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Abstract: Huntington disease (HD) is a chronic, genetic, neurodegenerative disease for 

which there is no cure. The main symptoms of HD are abnormal involuntary movements 

(chorea and dystonia), impaired voluntary movements (ie, incoordination and gait balance), 

progressive cognitive decline, and psychiatric disturbances. HD is caused by a CAG-repeat 

expanded mutation in the HTT gene, which encodes the huntingtin protein. The inherited 

mutation results in the production of an elongated polyQ mutant huntingtin protein (mHtt). 

The cellular functions of the Htt protein are not yet fully understood, but the functions of its 

mutant variant are thought to include alteration of gene transcription and energy production, 

and dysregulation of neurotransmitter metabolism, receptors, and growth factors. The phenylpi-

peridines pridopidine (4-[3-methanesulfonyl-phenyl]-1-propyl-piperidine; formerly known 

as ACR16) and OSU6162 ([S]-[-]-3-[3-methane [sulfonyl-phenyl]-1-propyl-piperidine) are 

members of a new class of pharmacologic agents known as “dopamine stabilizers”. Recent 

clinical trials have highlighted the potential of pridopidine for symptomatic treatment of 

patients with HD. More recently, the analysis of HD models (ie, in vitro and in mice) high-

lighted previously unknown effects of pridopidine (increase in brain-derived neurotrophic 

factor, reduction in mHtt levels, and σ-1 receptor binding and modulation). These additional 

functions of pridopidine suggest it might be a neuroprotective and disease-modifying drug. 

Data from ongoing clinical trials of pridopidine will help define its place in the treatment of 

HD. This commentary examines the available preclinical and clinical evidence regarding the 

use of pridopidine in HD.
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Introduction
Huntington disease (HD) is a chronic, neurodegenerative, dominantly transmitted 

genetic disease. Although the onset of HD generally occurs at around 40 years of age, 

it can, in rare cases, affect people younger than 20 years old (juvenile HD) and, even 

more rarely, children under 10 years of age. Patients with HD rapidly develop sub-

stantial mental and physical disability. No cure or treatment to prevent the progression 

of HD is available.1

From the time of its onset, HD is characterized by three main clinical patterns 

with subtle differences: psychiatric disturbances, often associated with a high rate of 

suicide; cognitive decline; and extrapyramidal signs and symptoms. All three progress 

to dementia and cachexia in five stages.1 Other sites are affected in addition to the 

brain, including muscles, bones, and testes. Inflammation contributes to the pathology 

in the central nervous and peripheral systems.2
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From HTT-CAG mutation to 
complex biological mechanisms of 
HD
HD is associated with an expanded CAG-repeat mutation 

in the HTT gene that encodes the huntingtin protein (Htt).3,4 

A CAG stretch expansion beyond 35 repeats is associated 

with the disease.4 Repeats in the range 36–39 are consid-

ered as low penetrance mutations (ie, the disease may start 

late or never during life), while full penetrance mutations 

(ie, all clinical manifestations are expected to present during 

life) are associated with $40 CAG repeats.4 The mutation 

is unstable during intergenerational transmission. In the 

offspring, the trinucleotide instability may cause further 

elongation of the translated polyQ stretch in the Htt protein, 

thus amplifying its toxic effects in neurons and other tissues 

in each new generation.3 The Htt protein has many cellular 

functions, but these have not yet been fully characterized. 

Mutant Htt (mHtt) with elongated polyQ may, instead, 

cause dysregulation of neurotransmitters, receptors, and 

growth factors.5 mHtt translocates from the cytoplasm to 

the nucleus and perinuclear regions where it interferes with 

gene transcription, energy production, and processing of 

abnormal proteins.6

The biology of HD is, therefore, very complex; mHtt has 

many, as yet unclear, functions and interacts with a large 

number of factors both within and outside the nervous system, 

especially in the striatum.5 One important, yet unsolved, issue 

is what causes the prominent early damage to the striatum 

in patients with HD. In addition to existing hypotheses for 

the potential toxic mechanisms of mHtt,5 recent studies have 

focused on the binding of the striatal-specific Rhes (Ras 

homologue enriched in striatum) protein to mHtt as a spe-

cific pathogenic mechanism leading to mHtt toxicity in the 

brain striatum,7,8 and regulation of the dopamine-D
2
 receptor 

activity by Rhes.9 Dopaminergic and glutamatergic signaling 

pathways act synergistically to enhance the sensitivity of 

striatal neurons to mHtt toxicity and may represent crucial 

therapeutic targets for HD treatment. Therefore, understand-

ing dysfunction of dopamine and other (eg, cholinergic) 

receptors in HD is critical in interpreting the effects of 

pharmacotherapy.9

From Huntington “chorea” to 
Huntington “disease”
Historically, the description of HD typically referred to one 

of the most visible symptoms, ie, chorea,10 an involuntary, 

“dancelike”, uncontrolled movement disorder. Chorea is 

characterized by progressive jerking of the arms and trunk. 

It evolves to other abnormal movements, such as dystonia 

and Parkinsonism, generally in the advanced stages of the 

disease. Although chorea represents one of the main and most 

frequent symptoms of HD, it only marginally contributes to 

patients’ disability and loss of independence compared with 

other features, such as cognitive decline, psychiatric distur-

bances, and other neurological symptoms (incoordination, 

oculomotor abnormalities, ie, slow and saccade eye move-

ment impairments, dysarthria, dysphagia, gait disturbance, 

and imbalance).11 Patients are frequently unaware of the 

symptoms of chorea, and approximately 8% of HD cases 

manifest atypical HD variants in which other signs and 

symptoms, such as parkinsonism and dystonia, predominate 

over choreic movements from the onset of the disease.12

In accordance with the original descriptions of HD, and 

taking into account both the prominence of chorea and the 

selective degeneration of the brain striatum as a key feature 

of the disease, therapeutic approaches to HD have included 

either the control of behavioral changes (eg, neuroleptics, 

benzodiazepines, and mood stabilizers)13,14 or attempts to 

reduce choreic movements with tetrabenazine, the only 

approved drug that inhibits dopamine release with a specific 

indication for chorea.13–15 However, knowledge of the natural 

history of HD has increased in recent years. The develop-

ment of experimental HD models and new psychiatric drugs 

(eg, atypical neuroleptics and antidepressants), as well as 

novel findings regarding the neuropathology of the disease,16 

have influenced HD management guidelines. The American 

Academy of Neurology’s most recent guidelines for the 

pharmacologic treatment of HD recommend symptomatic 

approaches.17 Curative treatment for HD would need to 

take the following into account: 1) HD is not only related 

to striatum degeneration, but also to more extensive brain 

damage, including the cortex and white matter;16 2) chorea 

is not the only symptomatic target;18 3) choreic movements 

make a marginal contribution to HD disability, and patients 

indicate that other abnormal voluntary movements, distinct 

from chorea (eg, gait imbalance, incoordination, dystonia) 

are the most disabling motor features (Squitieri and Mondher, 

personal communication); and 4) classical neuroleptics 

worsen HD progression.19

Dopidines: an example of a new 
class of drugs
Pridopidine (4-[3-methanesulfonyl-phenyl]-1-propyl-

piperidine; formerly known as ACR16) and OSU6162 

(S)-(-)-3-(3-methanesulfonyl-phenyl)-1-propyl-piperidine 

are phenylpiperidines.20 Phenylpiperidines are members 
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of a new class of pharmacologic compounds known as 

“dopamine stabilizers” or “dopidines”,21 which are being 

widely investigated for neurodegenerative disorders such as 

HD.22,23 Pridopidine and OSU6162 are structurally related 

to 3-(3-hydroxyphenyl)-N-n-propylpiperidine (3-PPP), a 

compound with enantiomers that have different effects on 

dopamine receptors: the (+)3-PPP enantiomer is a weak 

dopamine receptor agonist, while the (-)3-PPP enantiomer 

is a weak dopamine receptor antagonist.24

Dopamine acts as a high-affinity neurotransmitter on 

dopamine receptors and exerts its action in the brain by 

means of both synaptic and extrasynaptic release. Dopamine 

stabilizers, such as pridopidine and OSU6162, are character-

ized by their actions at dopamine-D
2
 receptors, which result 

in state-dependent behavioral effects. These new dopamine–

ligand compounds are thought to stabilize dysregulated 

psychomotor functions by modulating hyper- or hypoactive 

functioning in areas of the brain receiving dopamine input.25 

Both pridopidine and OSU6162 bind in a dose-dependent 

manner to striatal D
2
 receptors and do not show partial 

agonism in functional assays.25 In this context, dopidines do 

not fit into the typical list of dopamine-D
2
 drugs classified as 

agonists, partial agonists, or antagonists.25 Both compounds 

inhibited amphetamine-induced locomotor activity and stim-

ulated locomotion in habituated rats.26 They also resulted in 

preferential induction of Fos in the nucleus accumbens rela-

tive to the striatum, a characteristic of atypical antipsychotic 

efficacy.26 More recent studies have shown that pridopidine 

and OSU6162 reduce motor activity in animals during the 

period of exploration of the environment that takes place 

within the 1st minutes of depositing the animals in activity 

meters.27 However, the compounds increase activity in ani-

mals habituated to the equipment from within 15–60 minutes 

of analysis.27 In addition, these compounds increase activity 

in catecholamine-depleted animals treated with reserpine 

and α-methyl-para-tyrosine.27 These effects are mediated by 

the selective binding of these dopidines to high-affinity D
2
 

dopamine receptors28 and their rapid dissociation constant.29 

The original developer of pridopidine, Arvid Carlsson, has 

further explained the mechanisms of action of dopidines on 

dopamine receptors.30 According to the hypothesis proposed 

by Carlsson and Carlsson,30 pridopidine antagonizes the bind-

ing of other ligands to dopamine-D
2
 receptors in a similar 

manner to haloperidol, but with lower potency and with a 

more restricted receptor binding profile. While haloperidol 

blocks both synaptic and extrasynaptic receptors, pridopidine 

preferentially blocks dopamine neurotransmission at extra-

synaptic receptors, including autoreceptors.30 Because normal 

dopamine function is limited to the synapses, dopidines – 

which do not block synaptic dopamine transmission – do not 

produce parkinsonism.30 The antagonism of extrasynaptic 

receptors by dopidines could improve psychosis and abnor-

mal involuntary movements related to abnormal dopamine 

extrasynaptic transmission.30

In addition to its effects on dopamine receptors, 

pridopidine counteracts abnormal behaviors induced by the 

N-methyl-d-aspartate (NMDA) glutamate receptor antagonist 

MK-801 in mice.31 Both pridopidine and OSU6162 reversed 

withdrawal responses induced by MK-801 in rats.32 These 

results indicate an additional effect of dopidines on NMDA 

glutamate receptors and suggest that dopidines may have 

effects on cognitive processes. Furthermore, it has recently 

been shown that both pridopidine and OSU6162 bind with 

nanomolar affinities to the σ-1 receptor,33 a receptor that 

modulates interorganelle signaling.34 The σ-1 receptor has 

been implicated in the elimination of intranuclear inclusions 

in a cellular model of HD.35 This raises the possibility that 

dopidines could have disease-modifying effects in HD.

Pridopidine use in HD: lessons from 
patients and back to models
To date, three large multicenter clinical trials of pridopidine 

in HD have been published,36–38 and a meta-analysis of the 

two largest studies has been performed.39 A summary of 

the three trials and their outcomes is presented in Table 1. 

The first of these studies was a multicenter trial conducted in 

Scandinavia that included 28 patients with HD treated with 

pridopidine 50 mg/d for 4 weeks and 30 patients who received 

placebo.36 The primary endpoint of the study – change in 

cognitive scores – was not reached, but there was a statisti-

cally significant (P,0.05) improvement in some voluntary 

motor-symptom-related secondary endpoints in patients 

treated with pridopidine versus placebo (eg, the quality and 

speed of voluntary movements).

The MermaiHD study – the largest clinical trial performed 

to date with pridopidine – was a multicenter European 

Phase III study that included 437 patients randomized (1:1:1) 

to three groups: pridopidine 90 mg/d, pridopidine 45 mg/d, 

or placebo for 26 weeks.37 The primary endpoint of the study 

was improvement from baseline in voluntary movements 

as determined by the modified motor score. The results of 

this study showed a strong trend toward improvement – 

close to statistical significance for the primary endpoint. 

Statistically significant improvements were reported for the 

global motor scores (P=0.004), as well as for specific items 

such as eye movements (P=0.007), dystonia (P=0.001), hand 
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movements (P=0.015), and gait and balance (P=0.028) in the 

group of patients treated with pridopidine 90 mg/d, but not for 

the patients receiving pridopidine 45 mg/d. Pridopidine was 

well tolerated in this study37 and its safety has been confirmed 

in a 1-year, open-label extension study.40

The HART study was performed in the United States 

by the Huntington Study Group.38 It included 227 patients, 

randomized to four groups of similar size that received 

pridopidine 90, 45, or 20 mg/d, or placebo for 12 weeks. 

Although improvements in motor scores were reported in 

the group of patients treated with pridopidine 90 mg/d, the 

differences compared with placebo did not reach statistical 

significance. Pridopidine treatment was well tolerated, and 

despite the lack of statistically significant improvement in 

the primary motor endpoint, the authors considered that the 

overall results suggest that pridopidine may improve motor 

function in HD.38

A meta-analysis of the MermaiHD and HART studies has 

been published in part.39 The analysis showed that pridopidine 

treatment led to total motor score improvement, as well as 

improvement in specific items, such as hand movements, and 

gait and balance. Considering these effects, together with the 

benign safety and tolerability profile, pridopidine could be a 

potential new treatment for HD.

Careful consideration of the characteristics of the three 

multicenter studies is required in order to evaluate the 

potential utility of pridopidine in HD. The Scandinavian 

study36 was designed based on an expected rapid effect on 

cognitive deficits and dyskinesias without modification of 

voluntary movement. For this reason, the treatment duration 

was only 4 weeks, and voluntary movements and invol-

untary movements were measured independently, in spite 

of the fact that both types of deficits are part of the motor 

Unified Huntington’s Disease Rating Scale (UHDRS).41 The 

MermaiHD study37 was designed on the basis of the results 

reported in the Scandinavian study. The number of patients 

was increased to 437, and the duration of active treatment 

was 26 weeks. Unfortunately, responses to the modified and 

partial motor UHDRS scales were chosen as the primary 

endpoint because these were found to be the only motor end-

points improved by pridopidine in the Scandinavian study. 

However, the study design did not take into account the fact 

that the time taken to improve different motor deficits can 

vary in neurodegenerative disease. For instance, dystonia 

takes a long time to respond to treatment, regardless of 

the type of treatment (eg, pharmacotherapy or deep-brain 

stimulation). In the Scandinavian study, pridopidine did not 

improve dystonia, even after 4 weeks of treatment,36 but the 

dystonia score was reduced significantly after 26 weeks of 

treatment in the MermaiHD trial.37

The HART study38 was also designed based on the 

findings of the Scandinavian study; however, in this study, 

the treatment duration was only 12 weeks. Data obtained 

from the placebo arm of the MermaiHD study37 have shown 

that the placebo effect lasts for 12 weeks – the full duration 

of the HART trial. Therefore in the HART study, there is 

a strong placebo effect at the end of the evaluation period, 

which confounds the results of the trial. All of these observa-

tions suggest that any future trials of pridopidine should meet 

the following requirements: 1) pridopidine dose $90 mg/d; 

2) duration of treatment $1 year; and 3) primary endpoint 

based on the total UHDRS scale for evaluation of motor 

results.

Interestingly, a pilot study using 18-fluoro-deoxy-glucose 

positron-emission tomography has documented improve-

ment in glucose metabolism in some regions of the brains of 

patients with HD after 14 days of treatment with pridopidine.42 

The changes in glucose metabolism correlated with clinical 

changes, suggesting that pridopidine may modify disease-

related metabolic activity patterns in the brain.42

In all studies, pridopidine was well tolerated, with an 

adverse events profile similar of that of placebo.36–40 The 

most common adverse events reported in the MermaiHD 

Phase III study were falls, chorea, diarrhea, dizziness, and 

nausea.37 Similar results were described after 1 year of 

treatment in the open-label extension of MermaiHD with 

pridopidine 90 mg/d, with falls and worsening of chorea 

being the most commonly reported adverse events.40 No 

clinically meaningful changes in laboratory parameters nor 

relevant EKG-related safety concerns were identified after 

even 1 year of treatment.40

Recently, in addition to this promising clinical evidence, 

new preclinical data have emerged that show potential 

beneficial effects in HD. The administration of pridopidine 

induced an overall improvement of motor performance 

in HD R6/2 mice and showed antiapoptotic effects in vitro in 

striatal cells from 111/111 CAG-repeat knock-in mice. When 

tested in vivo, pridopidine treatment was associated with 

increases in striatal brain-derived neurotrophic factor, and 

dopamine- and cAMP-regulated neuronal phosphoprotein 

(DARPP32) levels, in addition to reduced mHtt aggregate 

size. Interestingly, this study highlights the involvement of 

σ-1 receptors in these beneficial effects.43 Indeed, the in vitro 

data showed no effect for pridopidine in striatal cells from 

111/111 CAG-repeat mutant mice after using the striatal σ-1 

receptor antagonist NE100.43 Collectively, these data suggest 
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that pridopidine may have disease-modifying properties in 

HD, mediated at least in part through σ-1 receptors.

Conclusion
Advances in research and knowledge about the mechanisms 

underlying HD are opening exciting new fields of interest for 

pharmaceutical intervention in neurodegenerative diseases.44 

The evidence that new molecular targets, such as the σ-1 

receptor, may play a primary role in modulating the effects 

of the dopamine stabilizer pridopidine is an important find-

ing, considering that this receptor also represents a target 

for drugs currently in use to counteract cognitive decline in 

Alzheimer disease.45 The σ-1 receptor modulation may, in 

theory, protect patients with HD from the progressive dete-

rioration typical of the disease. Improvement in cognitive 

functions in HD is an important therapeutic goal because 

it may significantly modify the disease course and preserve 

patients’ independence and quality of life.22,23

A large, global, multicenter, double-blind Phase II trial 

of pridopidine – PRIDE-HD – is currently in progress 

(NCT02006472). The aim of this study is to assess the 

tolerability of higher drug doses (up to 112.5 mg twice 

daily) than previously tested and the potential effectiveness 

of pridopidine in managing motor manifestations (ie, total 

motor score). During the patient recruitment phase, Teva 

Pharmaceuticals (Frazer, PA, USA) amended the study 

protocol to prolong the double-blind experimental phase 

from 6 to 12 months in an attempt to capture potential 

disease-modifying effects. Patients who were recruited in 

the study and still receiving experimental treatment were 

asked to provide written informed consent to extend the 

double-blind treatment phase from 6 to 12 months. An 

open-label study due to be initiated soon – Open Pride HD 

(NCT02494778) – will investigate the effects of pridopidine 

90 mg/d over 52 weeks. The results of these longer-term 

trials will be eagerly awaited to determine whether this new 

class of drug has the potential to improve the symptoms of 

HD and to prevent disease progression.
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