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Abstract: YiQiFuMai powder injection (YQFM) is a modern preparation derived from the 

traditional Chinese medicine Sheng-Mai-San. YQFM is widely used in clinical practice in the 

People’s Republic of China, mainly for the treatment of microcirculatory disturbance-related 

diseases. However, little is known about its role in animals with ischemic stroke. The aim of 

this study was to examine the effect of YQFM on brain edema and blood–brain barrier (BBB) 

dysfunction induced by cerebral ischemia–reperfusion (I/R) injury. Male C57BL/6J mice under-

went right middle cerebral artery occlusion for 1 hour with a subsequent 24-hour reperfusion to 

produce I/R injury. YQFM (three doses: 0.336, 0.671, and 1.342 g/kg) was then given intraperi-

toneally (IP). The results demonstrated that YQFM significantly decreased infarct size, improved 

neurological deficits, reduced brain water content, and increased cerebral blood flow after I/R 

injury. 18F-fluorodeoxyglucose micro-positron emission tomography imaging and hematoxylin 

and eosin staining results indicated that YQFM is able to ameliorate brain metabolism and his-

topathological damage after I/R. Moreover, YQFM administration reduced BBB leakage and 

upregulated the expression of zona occludens-1 (ZO-1) and occludin, which was confirmed by 

Evans Blue extravasation, Western blotting, and immunofluorescence assay. Our findings suggest 

that YQFM provides protection against focal cerebral I/R injury in mice, possibly by improving 

BBB dysfunction via upregulation of the expression of tight junction proteins.

Keywords: YiQiFuMai powder injection, YQFM, ischemic stroke, blood–brain barrier, micro-

vascular permeability, tight junctions

Introduction
Ischemic stroke is a destructive cerebrovascular disease and a leading cause of death 

worldwide.1 Currently, recombinant tissue plasminogen activator is the only therapeutic 

agent available for the treatment of ischemic stroke. However, ,5% of patients with 

stroke recover, owing to the narrow therapeutic window,2,3 risk of intracerebral hemor-

rhage, and multiple contraindications.4 Given the devastating impact and social burden 

of this damaging cerebrovascular event, the development of optimum treatments for 

ischemic stroke is urgently needed.5

Abundant evidence has confirmed that the disruption of the blood–brain barrier 

(BBB) and the consequent brain edema are major contributors to the pathogenesis of 

ischemic stroke. Intravascular proteins and fluid penetrate into the cerebral parenchymal 

extracellular space, leading to vasogenic cerebral edema and reduced blood flow to 

neurons, resulting in an irreversible apoptosis.6,7 The BBB is not a rigid structure but 

a dynamic interface, with a range of interrelated functions that result from effective 

tight junctions (TJs), trans-endothelial transport systems, enzymes, and the regulation 

of leukocyte permeation. TJs are the most apical structure within the intercellular cleft, 
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limiting the paracellular flux of hydrophilic molecules across 

the BBB. TJs consist of several types of integral transmem-

brane and cytoplasmic accessory proteins, of which occludin 

and zona occludens-1 (ZO-1) play key roles in BBB dysfunc-

tion after ischemic stroke.8,9 Thus, protecting the BBB may 

be a promising strategy for developing new clinical therapies 

for ischemic stroke.10

A number of studies have indicated that traditional 

Chinese medicine preparations, such as XueShuanTong 

injection (XST),11 Danhong injection,12 and Buyanghuanwu 

decoction,13 have reliable curative efficacy in the prevention 

and treatment of stroke. YiQiFuMai powder injection 

(YQFM), a modern preparation based on a well-known 

complex prescription, Sheng-Mai-San, was approved in 

2007 by the China Food and Drug Administration for the 

treatment of microcirculatory disturbance-related diseases 

in the People’s Republic of China.14,15 YQFM is composed 

of Panax ginseng CA Mey., Ophiopogon japonicus (Thunb.) 

Ker-Gawl, and Schisandra chinensis (Turcz.) Baill (1:3:1.5).16 

The bioactive compounds and their chemical structures were 

identified by tandem mass spectrophotometry in negative 

electrospray ionization mode.17 Considerable numbers of 

previous studies have indicated that YQFM is widely used 

for the treatment of cardiovascular disease.17,18 We previ-

ously predicted the multitarget mechanism of YQFM in 

cardiocerebral ischemic disease, based on network pharma-

cology.19 However, its related pharmacological activity and 

potential mechanism in ischemic stroke in animals remain 

unclear. Therefore, in the current study, we investigated 

the effects of YQFM on brain edema and BBB dysfunction 

induced by cerebral ischemia–reperfusion (I/R) compared 

with XST and explored the possible modulation of TJs in 

I/R induced by middle cerebral artery occlusion (MCAO) 

in mice. Our findings provide some evidence for the clinical 

application of YQFM in ischemic stroke.

Materials and methods
Reagents
YQFM (batch number 20121210) was purchased from Tasly 

Pharmaceutical Co., Ltd. (Tianjin, People’s Republic of China). 

An ultrahigh performance liquid chromatography (UHPLC) 

fingerprint (Figure 1) was used to control the quality of YQFM 

in the current study. Based on this fingerprint, we established 

an optimum and easily controlled method for the analysis of 

YQFM in our laboratory.18 XST was purchased from Livzon 

Pharmaceutical Group Inc. (Guangdong, People’s Republic of 

China). Fluorescein-isothiocyanate-conjugated goat antirabbit 

immunoglobulin G and horseradish-peroxidase-conjugated 

goat antirabbit and anti-mouse immunoglobulin G were 

purchased from Jackson ImmunoResearch Laboratories, Inc. 

(West Grove, PA, USA). All chemicals were of the commer-

cially available highest purity.

UHPLC analysis
The injection of YQFM was prepared as reported previously.13 

A UHPLC system (Acquity™ UPLC; Waters Corporation, 

Milford, MA, USA), equipped with a diode-array detec-

tion (DAD) system and a Zorbax Eclipse plus C
18

 column 

(50 mm ×2.1 mm ×1.8 µm), was used for the UHPLC analy-

sis. The monitoring detection was set at 203 nm, and diode-

array detection spectra were recorded from 190 to 400 nm. 

The sample injection volume was 5 µL, and the mobile phase 

was water:formic acid (100:0.01, v/v) (A) and acetonitrile 

(B). The UPLC eluting conditions were as follows: 2%–20% 

B for 0–3 minutes; 20%–30% B for 3–9 minutes; 30%–38% 

B for 9–12 minutes; 38%–40.5% B for 12–14.5 minutes; 

Figure 1 Chromatogram profile of YQFM.
Notes: Identification of main components in YQFM was as follows: 1, ginsenoside Rg1; 2, ginsenoside Rf; 3, 20(S)-ginsenoside Rg2; 4, ginsenoside Rb1; 5, ginsenoside Rc; 
6, ginsenoside Rb2; 7, ginsenoside Rd; 8, schizandrol A; 9, ginsenoside Rg6; 10, ginsenoside F4; 11, ginsenoside Rh4/Rk3; 12, 20(S)-ginsenoside Rg3; 13, 20(R)-ginsenoside Rg3; 
14, ginsenoside Rs3/isomer; 15, ginsenoside Rk1/Rg5; 16, ginsenoside Rk1/Rg5; 17, schizandrin A; 18, schizandrin B.
Abbreviation: YQFM, YiQiFuMai powder injection.
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40.5%–55% B for 14.5–17.5  minutes; 55%–99% B for 

17.5–19.5 minutes; and 99%–2% B for 19.5–20 minutes. 

The flow rate was 0.5 mL/min, and the column temperature 

was set at 25°C.

Animals
C57BL/6J mice weighing 18–22  g were provided by the 

Reference Animal Research Centre of Yangzhou Univer-

sity (Yangzhou, People’s Republic of China; certificate no 

SCXK 2014-0004). All procedures and assessments were 

approved by the Animal Ethics Committee of the School of 

Chinese Materia Medica, China Pharmaceutical University. 

These experiments were carried out in accordance with the 

National Institutes of Health Guide for the Care and use of 

Laboratory Animals (National Institutes of Health Publica-

tion No 80-23, revised in 1996). Before performing the 

experiments, all animals were randomized into experimental 

groups, and the indices were measured by operators blinded 

to the study procedures.

Focal cerebral I/R
Stroke was induced by MCAO and reperfusion in C57BL/6J 

mice as reported previously.20 Briefly, each mouse was anes-

thetized with 4% chloral hydrate (0.1 mL per 10 g body weight) 

IP, then the neck vessels were exposed by a midline incision, 

and the branches of the right external carotid artery were 

carefully isolated and cauterized. A 6-0 nylon monofilament 

suture, blunted at the tip and coated with 1% poly-l-lysine, 

was advanced 9–10 mm into the internal carotid to occlude 

the origin of the middle cerebral artery. The temperature of the 

animal was maintained at 37.0°C±0.5°C with a heating pad 

(ALCBIO, Shanghai, People’s Republic of China) during sur-

gery and ischemia. The same treatment was carried out on mice 

in that sham group except that the suture was not advanced into 

the internal carotid artery. A laser Doppler flowmeter (FLPI2, 

Moor Instruments Ltd., Axminster, UK) was used to confirm 

that middle cerebral artery blood flow had decreased ,30% 

of the basic cerebral blood flow (CBF) immediately after the 

occlusion to.21 Animals whose blood flow decreased ,30% 

of pre-ischemia levels were used for further study.

Evaluation of infarct volume, neurological 
deficits, and brain water content
To confirm whether YQFM exerts protective effects in mice, 

the animals were randomly divided into six groups (n=6 for 

each group): sham, I/R, YQFM (dissolved in 0.9% sodium 

chloride at three doses of 0.336, 0.671, and 1.342 g/kg), and 

XST (also dissolved in 0.9% sodium chloride at a dose of 

40 mg/kg in accordance with clinical practice). After MCAO 

for 1 hour, mice were given YQFM or an equal volume of 0.9% 

sodium chloride by IP administration. After 24 hours of reperfu-

sion, mice were anesthetized with 4% choral hydrate IP; after 

the animals were dead, the brains were removed, dissected, and 

sliced; and then five slices (1.5 mm thickness) were sectioned 

and incubated with 1% 2,3,5-triphenyltetrazolium chloride 

(TTC; Sigma-Aldrich Co., St Louis, MO, USA) for 30 minutes 

in the dark and then fixed with 4% paraformaldehyde (PFA). 

Lesioned areas that did not stain red with TTC were quantita-

tively analyzed by Quantity One analysis software (Bio-Rad 

Laboratories Inc., Hercules, CA, USA). Infarct volume was 

calculated using slice thickness and the measured areas of 

the lesion. Data are expressed as a percentage of total hemi-

spheres.22 Behavioral assessment was performed 24 hours after 

reperfusion. Neurological deficits of the experimental animals 

were graded on an 18-point scale as previously described.23 The 

measurement of neurological deficits consisted of the following 

tests: spontaneous activity, symmetry of movements, symmetry 

of forelimbs, climbing, reaction to touch, and response to vibris-

sae touch. All six individual tests were scored on a four-point 

scale as 3, 2, 1, or 0. Final score was obtained by adding the 

scores recorded for each individual test, with a maximum score 

of 18 observed in healthy animals. Brain water content (n=6 for 

each group) was determined 24 hours after reperfusion, using 

the wet–dry method as described previously.24 The total brain 

water was calculated as:

	
Wet weight Dry weight

Wet weight

−
×100% � (1)

CBF measurement
CBF was measured using laser Doppler flowmetry as described 

in the “Materials and methods” section.20 A computer-con-

trolled optical scanner directed a low-power laser beam over the 

exposed cortex. The scanner head was positioned parallel to the 

cerebral cortex at a distance of ~20 cm.25 A color-coded image 

indicating specific relative perfusion levels was displayed on 

a video monitor. The images were acquired at the onset of 

ischemia and reperfusion for 24 hours (n=6 for each group).

Hematoxylin and eosin staining
Histomorphological analysis was measured by hematoxylin 

and eosin (H&E) staining. Brains were immediately taken from 

mice at 24 hours after reperfusion (n=3 for each group) under 

deep anesthesia with chloral hydrate and, after fixation by 

immersing in 10% phosphate-buffered formalin for 24 hours, 

were processed routinely for paraffin wax embedding. A series 
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of adjacent brain sections (5 μm thick) were cut from the 

coronal plane of the wax-embedded tissue and were stained 

with H&E for histomorphological analysis conducted by a 

pathologist blinded to the treatment groups.26

18F-fluorodeoxyglucose–positron 
emission tomography imaging
18F-fluorodeoxyglucose–micro-positron emission tomogra-

phy (18F-FDG–micro-PET) scans were performed in mice 

(n=3 for each group) anesthetized at 23 hours after reperfu-

sion with 4% isoflurane, with anesthesia maintained with 

2%–2.5% of isoflurane in 100% O
2
. The tail vein was cath-

eterized with a gauge catheter for intravenous administration 

of the radiotracer (radiochemical purity was .95%; provided 

by Mitro Biotech Co. Ltd., Nanjing, People’s Republic of 

China). Animals were placed into a mouse holder compatible 

with PET acquisition systems (Trans-PET® Bio-Caliburn® 

700; X-Z LAB, Inc., San Ramon, CA, USA), and normo-

thermia was maintained by a water-based heating blanket.27 

Animals underwent two micro-PET scans to assess glucose 

metabolism of 18F-FDG for each time point and condition 

(before ischemia and 24 hours after I/R).

Evaluation of BBB permeability
BBB permeability was assessed by the leakage of Evans Blue 

(EB) stain into the brain following the tail-vein injection.28 

Two hours before the animals (n=6 for each group) were 

euthanized, 0.1 mL per 10 g body weight of 2% EB (Sigma-

Aldrich) in normal saline was injected into each animal. The 

animals were then anesthetized and perfused with normal 

saline. For the quantitative measurement of EB leakage, the 

ipsilateral hemisphere was removed and homogenized in 

1 mL of trichloroacetic acid, then centrifuged at 12,000× g for 

20 minutes. EB concentration was quantitatively determined 

by measuring the absorbance at 620 nm of the supernatant with 

a spectrophotometer. The EB content was quantified as micro-

grams of EB per gram of tissue, using a standard curve.29

Western blotting
Western blotting (n=3 for each group) was performed as 

described previously.25,28 Proteins extracted from the cortex 

of the ischemic side in the operated mice, and the correspond-

ing areas of sham-operated mice were used for Western blot 

analysis. Membranes were incubated overnight at 4°C with 

the appropriate primary antibodies: ZO-1 (1:100; ab59720), 

occludin (1:200; ab31721) (both were purchased from Abcam, 

Cambridge, UK), and glyceraldehyde 3-phosphate dehydro-

genase (GAPDH, 1:8000;  Kangchen Bio-tech Inc., Shanghai, 

People’s Republic of China). After washing, the membrane 

was incubated with horseradish-peroxidase-conjugated sec-

ondary antibody for 1.5 hours. Immunoreactive bands were 

detected by a chemiluminescence system (ECL Plus; Amer-

sham, Arlington Heights, IL, USA) and analyzed by Quantity 

One analysis software. GAPDH was used as the loading con-

trol, as in previous reports.30,31 Each sample was normalized 

first against the GAPDH level in the sample, then against the 

level of the sham sample, as described previously.30,31

Immunofluorescence staining
Mice (n=3 for each group) were anesthetized IP with 4% 

chloral hydrate (0.1 mL/10 g body weight) and transcardially 

perfused with 100 mL of normal saline, followed by 100 mL 

of 0.1 M phosphate-buffered saline (PBS) containing 4% 

PFA (pH =7.4).28 Perfusion-fixed brains were postfixed in 

0.1 M PBS +4% PFA overnight, followed by dehydration 

in 40% sucrose. Coronal brain sections (20 μm thick) were 

cut on a cryostat (CM1950; Leica Microsystems, Wetzlar, 

Germany), and the sections were blocked for 1.5 hours in 5% 

bovine serum albumin in PBS with 0.1% Triton X-100. The 

sections were then incubated overnight at 4°C in 3% bovine 

serum albumin in 0.1% Triton X-100/PBS with the primary 

antibodies: anti-ZO-1 TJ protein antibody (1:50; ab59720) 

and anti-occludin antibody (1:100; ab31721) (both were 

purchased from Abcam). After being rinsed three times with 

PBS, sections were incubated for 2 hours in fluorochrome-

coupled secondary antibody. The nuclei were stained with  

4′,6-diamidino-2-phenylindole (DAPI; Boyetime Institute of 

Biotechnology, Shanghai, People’s Republic of China). After 

being rinsed with PBS, the sections were examined under a 

fluorescence microscope (Leica Microsystems).

Statistical analysis
All results are expressed as mean ± standard deviation. Statis-

tical analysis was carried out using Student’s two-tailed t-test 

for comparison between two groups and one-way analysis of 

variance followed by Dunnett’s test when the data involved 

three or more groups. P,0.05 was considered statistically 

significant.32 All analyses were performed with GraphPad 

Prism software (Version 5.01; GraphPad Software, Inc.,  

La Jolla, CA, USA).

Results
YQFM reduces infarction volume and 
brain water content and improves 
behavioral outcomes in I/R-treated mice
Infarction volume was evaluated in mouse brains by TTC 

staining and imaging software (Image J software; National 

Institutes of Health, Bethseda, MD, USA) after I/R injury. 
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Representative samples of TTC-stained brain sections 

are shown in Figure 2A, with corresponding infarction 

volumes and statistical data that are shown in Figure 2B. 

Infarct volume was significantly increased in the sham-

operated reference group (37.4%±8.6%), whereas the three 

doses of YQFM (0.336, 0.671, and 1.342 g/kg) reduced 

the infarct volumes induced by I/R by 28.7%±3.6%, 

25.2%±2.7%, and 13.9%±1.4%, respectively, with the 

highest inhibition rate being 62.83% (YQFM at a dose of 

1.342 g/kg versus model group). XST at a dose of 40 mg/

kg, the positive control, also significantly reduced I/R-

induced infarct volume.

As shown in Figure 2C, there was a marked decline 

of 10.67±0.51 in I/R neurological score, while the YQFM 

and XST treatments resulted in a statistically significant 

improvement in neurobehavioral deficits compared with 

the reference group (P,0.05). Furthermore, the refer-

ence group had significantly increased brain water content 

(80.5%±0.6% versus 78.6%±0.7%, P,0.05), which was 

significantly attenuated by YQFM at all three doses and by 

XST (Figure 2D).

YQFM increases CBF in I/R-treated mice
CBF was determined by a laser Doppler perfusion imaging 

system in the different groups, as shown in Figure 3A, and the 

quantification of the results is shown in Figure 3B. The admin-

istration of both YQFM at a dose of 1.342 g/kg and XST at a 

dose of 40 mg/kg resulted in a significant increase in CBF at 

24 hours after reperfusion (63.9%±5.9% versus 27.6%±6.4%, 

YQFM at a dose of 1.342 g/kg versus model group, P,0.05), 

and increased in the other two groups (0.334 and 0.671 g/

kg) to a certain extent (42.1%±4.6% and 51.4%±6.0%). The 

highest inhibition rate of YQFM was 56.8% (YQFM at a 

dose of 1.342 g/kg versus model group).

YQFM attenuates BBB disruption in 
I/R-treated mice
Quantitative spectrometry detected extensive EB leakage in I/R 

group compared with the sham group at 24 hours after 

reperfusion (2.61±0.54 versus 0.21±0.08  μg/g, P,0.05). 

YQFM treatment significantly reduced the leakage of EB at 

all three doses (1.48±0.76, 1.29±0.52, and 0.87±0.61 μg/g 

at 0.336, 0.671, and 1.342 g/kg, respectively), and XST had 

Figure 2 Effects of YQFM on brain injury in mice with cerebral I/R.
Notes: (A, B) infarct volume, (C) neurobehavioral outcomes, and (D) brain water content in mice with cerebral I/R. Mice were subjected to 1 hour of ischemia and 24 hours 
of reperfusion. YQFM was administered 1 hour after ischemia. Data are expressed as mean ± SD, n=6. ##P,0.01 vs sham mice; *P,0.05 vs I/R mice, **P,0.01 vs I/R mice.
Abbreviations: I/R, ischemia–reperfusion; SD, standard deviation; XST, XueShuanTong injection; YQFM, YiQiFuMai powder injection.
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the same effect (Figure 4A and B). The highest inhibition 

rate of YQFM was 66.67%.

YQFM ameliorates brain metabolism and 
histopathological damage in I/R-treated 
mice
Brain sections of the sham group, the untreated I/R group, 

and the I/R group treated with YQFM at a dose of 1.342 g/kg 

were examined. Figure 3A and B shows the brain metabolism 

and histopathological changes after 1 hour of occlusion and 

24 hours of reperfusion by micro-PET imaging and H&E 

staining, respectively. Brain sections of the I/R group showed 

weak signal intensity and signal volume in the lesion side 

(Figure 5A), as well as neuronal loss and the presence of 

numerous vacuolated spaces (Figure 5B). The data showed 

that YQFM pretreatment at a dose of 1.342 g/kg ameliorated 

Figure 3 Effect of YQFM on regional cerebral blood flow in mice with cerebral I/R.
Notes: (A) The representative images of cerebral blood flow of ipsilateral cortex in different groups. The magnitude of CBF is represented by different colors, with blue to 
red denoting low to high. (B) Quantitative analysis of CBF in different groups. Data are expressed as mean ± SD, n=6. ##P,0.01 vs sham mice; *P,0.05 vs I/R mice, **P,0.01 
vs I/R mice.
Abbreviations: CBF, cerebral blood flow; I/R, ischemia–reperfusion; SD, standard deviation; XST, XueShuanTong injection; YQFM, YiQiFuMai powder injection.

Figure 4 Effect of YQFM on blood–brain barrier permeability in mice with cerebral I/R.
Notes: (A) Representative gross appearance of EB-stained brains from mouse subject to 1-hour ischemia followed by 24 hours of reperfusion. (B) Quantitative analysis of 
EB extravasation by spectrophotometry. Data are expressed as mean ± SD, n=6. ##P,0.01 vs sham mice; *P,0.05 vs I/R mice, **P,0.01 vs I/R mice.
Abbreviations: EB, Evans Blue; I/R, ischemia–reperfusion; SD, standard deviation; XST, XueShuanTong injection; YQFM, YiQiFuMai powder injection.
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brain metabolism and histopathological damage in I/R-

treated mice by increasing the signal intensity and signal 

volume and decreasing the cell loss.

YQFM increases expression of ZO-1 and 
occludin in I/R-treated mice
To identify the relationship between TJ remodeling and BBB 

integrity, Western blotting and immunofluorescence staining 

were used to analyze the expression of TJ proteins. Western 

blot analysis (Figure 6A and B) showed that the expression 

of ZO-1 and occludin was decreased in the I/R-treated mice, 

whereas it increased significantly in response to YQFM 

treatment at a dose of 1.342 g/kg. No statistical significance 

was observed with the other two YQFM groups.

We performed CD31/ZO-1 and CD31/occludin double 

staining, which showed that ZO-1 and occludin were con-

tinuously present in the endothelial cell layer of microvessels 

in normal brains treated with YQFM at a dose of 1.342 g/kg 

(Figure 6C and D). After I/R, ZO-1 and occludin showed 

structure disruptions with rearrangements compared with 

sham mice. TJs were much smoother and had more con-

tinuous labeling in the group treated with YQFM at a dose 

of 1.342 g/kg.

Discussion
A number of studies have demonstrated that YQFM can be 

used in cardiovascular diseases with marked efficacy.14,17 

However, its protective effects in ischemic stroke remain 

unclear. The results of the current study revealed that YQFM 

produces a significant improvement in cerebral infarction, 

neurological score, and brain edema at doses of 0.336, 0.671, 

and 1.342 g/kg, showing the same effects as seen with XST 

(Figure 2A–D). XST, a well-known Chinese herbal prepa-

ration, is composed of Panax notoginseng saponins, which 

shows part similarity to the chemical components of YQFM, 

and has been approved by the China Food and Drug Admin-

istration for the treatment of patients with some ischemic 

diseases.11,33,34 The findings of the current study provide the 

Figure 5 Effect of YQFM on histopathological changes of brain sections in mice with cerebral I/R.
Notes: (A) (18F-FDG) PET imaging of a mouse brain before and after I/R, and representative coronal PET images of (18F-FDG) at the lesion area after surgery. The black 
arrows indicate the damaged region. Scale bars =200 mm. (B) Hematoxylin-and-eosin-stained slides of the brain sections of mouse in different groups were examined under 
a light microscope. Representative stained sections showed a gradual improvement in condensed nuclei in cortical cells in the high-dose YQFM (1.342 g/kg) treatment group. 
Scale bar =50 µm; n=3.
Abbreviations: 18F-FDG, 18F-fluorodeoxyglucose; I/R, ischemia–reperfusion; PET, positron emission tomography; SD, standard deviation; YQFM, YiQiFuMai powder 
injection.
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first evidence that YQFM may protect against I/R injury in 

I/R-treated mice.

Considering that the severity of ischemic damage corre-

lates with the degree of CBF reduction,35 we also investigated 

the changes in CBF in the different groups and found that the 

treatment with YQFM at a dose of 1.342 g/kg significantly 

increased CBF (Figure 3A and B), which indicated that 

the smaller infarct volume in the YQFM-treated groups 

was correlated with improved CBF during I/R. However, 

molecular imaging has a number of advantages, such as the 

visual representation, characterization, and quantification of 

biological processes at cellular and molecular levels.36,37 PET 

with 18F-FDG has been widely used in the evaluation of the 

effects of drugs for cerebrovascular disease via the quantita-

tive and noninvasive monitoring of glucose metabolism.12,38,39 

In the current study, micro-PET imaging technology was 

used to further confirm the validity of YQFM treatment 

in I/R-treated mice. We found that YQFM improved brain 

glucose metabolism, which was consistent with the results 

of TTC staining (Figure 5A). In addition, H&E staining for 

histopathological observations suggested that neural struc-

ture was recovered, with a dense neuropil and largely viable 

Figure 6 Effect of YQFM on the expression of tight junction proteins in mice with cerebral I/R.
Notes: (A, B) Representative Western blots and the quantitative analysis of the ratio of ZO-1 (A) and occludin (B). (C, D) Representative immunofluorescence microscope 
images of ZO-1 (green) and occludin (green) localized at the periphery of endothelial cells with the marker CD31 (red). DAPI-stained nuclei are depicted in blue. Scale 
bars =20 µm. Distribution of ZO-1 and occludin was disrupted in the I/R group and was reduced in the high-dose YQFM (1.342 g/kg) treatment group. Data (A, B) are 
expressed as mean ± SD, n=3. ##P,0.01 vs sham mice; *P,0.05 vs I/R mice.
Abbreviations: GAPDH, glyceraldehyde phosphate dehydrogenase; I/R, ischemia–reperfusion; PET, positron emission tomography; SD, standard deviation; YQFM, 
YiQiFuMai powder injection; ZO-1, zona occludens-1.
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neurons, in the brains of the YQFM-treated group compared 

with the I/R group (Figure 5B). These findings provide further 

evidence of the effectiveness of YQFM in I/R-treated mice 

at both the functional and the morphological levels.

Ischemic-stroke-induced brain injury is a complex 

pathophysiological process, including multifactor, multiway, 

and multichannel damage.40–43 However, BBB disruption is 

a critical event in the progression of ischemic stroke, which 

can increase cerebral vascular permeability and lead to the 

formation of brain edema.44,45 Therefore, approaches focus-

ing on the subsequent damage of BBB dysfunction should 

be considered.46,47 The understanding of BBB dysfunction 

induced by ischemic stroke following thrombolytic therapy 

remains a challenge for clinicians.48,49 In the current study, the 

results showed that YQFM treatment significantly reduced the 

leakage of EB at three doses (Figure 4A and B), which indi-

cated that YQFM could effectively protect BBB integrity.

Furthermore, it has been generally believed that TJs that 

mediate paraendothelial transport participate in endothelial 

cell-mediated BBB permeability.7,50 TJs such as ZO-1 and 

occludin have different molecular structures and characteris-

tics, and their degradation plays a key role in ischemic BBB 

dysfunction in stroke.51–53 Loss and degradation of ZO-1 play 

significant roles in maintaining the continuity and integrity 

of TJs, which is closely linked to increases in BBB permea-

bility.54 Occludin, the first integral transmembrane protein to 

be identified, is localized to TJs.55 Although much has been 

learned about TJs, the exact mechanisms of action of YQFM 

on TJs are not clear. Our immunofluorescence microscopy 

and Western blot assays demonstrated that ZO-1 and occludin 

participate in the modulation of BBB permeability by YQFM 

(Figure 6A–D). However, the role of the basal lamina and 

other TJ proteins in the action of YQFM on BBB permeability 

is unknown and needs further clarification.

As previously described,18 YQFM consists of bioactive 

compounds, such as ginsenoside Rb1, ginsenoside Rg1, and 

schisandrin, some of which display neuroprotective effects 

after cerebral I/R injury. Recent studies have indicated that 

ginsenoside Rb1 can protect the loss of BBB integrity by 

suppressing neuroinflammation, while Rg1 attenuates BBB 

disruption through downregulating the expression of aquaporin 

4 induced by ischemic stroke in animals.56,57 This indicates 

that these components identified by UHPLC might be the key 

active ingredients for BBB protection. Furthermore, the possi-

ble mechanisms of action of YQFM are linked with the nuclear 

factor (NF)-κB and Akt pathways,58–61 and 12 other major 

signaling pathways, including NF-κB, mitogen-activated 

protein kinase, the cytokine network, and mammalian target 

of rapamycin (mTOR), have been identified as related to the 

effects of YQFM in cardiocerebral ischemic diseases.19 More-

over, ginsenoside Rg1 can ameliorate I/R-induced BBB dis-

ruption by regulating protease-activated receptor-1 (PAR-1), 

while ginsenoside Rb1 protects I/R-induced BBB disruption 

by inhibiting matrix metalloproteinase-9 (MMP-9).56,58 These 

findings indicate that the potential targets or pathways of 

YQFM in the treatment of ischemic stroke are related to 

PAR-1, MMP-9, NF-κB, etc. In addition, a combination of 

four active compounds derived from Sheng-Mai-San was 

reported to alleviate cerebral I/R injury, correlating with the 

inhibition of autophagy and modulation of the adenosine 

monophosphate-activated protein kinase/mTOR and Jun 

kinase pathways and to inhibit H
2
O

2
-induced PC12 cell 

apoptosis in vitro.20,62 Ginsenoside Rg1 can also improve 

cell viability and cell apoptosis induced by oxygen–glucose 

deprivation in cultured hippocampal neurons.63 These find-

ings suggest that YQFM may attenuate cerebral I/R injury 

via multiple mechanisms, such as anti-inflammation, anti-

apoptosis, antioxidation, and inhibition of autophagy, which 

require further investigation in future studies.

Conclusion
The current study demonstrates that the compound Chinese 

medicine YQFM can attenuate I/R-induced brain injury 

by improving cerebral infarction, neurological score, brain 

edema, brain metabolism, and histopathological damage. The 

repair of BBB disruption is mediated by interference with 

TJ protein degradation in vascular endothelial cells. These 

findings provide solid evidence for the efficacy of YQFM in 

the treatment of ischemic stroke.
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