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Abstract: To identify potential key microRNAs (miRNAs) and their target genes for colorectal 

cancer (CRC). High-throughput sequencing data of miRNA expression and gene expression 

(ID: GSE46622) were downloaded from Gene Expression Omnibus, including matched colon 

tumor, normal colon epithelium, and liver metastasis tissues from eight CRC patients. Paired t-test 

and NOISeq separately were utilized to identify differentially expressed miRNAs (DE-miRNAs) 

and genes. Then, target genes with differential expression and opposite expression trends were 

identified for DE-miRNAs. Combined with tumor suppressor gene, tumor-associated gene, and 

TRANSFAC databases, CRC-restricted miRNAs were screened out based on miRNA-target 

pairs. Compared with normal tissues, there were 56 up- and 37 downregulated miRNAs in metas-

tasis tissues, as well as eight up- and 30 downregulated miRNAs in tumor tissues. miRNA-1 was 

downregulated in tumor and metastasis tissues, while its target oncogenes TWIST1 and GATA4 

were upregulated. Besides, miRNA-let-7f-1-3p was downregulated in tumor tissues, which also 

targeted TWIST1. In addition, miRNA-133b and miRNA-4458 were downregulated in tumor 

tissues, while their common target gene DUSP9 was upregulated. Conversely, miRNA-450-

b-3p was upregulated in metastasis tissues, while its target tumor suppressor gene CEACAM7 

showed downregulation. The identified CRC-restricted miRNAs might be implicated in cancer 

progression via their target genes, suggesting their potential usage in CRC treatment.

Keywords: colorectal cancer, differentially expressed microRNAs, differentially expressed 

genes, oncogenes, tumor suppressor genes

Introduction
Colorectal cancer (CRC) is the third most common malignancy cancer, causing 1,400,000 

new cases and 694,000 deaths in 2012 worldwide.1 With great progresses in diagnosis and 

treatment, the overall survival of patients with early-stage CRC has been improved. How-

ever, in terms of the patients with advanced CRC, chemotherapy usually fails to achieve 

satisfactory therapeutic effects.2 Therefore, it is greatly important to further understand 

the molecular mechanism of CRC so as to discover novel therapeutic targets.

MicroRNAs (miRNAs) are a class of small noncoding RNAs participating in diverse 

biological processes such as cell differentiation, proliferation, and apoptosis through a 

myriad of targets.3 Importantly, miRNAs act as downstream regulators of driver genes or 

protein kinases in cancers,4 and targeting miRNAs is considered as a potential strategy 

to increase the specificity of therapy and to overcome drug resistance. Recently, a link 

between the aberrant expression of miRNAs and CRC progression has been reported.5,6 

For instance, miRNA-21 has been demonstrated to be overexpressed in CRC, medi-

ating tumor progression and cancer cell growth.7,8 On the contrary, miRNA-338-3p, 
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miRNA-let-7, and miRNA-145 act as growth suppressors in 

CRC cells.9–11 In addition, downregulated miRNA-34a exerts 

suppressive effects on cell proliferation through regulating 

E2F signaling pathway in CRC.12 Serum miR-17-3p and 

miR-106a are biomarkers that can reflect tumor dynamics 

and predict disease recurrence for stage II/III CRC patients.13 

Alteration in miRNA binding sites of cell envelope-associated 

proteinase genes, oculocutaneous albinism, and ocular albi-

nism genes can inhibit translation process at genomic levels 

and disrupt cell cycle, which may in turn induce cancer or 

other diseases.14,15 Similarly, in silico evidence shows that 

single nucleotide polymorphisms in miRNA binding sites 

have effect on CRC.16,17 The miR-587/PPP2R1B/pAKT/XIAP 

signaling axis plays an essential role in regulating response 

to chemotherapy in CRC.18 Therefore, the identification of 

aberrantly expressed miRNAs and their targets is important 

to elucidate the initiation and progression of CRC.

Next-generation sequencing can help globally iden-

tify candidate miRNAs implicated in cancer.19 In 2013, 

Röhr et al20 applied high-throughput sequencing for miRNAs 

and mRNAs from paired normal, tumor, and metastasis 

tissues to explore the therapeutic application of miRNA-1 

in CRC. However, although Röhr et al20 have validated the 

great potential of miRNA-1 as therapeutic targets in CRC, 

there are still some important values to comprehensively and 

jointly analyze the miRNA and mRNA sequencing data using 

various bioinformatics methods.

In our study, we assumed that miRNA profile can be 

applied to predict clinical progression of CRC. To verify the 

hypothesis, bioinformatics approaches were first utilized to 

screen the differentially expressed miRNAs (DE-miRNAs) 

and genes (DEGs) in CRC based on the high-throughput data 

by Röhr et al.20 Thereafter, CRC-restricted miRNAs with 

differential expression were screened out according to the 

miRNAs-target pairs. The present findings revealed some 

new miRNAs implicated in CRC via their target genes, which 

can be used as novel therapeutic targets for CRC.

Materials and methods
Data acquisition
The high-throughput data GSE46622 deposited by Röhr et al20 

were downloaded from the National Center of Biotechnol-

ogy Information (NCBI) Gene Expression Omnibus (GEO, 

http://www.ncbi.nlm.nih.gov/geo/),21 which contained both 

miRNA and mRNA sequencing data based on the platform 

of Illumina Genome Analyzer IIx (Illumina, San Diego, CA, 

USA). For miRNA sequencing, a total of 24 samples, includ-

ing the matched primary colon tumor tissues (n=8), normal 

colon epithelium (n=8), and liver metastasis tissues (n=8) 

were collected from eight CRC patients undergoing surgical 

resection (mean age =66.63 years, six stable and two instable). 

In addition, GSE46622 also contained RNA-sequencing 

(RNA-seq) data of the paired samples collected from four of 

those patients. All samples were evaluated histopathologically 

and the required areas were macrodissected before RNA 

extraction. Then, RNA was extracted using the Trizol reagent 

(Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) 

according to the manufacturer’s instructions. After smallRNA 

isolation and cDNA library preparation, RNA sequencing was 

performed by Illumina’s RNA-Seq prep kit and Illumina’s 

DGE smallRNA sample (Illumina). This study used microar-

ray data downloaded from a public database, therefore, no 

ethics committee approval or patient consent were required.

Data preprocessing
The raw sequencing data were performed with quality con-

trol using FastQC (http://www.bioinformatics.bbsrc.ac.uk/

projects/fastqc).22 The reads containing either more than 50% 

low quality bases (18) or over 3% N content in each end 

of the full lengths were filtered out. Besides, such noncod-

ing RNAs, including rRNA, tRNA, and small nuclear RNA 

(snRNA) were eliminated based on reference sequences 

from rfam11.0 (http://rfam.xfam.org/).23 Afterward, the clean 

reads were aligned against the reference human genome hg19 

(http://www.genome.ucsc.edu/index.html) using Bowtie 2 

(http://computing.bio.cam.ac.uk/local/doc/bowtie2.html)24 

and TopHat v1.3.3 (http://ccb.jhu.edu/software/tophat/index.

shtml)25 with default parameters. The sequences of mature 

miRNAs and pre-miRNAs were obtained from mirbase20 

(http://www.mirbase.org/)26 to identify miRNAs.

Differential analysis of miRNAs
MiRDeep2 (http://biowulf.nih.gov/apps/mirdeep2.html)27 

emerges as a completely overhauled tool to predict miR-

NAs, which contains known and novel miRNAs in seven 

species. Herein, miRDeep2 was used to predict the novel 

miRNAs and calculate the expression levels of those known 

and predicted miRNAs. After that, paired t-test was used to 

identify DE-miRNAs in the following pairwise comparisons: 

tumor versus normal, metastasis versus tumor, and metas-

tasis versus normal. The P-value 0.05 was selected as the 

cutoff criterion.

Clustering analysis was performed for the DE-miRNAs 

between normal and metastasis tissues. In addition, Venn dia-

grams were constructed for the up- and downregulated miR-

NAs in the aforementioned three comparisons, respectively.
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Differential analysis of genes
Cufflinks v2.1.1 (http://cufflinks.cbcb.umd.edu/index.

html)28 was applied to calculate the gene expression levels, 

namely fragments per kilobase of exon per million frag-

ments mapped values. Subsequently, NOISeq (http://www.

bioconductor.org/packages/release/bioc/html/NOISeq.

html)29 was used to screen DEGs in the following pairwise 

comparisons: tumor versus normal, metastasis versus tumor, 

and metastasis versus normal. The q-value $0.99 was taken 

as the threshold.

Screening of target genes for DE-miRNAs
miRNAs function through transcriptionally regulating 

expression levels of target genes in vivo. Thus, two 

kinds of databases were introduced to identify targets for 

DE-miRNAs, including predicted databases (miRanda, 

PITA, MirTarget2, PicTar, and TargetScan30), and validated 

databases (miRWalk31 and miRecords32). The genes, which 

appeared in no less than two of the predicted databases or 

in at least one of the validated databases, were screened out 

to be potential targets of DE-miRNAs.

Mining of CRC-restricted miRNAs
In the aforementioned analysis, target genes of DE-miRNAs 

were extracted according to the predicted and the validated 

databases. Then, the target genes were compared with the 

DEGs to identify differentially expressed targets. Following, 

differentially expressed targets were further mined to obtain 

targets with opposite expression trends with the miRNAs, 

termed as candidate targets of DE-miRNAs. Finally, the 

candidate targets of DE-miRNAs were input into tumor sup-

pressor gene database,33 tumor-associated gene database,34 

or TRANSFAC database35 to identify CRC-related candi-

date targets. Based on the pairs of miRNAs and targets, the 

miRNAs corresponding to CRC-related candidate targets 

were selected as CRC-restricted miRNAs.

Results
Screening of DE-miRNAs
Compared with normal tissues, there separately were 56 up- 

and 37 downregulated miRNAs in metastasis tissues, as well 

as eight up- and 30 downregulated miRNAs in tumor tissues 

(Table 1). Besides, there were 32 up- and one downregu-

lated miRNAs in metastasis tissues relative to tumor tissues 

(Table 1). The number of upregulated miRNAs in metastasis 

tissues was more than that in tumor tissues, implying a more 

serious dysregulation in advanced colon cancer. Then, the 

cluster analysis was performed to explore the changes of the 

DE-miRNAs, indicating a clear separation between normal 

tissues and metastasis tissues (Figure 1). In addition, using 

MiRDeep2, a total of one, 18, and 24 upregulated novel 

miRNAs separately were identified in the following com-

parisons: tumor versus normal, metastasis versus tumor, and 

metastasis versus normal. On the other hand, two and six 

downregulated novel miRNAs were obtained from tumor 

and metastasis tissues in comparison to the normal tissues, 

respectively.

Based on the Venn diagram of upregulated miRNAs in 

the three comparisons (Figure 2A), a total of three common 

miRNAs, including miRNA-548ap-5p, miRNA-548j-5p, and 

miRNA-6850-5p were identified in tumor and metastasis tis-

sues in comparison to normal tissues. A total of four common 

miRNAs, including miRNA-21-3p, miRNA-3648, miRNA-

4306, and miRNA-936 were found in the two comparisons 

(metastasis versus tumor and metastasis versus normal), 

suggesting persistent upregulation of those miRNAs in the 

three kinds of tissues. According to the Venn diagram of 

downregulated miRNAs in different comparisons (Figure 2B), 

Table 1 Differentially expressed miRNAs in different comparisons (tumor vs normal, metastasis vs tumor, and metastasis vs normal)

Differentially 
expressed miRNAs

Comparisons Number List of miRNAs

Upregulated  
miRNAs

Tumor vs normal 8 hsa-miR-548ap-5p, hsa-miR-548j-5p, hsa-miR-6850-5p, hsa-miR-503-3p, hsa-let-7a-5p, 
hsa-miR-629-5p, etc

Metastasis vs tumor 32 hsa-miR-21-3p, hsa-miR-3648, hsa-miR-4306, hsa-miR-936, etc
Metastasis vs normal 56 hsa-miR-548ap-5p, hsa-miR-548j-5p, hsa-miR-6850-5p, hsa-miR-21-3p, hsa-miR-3648, 

hsa-miR-4306, hsa-miR-936, etc
Downregulated  
miRNAs

Tumor vs normal 30 hsa-miR-1, hsa-miR-1265, hsa-miR-133a-3p, hsa-miR-133a-5p, hsa-miR-133b, hsa-miR-
338-3p, hsa-miR-497-5p, hsa-miR-605-3p, hsa-miR-6780a-5p, hsa-miR-433-3p, etc

Metastasis vs tumor 1 hsa-miR-548ab
Metastasis vs normal 37 hsa-miR-1, hsa-miR-1265, hsa-miR-133a-3p, hsa-miR-133a-5p, hsa-miR-133b, hsa-

miR-338-3p, hsa-miR-497-5p, hsa-miR-605-3p, hsa-miR-548ai, hsa-miR-192-5p, etc

Note: Number, the number of up- or downregulated miRNAs in each comparison.
Abbreviations: miRNAs, microRNAs; vs, versus.
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a total of eight common miRNAs (miRNA-1, miRNA-1265, 

miRNA-133a-3p, miRNA-133a-5p, miRNA-133b, miRNA-

338-3p, miRNA-497-5p, and miRNA-605-3p) were found in 

tumor and metastasis tissues compared with normal tissues.

Screening of DEGs
Relative to normal tissues, there separately were 1,552 up- 

and 207 downregulated genes in tumor tissues, as well as 

992 up- and 861 downregulated genes in metastasis tissues. 

In addition, there were 485 up- and 1,323 downregulated 

genes in metastasis tissues compared with tumor tissues 

(Table 2).

Identification of CRC-restricted miRNAs
To screen out the CRC-restricted miRNAs, the differen-

tially expressed target genes were screened out and further 

Figure 1 Cluster heat map of the differentially expressed miRNAs in normal, tumor, and metastasis tissues.
Notes: The color scale indicates the relative expression levels of miRNAs; horizontal axis stands for samples (p1n–p8n, eight normal tissues; p1t–p8t, eight tumor tissues; 
p1m–p8m, eight metastasis tissues); vertical coordinate represents differentially expressed miRNAs. The blue and green indicate that the differentially expressed miRNAs 
were divided into two clusters.
Abbreviation: miRNAs, microRNAs.

Figure 2 Venn diagrams of differentially expressed miRNAs in three comparisons (tumor vs normal, metastasis vs tumor, and metastasis vs normal).
Notes: (A) Venn diagrams of upregulated miRNAs. (B) Venn diagrams of downregulated miRNAs. In the diagram, n, t, and m stand for normal, tumor, and metastasis 
samples, respectively.
Abbreviations: miRNAs, microRNAs; vs, versus.
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mined to obtain those with opposite expression trends 

with the miRNAs. Accordingly, eligible target genes were 

identified  for four up- and 12 downregulated miRNAs 

between tumor and normal tissues, as well as for 13 up- and 

16 downregulated miRNAs between metastasis and normal 

tissues. Finally, the candidate targets of those DE-miRNAs 

were input into tumor suppressor gene database, tumor-as-

sociated gene database, or TRANSFAC database to identify 

CRC-related candidate targets. Based on the pairs of miRNAs 

and targets, the miRNAs corresponding to CRC-related can-

didate targets were selected as CRC-restricted miRNAs.

As shown in Figure 3, miRNA-1 was downregulated in 

both tumor and metastasis tissues relative to normal tissues, 

while its target oncogenes twist family bHLH transcription 

factor 1 (TWIST1) and GATA binding protein 4 (GATA4) 

were upregulated. In addition, miRNA-133b, miRNA-let-

7f-1-3p, miRNA-4458, and miRNA-338-3p were down-

regulated in tumor tissues and associated with CRC. Dual 

specificity phosphatase 9 (DUSP) was the common targets 

of miRNA-133b and miRNA-4458 and was upregulated in 

tumor tissues. Besides, miRNA-450b-3p was upregulated 

in metastasis tissues, and its target gene carcinoembryonic 

antigen (CEA)-related cell adhesion molecule 7 (CEACAM7) 

exhibited downregulation.

Discussion
In recent years, miRNAs have been identified not only as 

diagnostic and prognostic molecules but also as underly-

ing therapeutic targets. In the current study, by analyzing 

matched normal, tumor, and metastasis tissues of eight CRC 

patients, we found that miRNA-1 and miRNA-let-7f-1-3p 

were downregulated, while their common target TWIST1 was 

upregulated. Besides, miRNA-133b and miRNA-4458 were 

found to be downregulated in tumor tissues, while their com-

mon target DUSP exhibited upregulation.

Quantitative real-time polymerase chain reaction (PCR) 

shows that miRNA-1 is downregulated, and it can mediate 

proliferation in CRC by targeting oncogene c-met (MET).36 

Our results were in accordance with previous study that 

the expression level of miRNA-1 was lower in CRC. 

Especially, miRNA-let-7f-1-3p was also downregulated 

in the current study, whose correlation with CRC has not 

been recorded in previous literatures. However, miRNA-

let-7 has already been considered as a growth suppressor 

in CRC cells,9 suggesting the potential involvement of 

miRNA-let-7f-1-3p in CRC. Moreover, as miRNAs act 

through their target genes, we identified a list of DEGs 

as the potential target genes of miRNA-1 and miRNA-

let-7f-1-3p. Among those target genes, downregulated 

TWIST1 was commonly targeted by miRNA-let-7f-1-3p 

and miRNA-1. As previously reported, TWIST1, a highly 

conserved transcription factor, involves in the metastasis 

via the regulation of epithelial-to-mesenchymal transi-

tion.37 The aberrant expression of TWIST1 can lead to 

the loss of cell–cell adhesion38 that may further cause the 

arrest of G2/M phase as well as apoptosis in CRC cells.39 

Real-time PCR declares that expression level of TWIST1 

mRNA is upregulated, thus, TWIST1 has been suggested to 

be a potential marker of poor outcome in CRC patients.40 

Consistently, upregulation of TWIST1 in our analysis 

further confirmed that TWIST1 might be a therapeutic 

target for inhibiting the progression of CRC. As TWIST1 

was targeted by miRNA-let-7f-1-3p and miRNA-1, we 

inferred that miRNA-1 and miRNA-let-7f-1-3p might be 

considered as therapeutic targets to inhibit the initial and 

development of CRC.

Meanwhile, miRNA-133b and miRNA-4458 were also 

found to be downregulated in tumor tissues in our analysis. 

The downregulation of miRNA-133b in bladder cancer 

has been revealed by real-time PCR41 that might inhibit 

cell growth and invasion in the progression of cancer via 

targeting Fascin homolog 1 gene (FSCN1).42 At present, no 

published reports demonstrate the involvement of miRNA-

4458 in cancer. In this study, we screened out a common 

target for miRNA-133b and miRNA-4458, namely over-

expressed DUSP9. DUSP9 is a member of protein tyrosine 

phosphatases family important for controlling cell growth and 

cell survival in tumorigenesis.43 DUSP9 belongs to DUSPs 

identified as the negative regulators of MAPKs,44 which play 

crucial roles in CD147-promoted invasion and epithelial-to-

mesenchymal transition of CRC cells.45 A strong expression 

of DUSP9 has been demonstrated in the early stages of CRC 

in a mouse model,46 we thus inferred that miRNA-133b and 

miRNA-4458 targeting DUSP9 might be used as novel tar-

gets for CRC treatment.

Conversely, the level of miRNA-450b-3p was identified 

to be overexpressed in metastasis tissues in our study, which 

has never been reported in CRC. CEACAM7 was the target 

Table 2 Differentially expressed genes in different comparisons 
(tumor vs normal, metastasis vs tumor, and metastasis vs normal)

Comparisons Upregulated  
genes

Downregulated 
genes

Tumor vs normal 1,552 207
Metastasis vs tumor 485 1,323
Metastasis vs normal 992 861

Abbreviation: vs, versus.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


OncoTargets and Therapy 2016:9submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1792

Chang et al

Fi
gu

re
 3

 R
eg

ul
at

or
y 

ne
tw

or
k 

of
 m

iR
N

A
s 

an
d 

co
rr

es
po

nd
in

g 
ta

rg
et

 g
en

es
.

N
ot

es
: T

he
 g

re
en

 t
ri

an
gl

es
 in

di
ca

te
 t

he
 d

ow
nr

eg
ul

at
ed

 m
iR

N
A

s 
in

 t
um

or
 t

is
su

es
. T

he
 r

ed
 c

ir
cl

es
 d

en
ot

e 
th

e 
up

re
gu

la
te

d 
ta

rg
et

 g
en

es
 o

f m
iR

N
A

s.
 B

lu
e 

he
xa

go
ns

 r
ep

re
se

nt
 u

pr
eg

ul
at

ed
 t

ar
ge

t 
ge

ne
s 

po
te

nt
ia

lly
 a

ss
oc

ia
te

d 
w

ith
 c

ol
or

ec
ta

l 
ca

nc
er

.
A

bb
re

vi
at

io
n:

 m
iR

N
A

s,
 m

ic
ro

R
N

A
s.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


OncoTargets and Therapy 2016:9 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1793

Mechanisms of colorectal cancer

gene of miRNA-450b-3p, whose expression level showed 

a downward trend in CRC. The CEA family genes have 

been revealed to encode a group of intercellular adhesion 

molecules47,48 and to promote metastasis of human CRC.49 

CEACAM7, a member of CEA family, has been demon-

strated to be downregulated in the transgenics’ colons50 and 

in human CRC,48 which may function by suppressing CRC 

growth.51 Based on the previous researches, we deduced that 

the overexpressed miRNA-450b-3p might act as oncogene 

by downregulating CEACAM7 and could be suggested as a 

novel target to treat advanced CRC.

Conclusion
The screened miRNAs, especially miRNA-1 and miRNA-let-

7f-1-3p targeting TWIST1, miRNA-133b and miRNA-4458 

targeting DUSP9, as well as miRNA-450b-3p targeting 

CEACAM7, might function as tumor suppressors or oncogenes 

in CRC development. Those miRNAs could be suggested as 

potential therapeutic targets. However, their involvement in 

CRC was determined from bioinformatics prospective. In 

future works, selected miRNAs and DEGs will be validated 

using real-time PCR and Western blotting.
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