium, and an appropriate phospholipid surface, 

FIXa is incorporated into the intrinsic “tenase” (FIXa–

FVIIIa) complex.11 Ex vivo modeling of blood coagulation 

demonstrates that factor X activation by the intrinsic tenase 

complex is the rate-limiting step for thrombin generation.12,13 

Reduced or nonexistent activity of the intrinsic tenase com-

plex in hemophilia A and B results in defective thrombin 

generation and fibrin clot formation that is associated with 

delayed clinical bleeding.

Tissue distribution
The procofactor factor VIII (280 kDa) circulates in blood 

primarily bound to von Willebrand factor (500–2,000 kDa), 

which largely restricts distribution to the intravascular com-

partment.14 In contrast, FIX is a smaller protein (55 kDa) with 

access to both intravascular and extravascular compartments. 

The apparent volume of distribution for FIX is significantly 

larger than that for plasma, which supports a two-compartment 

pharmacokinetic model15 (Figure 2). A number of clinical 

observations in hemophilia B patients suggest the presence 

of a significant noncirculating, extravascular “pool” of FIX, 

including 1) the rapid initial loss of FIX from the circulation 

following bolus infusion (enhanced in patients who com-

pletely lack FIX antigen), 2) a gradual rise in trough levels 

with repeated bolus dosing, and 3) a reduced dose require-

ment over time to maintain 100% levels during continuous 

infusion of plasma-derived FIX (pdFIX) or recombinant 

FIX (rFIX).16,17 Similarly, infusion of excess bovine FIX into 

baboons resulted in a proportional increase in circulating lev-

els of baboon FIX analyzed using a species-specific enzyme-

linked immunosorbent assay, suggesting displacement of the 

host protein from an accessible reservoir.18 Reanalysis of these 

data suggests that the extravascular component contains at 

least 3-fold more FIX than that present in the circulation.19 

FIX (and FIXa) bind rapidly and reversibly to vascular 

endothelium and subendothelial extracellular matrix, largely 

mediated by the interaction of specific residues in the FIX 
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GLA domain with collagen IV, located predominantly in the 

basement membrane.20,21 FIXa also demonstrates increased 

affinity for heparin/heparan sulfate relative to other coagula-

tion factors.22 Immunohistochemical staining of both murine 

and human arteries demonstrate FIX (but not FX) binding 

on the endothelial surface. Remarkably, ∼80% of injected 

FIX is sequestered in the liver within 2 minutes postinjection 

in hemophilia B mice, likely accounting for much of the 

rapid initial clearance.21 The extravascular pool contributed 

significantly to FIX hemostatic function in the mouse in 

two experiments. A  knock-in mouse model expressing a 

FIX variant with reduced collagen IV affinity demonstrated 

delayed hemostasis, despite higher circulating FIX levels 

relative to wild-type protein.23 Similarly, bolus infusion of a 

FIX variant with enhanced collagen IV affinity demonstrated 

a prolonged hemostatic effect in the hemophilia B mouse, per-

sisting days after circulating plasma levels reached ,1%.19

Recombinant FIX
The cellular origin of rFIX impacts posttranslational modifi-

cations that may contribute to differences in pharmacokinetic 

behavior. Recovery of FIX after bolus injection is significantly 

reduced for rFIX versus pdFIX.24–27 Currently approved 

formulations of rFIX expressed in Chinese hamster ovary 

(CHO) cells or HEK 293 cells are fully γ-carboxylated with 

variable Asp64 β-hydroxylation but demonstrate markedly 

lower levels of Tyr 155 sulfation and Ser 158 phosphorylation 

in the activation peptide.28 Similar differences in posttrans-

lational modifications were found for myotubule-synthesized 

FIX during gene therapy.29 The rFIX from CHO cells and 

transgenic porcine milk have reduced sialic acid content 

in the N-glycans of the activation peptide, likely relevant 

given the demonstrated role of sialylation in glycoprotein 

clearance.30 Thus, differences in posttranslational modifica-

tions are likely responsible for the reduced recovery of rFIX 

relative to pdFIX, but the specific contribution of individual 

modifications remain incompletely defined.31

Evolution of hemophilia B therapy
Treatment of hemophilia B became available in the 1960s and 

1970s with the development of fresh frozen plasma, followed 

by intermediate purity preparations such as prothrombin 
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Figure 1 rFIX forms with extended terminal half-lives.
Notes: (A) rFIXFc fusion protein with IgG1 Fc domain directly attached to C-terminus (no linker region), (B) rIX-FP fusion protein with albumin attached via linker peptide 
containing a proteolytic cleavage site, (C) N9-GP rFIX modified in a site-selective manner with a 40 kDa PEG moiety attached to one or both N-glycosylation sites in the 
activation peptide. The domain structure of the mature FIX protein is shown for each form with activation cleavage sites and posttranslational modifications as indicated.
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complex concentrates (PCC) or “FIX complex concentrates”.32 

However, use of these intermediate purity preparations was 

complicated by significant infectious and thromboembolic 

risks. In the early 1980s, it was recognized that blood products 

for hemophilia A and B, pooled from multiple donors, were 

contaminated with blood-borne pathogens (particularly 

human immunodeficiency virus [HIV] and hepatitis B and 

C). Tragically, these pooled blood products resulted in HIV 

transmission to ∼50% of all hemophilia patients and up 

to 90% of severe hemophilia patients.33 Methods for viral 

screening and inactivation were subsequently developed, 

which dramatically improved the safety of these products.34 

Secondly, intermediate purity PCCs such as Bebulin (Baxter, 

Deerfield, IL, USA) and Profilnine (Grifols Biologicals Inc., 

Los Angeles, CA, USA) contain significant amounts of other 

vitamin K-dependent clotting factors (factors II, VII, and X) 

and low levels of activated coagulation factors. These prod-

ucts were associated with increased risk of thromboembolic 

complications, including venous thromboembolism, dissemi-

nated intravascular coagulation, and myocardial infarction.35 

Highly purified pdFIX preparations were later developed 

using monoclonal-antibody-based purification that reduced 

the thromboembolic risks associated with earlier therapies.36 

Finally, bioengineering of human FIX in CHO cells was 

undertaken, with the first purified rFIX product (Benefix, 

Pfizer, New York, NY, USA) receiving US Food and Drug 

Administration (FDA) approval in 1997.37

Factor replacement therapy for moderate or severe 

hemophilia B is based on two major approaches: “on-

demand” versus prophylaxis. In the “on-demand” approach, 

FIX is infused in response to bleeding symptoms to target 

plasma FIX levels of 60%–80% for major bleeds and 

20%–40% for minor bleeds. In the prophylaxis approach, 

plasma-derived or rFIX is infused 2–3 times per week with 

the goal of maintaining plasma FIX levels .1%, thereby 

changing the expected phenotype from severe to moderate 

hemophilia.38 Prophylactic infusion of replacement factor 

according to this strategy is superior to on-demand therapy 

for preventing clinical complications in severe hemophilia 

patients, particularly disabling hemophilic arthropathy.7,8 

In patients with severe hemophilia who are negative for 

HIV and inhibitors, prophylaxis also reduces the risk of 

central nervous system hemorrhage by about half.39 Multiple 

studies suggest that the impact of prophylaxis on quality of 

life for hemophilia patients is substantial.40 Reduction in 

hemarthroses leads to less hemophilic arthropathy, fewer 

orthopedic interventions, and less disability. Despite the 

clear advantages of prophylaxis, barriers to broader use 

persist including prominent cost, the need for IV devices 

with their attending complications, and compliance with 
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- Others
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Figure 2 Cross section of blood vessel indicating location of extravascular FIX pool.
Notes: Intravascular compartment consists of circulating FIX protein, extravascular compartment is represented by the endothelial monolayer plus the basement membrane 
that is enriched with collagen IV binding sites for FIX. The extravascular pool contributes to the in vivo hemostatic function of FIX in the hemophilia B mouse. The majority 
(∼80%) of injected FIX is sequestered rapidly in the liver, likely involving the sinusoidal endothelium. Other vascular organs show later peaks of FIX localization.
Abbreviation: FIX, factor IX.
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frequent factor infusions.41,42 Cost is particularly limiting 

for the use of prophylaxis in developing countries.43 Practi-

cally speaking, prolongation of the dosing interval would 

enhance compliance and reduce the need for central venous 

access devices.

Highly purified pdFIX
Highly purified pdFIX products are isolated from plasma 

or PCC by monoclonal-antibody-based affinity chromato

graphy, which dramatically reduces contaminating vitamin 

K-dependent clotting factors (II, VII, and X).44 Thus, infu-

sion of highly purified pdFIX in patients with hemophilia B 

is not associated with elevated in vivo markers of coagulation 

activation that are commonly seen with PCC products.45 

Rigorous purification and viral inactivation processes, 

including immunoaffinity chromatography, dry heating, 

solvent/detergent treatment, sodium thiocyanate incuba-

tion, and membrane ultrafiltration have markedly reduced 

infectious risks. Indeed, there have been no documented 

transmissions of hepatitis B virus, hepatitis C virus, or 

HIV since the introduction of effective virus inactivation 

procedures.46 Rare reports describe contamination with 

infectious prions and parvovirus transmission, but the 

clinical implications of these findings remain unclear.47,48 In 

general, plasma-derived factor remains a very safe option 

for replacement therapy for most patients worldwide.49 

Available high-purity pdFIX products in the USA include 

AlphaNine (Grifols) and MonoNine (CSL Behring, King 

of Prussia, PA, USA) (Table 1). In clinical studies, these 

products have demonstrated excellent hemostatic efficacy 

(∼90%) and safety profiles in the prophylaxis, on-demand, 

and surgical settings.44,50–53 The estimated plasma half-life 

for highly purified pdFIX preparations is 16–19 hours,26,54,55 

although other estimates are closer to 30 hours,56 likely due 

to methodological differences. Dosing 2–3 times weekly is 

appropriate for prophylaxis, although significant variation 

between individuals is observed .56,57

Recombinant FIX
The human FIX gene was identified and cloned in early 1980s,58 

followed by insertion of the human FIX cDNA sequence into 

the CHO cell line and expression of rFIX in 1982.59 rFIX is 

purified by a four-step chromatographic process, including 

nanofiltration for viral reduction. Comparison of pharma-

cokinetics in patients with hemophilia B demonstrates that 

the recombinant protein has consistently lower (∼30%–50%) 

in vivo recovery (peak levels) with a similar terminal half-

life (17–19 hours) to pdFIX following bolus injection.26,54 

Treatment of 56 previously treated patients (PTP) with rFIX 

demonstrated excellent hemostatic efficacy, with 80.9% of 

hemorrhages resolving with one dose, the majority of hemor-

rhages (61%) on prophylaxis occurring .72 hours after the 

last dose, and 27 surgical procedures in 20 patients demon-

strating good or excellent hemostasis. Toxicity was limited 

to the development of a transient inhibitor in one patient, but 

no evidence of thromboembolism or viral transmission was 

observed.60 Similarly, treatment of 63 previously untreated 

patients (PUP) with rFIX also demonstrated excellent hemo-

static efficacy, with 75% of hemorrhages resolving with one 

dose, 91% of prophylaxis responses in 32 patients rated as 

“excellent”, and 30 procedures on 23 patients with good or 

excellent hemostasis. Five patients demonstrated allergic 

reactions, and two of them demonstrated inhibitors (3%). 

No thrombotic or viral transmission events were observed.61 

A French study on patients with moderate-to-severe hemo-

philia did not show any difference in quality of life between 

rFIX and pdFIX, although rFIX consumption was higher by 

a factor of 1.40. As expected, increased cost was associated 

with prophylaxis compared to on-demand therapy.62

Modified rFIX products with 
prolonged terminal half-lives
Clinical practice guidelines recommend that the goal of 

prophylaxis in hemophilia B is to maintain plasma FIX 

levels .1%,5 which has led to strategies designed to prolong 

Table 1 Therapeutic approaches to hemophilia B

Product Half-life  
(hours)

Clinical phase FDA  
approval

Population Comments

pdFIX 17–23 Phase III, completed Yes PTP/PUP AlphaNine SD Mononine
rFIX 17–19 Phase III, completed Yes PTP/PUP Benefix Rixubis Ixinity
rFIX-Fc (Fc fusion) 82 Phase III, completed Yes PTP Alprolix
rIX-FP (albumin fusion) 92 Phase II/III trial ongoing No PTP BLA under review by FDA
N9-GP (rFIX-PEG) 93 Phase III, complete No PTP Nonacog β pegol, once-weekly dose
Anti-TFPI Ab NA Phase I completed No PTP
ALN-AT3 NA Phase I ongoing No PTP siRNA targeting AT3 expression

Abbreviations: FDA, US Food and Drug Administration; pdFIX, plasma-derived FIX; rFIX, recombinant factor IX; PTP, previously treated patients; PUP, previously untreated 
patients; BLA, biologics license application; PEG, polyethylene glycol; TFPI, tissue factor pathway inhibitor; Ab, antibody; AT3, antithrombin III; NA, not applicable.
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the terminal plasma half-life of FIX. These products, which 

increase the feasibility of once-weekly FIX administration, 

have been recently approved or are in late clinical develop-

ment stages (Table 1).

rFIXFc fusion protein
The Fc domain of the IgG molecule binds to the neonatal Fc 

receptor (FcRn), which is present on many adult cells, includ-

ing endothelial cells, monocytes/macrophages, and epithelial 

cells.63 Following internalization by the endothelial cell, 

proteins that bind to the FcRn receptor in the acidified endo-

some are protected from lysosomal sorting and degradation, 

allowing recycling back to the cell surface with pH-dependent 

release into the circulation. Recycling via the FcRn is the 

mechanism responsible for the extended in vivo half-life of 

IgG, albumin, and therapeutic IgG1-Fc fusion proteins.63 

Similarly, direct fusion (no linker region) of a monomeric Fc 

domain from human IgG1 to the carboxyl terminus of human 

FIX (rFIXFc) results in a long-acting rFIX (Figure  1A). 

rFIXFc demonstrates a 3- to 4-fold prolongation of terminal 

half-life relative to rFIX in multiple species (mouse, rat, dog, 

and monkey). Posttranslational modifications of rFIXFc 

expressed in HEK293 cells appear similar to rFIX expressed 

in CHO cells (Benefix, Pfizer). On a molar basis, the specific 

activity of rFIXFc is ∼50% that of conventional rFIX, and 

the precise impact of the Fc domain on factor X activation 

kinetics was not reported.28

A Phase I–II clinical study of rFIXFc in 14 patients with 

hemophilia B demonstrated in vivo recovery ∼20% higher 

than rFIX and confirmed an ∼3-fold prolongation of terminal 

half-life.64 rFIXFc was subsequently examined in a Phase 

III study of 123 PTPs (median age: 30 years) divided into 

four treatment groups: weekly dose-adjusted prophylaxis, 

interval-adjusted prophylaxis, on-demand therapy, and 

perioperative treatment. As expected, prophylaxis groups 

demonstrated significantly lower median annualized bleeding 

rates of 3.1% and 2.4%, respectively, compared to 18.6% for 

on-demand therapy. The vast majority (90.4%) of bleeding 

episodes resolved with one injection. Hemostasis was rated 

as good or excellent in 14 major surgeries performed in 

12 subjects. No inhibitors or anaphylactic reactions were 

observed, and the only thrombotic episode was an obstruc-

tive clot in the urinary collection system of a patient with 

previous hematuria. The terminal half-life for rFIXFc was 

82 hours, compared to 33 hours for rFIX (Benefix).65 A post 

hoc analysis comparing patients who received prophylaxis 

for .6 months on this study with their prestudy prophylaxis 

suggested that rFIXFc markedly reduced infusion frequency 

and FIX consumption with fewer bleeding episodes.66 In 

2014, rFIXFc (Alprolix, Biogen, Cambridge, MA, USA) 

was approved by the FDA for prophylaxis and treatment of 

bleeding episodes in individuals with hemophilia B, in both 

routine and perioperative settings. An ongoing clinical study 

(NCT02234310) will evaluate the safety and efficacy of 

rFIXFc in the PUP population with severe hemophilia B.

FIX-albumin fusion protein
The FIX-albumin (rIX-FP) fusion protein represents an 

alternative approach to prolongation of rFIX half-life that 

similarly takes advantage of recycling via the FcRn. Albumin 

interacts with the FcRn at a site independent of the IgG Fc 

domain but has similar pH-dependent binding affinity that 

allows recycling back to the circulation, resulting in a serum 

half-life of ∼20 days.67 In rIX-FP, the albumin moiety has been 

fused to the C-terminus of FIX via a cleavable linker contain-

ing a FIX activation site. The design of this fusion protein 

allows proteolytic release of the FIXa molecule from albumin 

upon activation by TF–FVIIa or factor XIa (Figure 1B). The 

molar-specific activity of this fusion protein expressed in 

CHO cells is 20- to 30-fold higher than the fusion protein 

expressed with noncleavable linkers.68 In rats and rabbits, 

rIX-FP demonstrated a 1.6- to 1.7-fold increased recovery 

and ∼4-fold increase in terminal half-life relative to rFIX, 

along with demonstrated efficacy in a tail-tip bleeding model 

in hemophilia B mice.68 Similar prolongation of therapeutic 

levels was observed in dogs with hemophilia B and non

hemophilic cynomolgus monkeys.69

In a multicenter, dose-escalation Phase I trial of 25 PTPs 

(mean age: 35 years), rIX-FP demonstrated a 44% increase 

in recovery and ∼5-fold increase in half-life (mean: 92 hours) 

relative to rFIX, with no inhibitors or hypersensitivity events 

reported.70 A second Phase I–II study of 17 PTPs (mean age: 

26 years) demonstrated similar pharmacokinetic results and 

included an 11-month safety and efficacy evaluation. During 

the extension study, 13 patients received weekly prophylaxis 

and four patients were treated on demand. Seven patients on 

prophylaxis were treated for 14 spontaneous bleeds during 

the prophylaxis period, while six had no bleeds, with a 

median annualized spontaneous bleeding rate (AsBR) of 

1.13. For both on-demand and prophylaxis patients, 95% 

bleeding episodes were treated with single infusion and no 

inhibitors, antibodies to rIX-FP, or allergic reactions were 

detected.71 Preliminary results of multinational, Phase II–III 

studies evaluating the safety and efficacy of rIX-FP in PTP 

(adults and children) were reported at the 2015 International 

Society of Thrombosis and Haemostasis biannual meeting. 
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These studies included 27 PTPs ,12 years of age treated 

for 12  months with weekly prophylaxis or on demand. 

No inhibitors or antibodies to rIX-FP were reported, and 97% 

bleeding episodes were treated with one or two infusions.72 

The adult study (age 12–61 years) enrolled 63 patients treated 

on demand (N=23) or with a 7-day prophylaxis interval 

(N=40) for 6 months, after which on-demand patients were 

switched to 7-day prophylaxis, and the therapy of selected 

prophylaxis patients was extended to 10- or 14-day intervals. 

As expected, a marked reduction in bleeding episodes was 

observed for prophylaxis (median AsBR: 0.00) versus on-

demand. Additionally, 21 prophylaxis patients extended their 

treatment interval to 14 days, with no significant increase in 

bleeding and 50% reduction in factor consumption relative 

to historical use. Finally, ∼94% of bleeding episodes resolved 

with one factor injection, and no serious adverse events were 

observed, including development of inhibitors or antibodies 

to rIX-FP.73 A surgical substudy reported 12 major opera-

tions in ten patients treated with preoperative rIX-FP, and the 

hemostatic response was characterized as good or excellent 

in all cases with 2–7 infusions during the 14-day postopera-

tive period.74 The Biologics License Application for rIX-FP 

was accepted for review by the FDA in February 2015. An 

ongoing clinical study (NCT02053792) will address the 

safety and efficacy of rIX-FP in the PUP population.

GlycoPEGylated rFIX
Covalent modification of therapeutic proteins with poly-

ethyelene glycol (PEG) chains is an established approach 

to prolonging protein half-life and in vivo activity.75 N9-GP 

(nonacog β-pegol) is a rFIX expressed in CHO cells and 

has been modified by site-directed glycoPEGylation with a 

40-kDa PEG molecule on one (95%) or both (5%) N-glycans 

within the activation peptide (Figure 1C). Upon proteolytic the 

activation of FIX, the activation peptide containing the PEG 

moiety is removed, leaving native rFIXa. The kinetics of FIX 

activation by FXIa is identical to unmodified protein, while 

the activation by TF–FVIIa demonstrates a modest increase 

in K
m
 for FIX. The specific activity of N9-GP is equivalent to 

plasma-derived or native rFIX. Preclinical studies of N9-GP 

in pigs and dogs with hemophilia B demonstrated a 2-fold 

increase in recovery and an ∼5- to 7-fold increase in half-life 

relative to unmodified rFIX, along with demonstrated efficacy 

in a tail-tip bleeding model in hemophilia B mice.76

A Phase I trial of N9-GP in 16 PTPs with hemophilia B 

demonstrated markedly enhanced recovery and a half-life 

(93 hours) that was ∼5-times longer than nonpegylated rFIX. 

No inhibitors were detected, but one patient experienced a 

hypersensitivity reaction.77 A multinational, randomized, 

single-blind Phase III trial of the safety and efficacy of 

N9-GP was conducted in 74 PTPs (mean age: 31 years) 

with hemophilia B. Patients chose between on-demand 

(N=15) and prophylaxis (N=59) therapy, with the latter 

group randomized between two different weekly doses. 

Pharmacokinetic analysis confirmed previous observations 

in the Phase I trial. Overall estimated success rate of achiev-

ing hemostasis was 92%, with best results in prophylaxis 

group. Median AsBR was 0.97 and ,0.01 for 10 or 40 U/kg 

weekly prophylaxis, respectively, and 11.1 for on-demand 

therapy. No inhibitors, hypersensitivity reactions, or thrombo

embolic complications were reported.78 An extension of 

this trial (NCT01395810) and a study in patients under

going major surgery (NCT01386528) have been completed 

but not reported. Additional trials are ongoing to evaluate 

N9-GP in both pediatric PTP (NCT01467427) and PUP 

(NCT02141074) populations.

Alteration in rFIX function by mutagenesis
Preclinical data exist for targeted mutagenesis of human FIX 

designed to enhance coagulant activity or in vivo therapeutic 

properties. These approaches include incorporation of the FIX 

Padua mutation or combined mutations to enhance coagulant 

activity,79 introduction of additional N-glycosylation sites to 

enhance pharmacokinetics and subcutaneous (SC) absorp-

tion,80 and disruption of antithrombin- and heparin-mediated 

regulation to enhance in vivo protease activity.81 Although 

the overall risk of inhibitors is lower in hemophilia  B 

(see “Inhibitor formation and anaphylaxis” section), variant 

FIX sequences will require careful analysis for potential 

inhibitor formation.82

Gaps in knowledge
Although the potential advantages of rFIX proteins with 

extended half-lives for prophylaxis in hemophilia B are clear, 

there remain significant gaps in our knowledge with regard 

to the risk of inhibitor formation, safety in older hemophilic 

populations, and impact on the in vivo distribution of FIX.

Inhibitor formation and anaphylaxis
The incidence of inhibitors in hemophilia B (1%–5%) is 

significantly less than that in hemophilia A (25%–35%).4,83,84 

This difference in inhibitor prevalence likely reflects the pre-

dominance of missense mutations in severe hemophilia B, 

as  opposed to the large gene inversions associated with 

severe hemophilia A.85 The former mutations are much more 

likely to be associated with sufficient protein expression 
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to confer immune tolerance, while the latter completely 

lacks protein expression, resulting in a substantially higher 

inhibitor risk. Consistent with this notion, the risk of inhibi-

tor formation in hemophilia B is greatest in those patients 

with large gene deletions.86 This risk is highest in the PUP 

population during the first 5–6 years of life, occurring at a 

median of 11 exposure days to FIX product.87 Long-term 

safety and efficacy studies of rFIX demonstrate ∼3% rate 

of inhibitor formation, consistent with rates seen with 

plasma-derived products.61 The Phase II–III studies for 

all three extended half-life products were performed in 

PTP populations with substantial previous FIX exposure 

and exclusion of patients with evidence of inhibitors.65,73,78 

Clearly, the true incidence of inhibitor formation with these 

products will not be known until studies in PUP populations 

are completed. Patients with hemophilia B are uniquely at 

risk (compared to hemophilia A) for allergic reactions to 

factor infusion. These reactions occur in 1%–3% cases, with 

comparable incidence for both pdFIX and rFIX products.88 

Allergic reactions are commonly associated with inhibitors 

and may actually precede inhibitor development.85 The exact 

mechanism for the allergic reactions remains unknown, but 

they are postulated to involve extravascular IgE-mediated 

responses or codeletion of adjacent immune-response loci 

with large FIX gene deletions.86 The true incidence of 

allergic reactions with the extended half-life agents will 

likewise not be known until clinical trials are completed 

in PUP populations.

Safety
As the dramatic impact of HIV infection on the hemophilia 

population fades, increasing life expectancy means that the 

thromboembolic risk associated with an aging hemophilic 

population may yield additional safety concerns. On the 

basis of the data reported in an Italian registry in 2009, it is 

estimated that approximately 15% of hemophiliacs are aged 

45  years or above, and approximately 2% are older than 

65 years.89 Mean subject age in recent clinical trials for the 

extended half-life agents range from 26 to 35 years of age, 

with additional exclusions for comorbid conditions.65,73,78 

As additional risks may need to be considered in the older 

population, it will be important to include elderly patients 

with hemophilia B in future trials to the extent possible. For 

example, activation of rFIXFc (or rIX-FP with incomplete 

linker cleavage) may generate long-acting rFIXa forms that 

could potentially elevate thromboembolic risk in an older 

population. Likewise, although PEGylated protein therapies 

have a wide therapeutic index and substantial track record 

in the clinic, the life-long nature of hemophilia treatment 

raises concern about potential toxicity due to chronic PEG 

exposure.90 Conversely, PEGylated proteins tend to be less 

immunogenic than the unmodified protein, which could lead 

to a reduced rate of inhibitor formation.75

The role of extravascular FIX
The contribution of the extravascular pool to the hemostatic 

function of FIX in mouse models suggests that the access of 

modified rFIX forms to collagen IV binding sites in the sub-

endothelium may be therapeutically relevant (Figure 2).19,23 

Tritium-labeled rIX-FP and rFIX demonstrate similar overall 

tissue distribution, with early enhancement in liver levels 

and the expected prolonged half-life for the fusion protein 

in nonhemophilic rats.91 However, no direct analysis of bind-

ing to endothelium or tissue distribution in hemophilia B 

animals is available. N9-GP demonstrates 20-fold reduced 

affinity for binding to an endothelial monolayer relative to 

unPEGylated rFIX, suggesting that the PEG moiety may 

reduce access to, or affinity for, collagen IV binding sites.76 

We are not aware of any published analysis of endothelial 

binding or in vivo tissue distribution for rFIXFc. It is not 

known whether reduced access or binding to extravascular 

sites by extended half-life forms impacts duration of the 

hemostatic effect or relative risk of bleeding at low trough 

levels compared to conventional FIX. However, the hemo-

static contribution of extravascular FIX suggests that plasma 

FIX activity levels may not represent an ideal surrogate for 

therapeutic efficacy.

Cost-effectiveness of factor replacement
A major impetus behind the development of extended 

half-life FIX products was to enhance the feasibility of 

prophylaxis in hemophilia B. Thus, the contribution of 

these therapies will be judged, in part, on their ability to 

impact the cost-effectiveness of prophylaxis. Prophylaxis is 

clearly more expensive up-front than on-demand replace-

ment therapy, although savings due to reduced joint bleeds 

and related complications potentially makes prophylaxis 

ultimately more cost-effective.92 Determination of indirect 

cost savings (hospitalizations, disability, and productivity) 

related to prophylaxis is both complex and critical to this 

cost-effectiveness analysis. Limitations in resources remain 

a major obstacle to prophylaxis in hemophilia, particularly 

in developing countries. At least, the costs associated with 

the extended half-life products will need to be justified by 

proportional reduction in factor use due to less frequent 

dosing for prophylaxis and surgical procedures.
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Novel approaches
Although prophylactic factor replacement results in signi

ficant improvements in hemophilia outcomes, the need for 

vascular access and compliance with frequent infusions 

remain major challenges. Several long-acting strategies 

attempt to rebalance hemostasis in hemophilia by “inhibiting 

the inhibitor”. These strategies have the potential advantages 

of being effective in the presence of anti-FIX inhibitors and 

not requiring IV access.

Anti-tissue factor pathway inhibitor therapy
Inhibition of the TF–FVIIa complex by tissue factor path-

way inhibitor (TFPI) shuts down the extrinsic pathway 

following initiation of coagulation, making thrombin 

generation in the propagation phase dependent on the 

FIXa–FVIIIa complex (defective in hemophilia). Antago-

nizing TFPI-mediated inhibition via inhibitory antibodies 

allows TF–FVIIa activity to persist, resulting in continued 

thrombin generation via the extrinsic pathway that may, 

in part, compensate for defective factor X activation by 

the FIXa–FVIIIa complex in hemophilia. Concizumab, 

a monoclonal antibody against the kunitz-2 inhibitor domain 

of TFPI, improves clot formation in hemophilic blood and 

plasma and substantially reduces cuticle bleeding in a rabbit 

hemophilia model.93 In a Phase I trial involving 28 healthy 

volunteers and 24 hemophilia patients (21 hemophilia A 

and 3 hemophilia B) without inhibitors, both IV and SC 

concizumab was well tolerated, demonstrating nonlinear 

pharmacokinetics with dose-dependent, target-mediated 

clearance. Concizumab demonstrated dose-dependent 

increases in d-dimer and prothrombin fragment 1+2 in both 

healthy volunteers and hemophilia patients, and antibody 

was detectable for up to 42 days at the highest doses tested.94 

Additional humanized antibodies against TFPI are currently 

under development.

siRNA-mediated antithrombin gene 
knockdown
Reduction in antithrombin activity can restore normal levels 

of thrombin generation in hemophilic (A or B) plasma or 

whole blood. ALN-AT3 is an siRNA targeting a conserved 

region of the antithrombin (SERPINC1) transcript that has 

been conjugated with Gal-Nac to facilitate uptake by the asia-

loglyoprotein receptor in the liver. ALN-AT3 demonstrated 

dose-dependent reduction in antithrombin protein levels (up 

to .90%) in both mice and nonhuman primates, correct-

ing clotting and bleeding phenotypes in the hemophilia A 

mouse. Similarly, ALN-AT3 rectified thrombin generation in 

nonhuman primates with antibody-induced hemophilia A.95 

An ongoing Phase I trial has reported preliminary results in 

four healthy volunteers and 12 hemophiliacs (A and B) on 

ascending weekly dose levels, indicating that ALN-AT3 was 

generally well tolerated with no significant thromboembolic 

events. A maximal 86% reduction in plasma antithrombin was 

achieved with normalization of patient thrombin generation. 

A third arm will investigate the effects and tolerability of 

monthly dosing.96

Conclusion
Progress in the management of moderate-to-severe hemo-

philia B has been made possible by the availability of puri-

fied plasma-derived and rFIX with substantially reduced 

risks of infectious and thromboembolic complications. 

Further, the superior clinical outcomes associated with 

prophylaxis versus on-demand approaches to factor replace-

ment have been broadly recognized. Current development 

efforts in hemophilia B therapy are focused on overcoming 

the barriers to broader use of prophylaxis, including require-

ment for IV access, compliance with frequent infusions, 

poor recovery of rFIX, and cost. Modified rFIX proteins 

with extended half-lives (FIXFc, rIX-FP, and N9-GP) may 

have a substantial impact on the feasibility of prophylaxis 

via significant prolongation of dosing intervals and poten-

tial for higher troughs that may have lifestyle implications 

for the active patient with hemophilia B. Unanswered 

questions regarding the extended half-life forms include 

the risk of inhibitor formation and allergic reactions in PUP 

populations, safety in elderly populations, and the potential 

therapeutic implications of altered in vivo distribution. 

Alternative approaches attempt to rebalance coagulation 

in hemophilia by inhibiting TFPI activity or antithrombin 

expression to normalize thrombin generation. These latter 

approaches represent long acting and potentially SC 

approaches to hemophilia therapy that address many of the 

barriers to prophylactic therapy. These novel, long-acting 

approaches to hemophilia B therapy have the potential to 

markedly reduce common complications such as hemophilic 

arthropathy, enhance the ability to lead a physically active 

lifestyle, and improve the quality of life for patients with 

moderate-to-severe hemophilia B.
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