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Abstract: Colorectal cancer (CRC) is the second leading cause of death due to cancer and the 

third most common cancer in men and women in the USA. Nuclear factor kappa B (NF-κB) is 

known to be activated in CRC and is strongly implicated in its development and progression. 

Therefore, activated NF-κB constitutes a bona fide target for drug development in this type of 

malignancy. Many epidemiological and interventional studies have established nonsteroidal 

anti-inflammatory drugs (NSAIDs) as a viable chemopreventive strategy against CRC. Our 

previous studies have shown that several novel hydrogen sulfide-releasing NSAIDs are promising 

anticancer agents and are safer derivatives of NSAIDs. In this study, we examined the growth 

inhibitory effect of a novel H
2
S-releasing naproxen (HS-NAP), which has a repertoire as a 

cardiovascular-safe NSAID, for its effects on cell proliferation, cell cycle phase transitions, and 

apoptosis using HT-29 human colon cancer cells. We also investigated its effect as a chemo-

preventive agent in a xenograft mouse model. HS-NAP suppressed the growth of HT-29 cells 

by induction of G
0
/G

1
 arrest and apoptosis and downregulated NF-κB. Tumor xenografts in 

mice were significantly reduced in volume. The decrease in tumor mass was associated with a 

reduction of cell proliferation, induction of apoptosis, and decreases in NF-κB levels in vivo. 

Therefore, HS-NAP demonstrates strong anticancer potential in CRC.

Keywords: nonsteroidal anti-inflammatory drugs, cell cycle, apoptosis, xenograft, NF-κB, 

thioredoxin reductase, chemoprevention

Introduction
According to a 2015 report by the American Cancer Society, colorectal cancer (CRC) 

is one of the three top most common cancers in both men and women in the USA. 

The same report describes that despite a significant decrease in mortality rates in the 

last 2 decades, there will be an estimated 49,700 deaths from CRC in 2015. In this 

regard, it is evident that changes in both lifestyle (risk factors) and CRC screening 

among adults aged 50 years and older have played a significant role in the observed 

reduction of CRC-related deaths.

Chemoprevention is a general term used to describe the utilization of a chemical 

compound, administered on a long-term basis, to reduce the incidence of a disease, 

including cancer. Epidemiological studies illustrate the use of nonsteroidal anti-

inflammatory drugs (NSAIDs) as the prototypical drug class to prevent CRC. These 

observations coincide with scientifically sound evidence generated using a wide variety 

of in vitro and in vivo drug screening assays. These reports suggest that traditional 

NSAIDs can reduce the incidence of colon cancer (regress precancerous lesions), 

and may be promising chemopreventive drugs for CRC.1–5 Nevertheless, long-term 

administration of NSAIDs is associated with the development of side effects, including 
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gastrointestinal, renal, and cardiovascular toxicity. For 

example, Bjorkman et al reported that up to 4% of patients 

using NSAIDs suffer serious gastrointestinal complications, 

resulting in approximately 8,000 deaths per year.6

Recently, our research group reported on a new type 

of NSAID, namely hydrogen sulfide (H
2
S)-releasing 

NSAIDs, or HS-NSAIDs.7–9 These compounds maintain 

the anti-inflammatory profile of the parent NSAID without 

gastrointestinal irritation in animal models. Their chemi-

cal structure consists of a conventional NSAID to which a 

H
2
S-releasing moiety is covalently attached through an ester 

linkage.10 This design was based on the observation that H
2
S 

is a naturally occurring modulator with cytoprotective and 

anti-inflammatory effects.11,12 Our research group, along 

with others, has reported the improved pharmacological 

profile of different HS-NSAIDs, including HS-diclofenac,13 

HS-indomethacin,14 and HS-naproxen.15 An additional 

example supporting the design of HS-NSAIDs is the paper 

published by Fiorucci et al who developed an HS-mesalamine 

derivative with improved efficacy over mesalamine in animal 

models of inflammation and colitis; this derivative also showed 

lower toxicity (reduced injury) than the parent compound.16

An interesting observation about HS-NSAIDs is the fact 

that these compounds also exhibit potentially beneficial 

anticancer effects. In this regard, our group reported that 

H
2
S-releasing derivatives of aspirin, ibuprofen, sulindac, 

and naproxen inhibit cell proliferation of various human 

cancer cell lines including those of the breast, prostate, lung, 

leukemia, pancreas, and colon.8 We have also shown that 

HS-NSAIDs are effective in vivo. Using a xenograft model 

of estrogen receptor-negative breast cancer, we observed that 

HS-aspirin significantly reduced tumor volume and tumor 

mass through induction of apoptosis and inhibition of cancer 

cell proliferation.7

Another example of a promising HS-NSAID was pub-

lished by McGettigan et al who designed an H
2
S-releasing 

derivative of naproxen (ATB-346) that suppressed prosta-

glandin synthesis in colonic tissue as well as thromboxane 

synthesis in a whole blood assay. These effects were com-

parable with those observed with naproxen, but the new 

derivative did not cause significant gastrointestinal injury.  

In addition, ATB-346 reduced the incidence of precancerous 

lesions (aberrant crypt foci) in azoxymethane-treated mice.17 

Therefore, H
2
S-releasing derivatives of naproxen are strong 

chemopreventive candidates. 

The transcription factor nuclear factor kappa B (NF-κB) 

plays an essential role in the normal regulation of cell prolif-

eration, apoptosis, and inflammation; however, this protein 

can also regulate tumorigenesis, tumor metastasis, and 

chemoresistance.18–23 NF-κB is activated in human lymphoid 

malignancies in several tissues, including the prostate, pan-

creas, colon, rectum, skin (melanoma), liver, and breast.24–29 

Using mice models of colitis-associated colon cancer, Greten 

et al proposed in 2004 a direct contribution of the NF-κB path-

way to the development of solid tumors.30 Chemical inhibition 

of the NF-κB transcriptional pathway results in significant 

reduction of tumor size and volume, as determined in several 

mouse xenograft models.20,31,32 Consequently, these results 

suggest that NF-κB constitutes a suitable drug target. 

Thioredoxin (Trx) is a small redox-active protein 

responsible for maintaining the reduced state of the enzyme 

thioredoxin reductase-1 (TrxR).33 One of the many implica-

tions of overexpression of the Trx protein is suppression 

of apoptosis,34 and inactivation of TrxR leads to inhibition 

of cancer cell proliferation as well as cell cycle arrest and 

apoptosis.35 Therefore, the Trx/TrxR system is a suitable and 

complementary target in chemotherapy.

In the present study, we provide evidence demonstrating 

that H
2
S-releasing naproxen inhibits proliferation of HT-29 

(human colorectal adenocarcinoma) cells, and inhibits tumor 

growth in a xenograft mouse model, at least in part through 

modulation of both NF-κB and Trx/TrxR activity.

Materials and methods
reagents and cell culture
Our group synthesized the H

2
S-releasing naproxen (chemi-

cal name: 4-(5-thioxo-5H-[1,2]-dithiol-3-yl)-phenyl 

2-(6-methoxynaphthalen-2-yl)-propionate, or HS-NAP; 

Figure 1A), using a previously reported procedure.8 We pur-

chased the parent compound naproxen, along with all other 

chemicals used in this study, from Sigma-Aldrich (St Louis, 

MO, USA). We obtained the adenocarcinoma cell line (HT-29, 

ATCC HTB-38) from the American Type Culture Collection 

(Manassas, VA, USA). No ethics statement was required from 

the institutional review board for the use of these cell lines. We 

conducted the cell proliferation inhibition experiments using 

McCoy’s 5A medium, supplemented with 10% heat-inactivated 

fetal calf serum, 2 mmol/L l-glutamine, and a mixture of peni-

cillin/streptomycin (100 units/mL), at 37°C and in 5% CO
2
.

MTT assay
We determined cell proliferation with and without the HS-NAP 

test drug using a colorimetric MTT (3-[4,5-dimethylthiazol-

2-yl]-2,5-diphenyl tetrazolium bromide) assay kit (Roche, 

Indianapolis, IN, USA) as reported previously.7 Briefly, 

HT-29 cells were plated overnight in 96-well plates at a 
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density of 20,000 cells/well, and then incubated for 24 hours 

in the presence of different concentrations of HS-NAP. Next, 

we added to each well 10 µL of 5 mg/mL MTT dye dissolved 

in phosphate-buffered saline. We then incubated all wells for 

2 more hours at 37°C, followed by addition of 100 µL of the 

solubilization solution. Finally, we measured the absorbance 

of each plate at a wavelength of 570 nm. We assayed each 

sample in triplicate on three separate occasions.

cell proliferation
We determined the proliferating cell nuclear antigen (PCNA) 

using an enzyme-linked immunosorbent assay kit (Calbio-

chem, La Jolla, CA, USA), in accordance with the manufac-

turer’s protocol. Briefly, HT-29 cells (1×106 cells/mL) were 

incubated with serum-free medium for 24 hours to remove the 

effect of endogenous growth factors and then incubated for a 

further 24 hours in the presence of different concentrations 

of either HS-NAP or the solvent. Briefly, we suspended cells 

(1×106 cells/mL) in buffer (5 mM ethylenediamine tetraacetic 

acid, 0.2 mM phenylmethylsulfonyl fluoride, 1 µg/mL pep-

statin, 0.5 µg/mL leupeptin, and 50 mM tris-hydroxymethyl 

aminomethane hydrochloride [Tris-HCl, pH 8.0]). We then 

transferred aliquots of the cell suspension into the wells of 

the plate provided with the assay kit; each well contained 

immobilized antihuman PCNA rabbit polyclonal antibody. 

We added mouse monoclonal antibody (clone PC10) to 

each well, and incubated this mixture for 2 hours at room 

temperature. Subsequently, we washed all wells and added 

a horseradish peroxidase streptavidin solution, followed by 

incubation at room temperature for 30 minutes. Finally, we 

added the substrate tetramethylbenzidine and incubated the 

plate for 30 minutes, then added quenching solution and 

measured the absorbance at 450 nm using a plate reader.

cell cycle analysis
We determined the cell cycle phase distributions of both 

treated and untreated HT-29 cells using a Coulter Profile XL 

device equipped with a single argon ion laser, following a 

previously reported procedure.7

assay for apoptosis
We treated HT-29 cells (0.5×106 cells/mL) with various 

concentrations of HS-NAP for 24 hours; we then washed 

and resuspended the cells with binding buffer containing 

Annexin V-fluorescein isothiocyanate. We added propidium 

iodide as a counterstain agent as previously described.7 We 

determined the percent of cells undergoing apoptosis using 

BD Biosciences LSR II analyzer with a single argon ion laser. 

We analyzed approximately 10,000 events for each subset; 

we collected all parameters in “list mode” files, followed by 

analysis using Flow Jo software.

Thioredoxin reductase assay
We treated HT-29 cells with either solvent or HS-NAP at dif-

ferent concentrations, including those equivalent to half the 

half maximal inhibitory concentration (IC
50

) (0.5× IC
50

), the 

IC
50

, and twice the IC
50

 (2× IC
50

) for 24 hours. We then har-

vested the cells and washed them with Dulbecco’s phosphate-

buffered saline (Invitrogen, Carlsbad, CA, USA), followed 

by centrifugation. We then resuspended and sonicated the 

Figure 1 Inhibitory effect of HS-NAP on HT-29 colon cancer cell growth. 
Notes: (A) The structural components of HS-NAP. (B) Cells were incubated with increasing concentrations of HS-NAP or NAP for 24 hours. Cell viability was determined 
by MTT assay. The results represent the mean ± standard error of the mean of at least three different experiments with duplicate plates. 
Abbreviations: HS-NAP, H2S-releasing naproxen; NSAID, nonsteroidal anti-inflammatory drug; NAP, naproxen; IC50, half maximal inhibitory concentration.
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cells in 5 mM potassium phosphate buffer (pH 7.4, 0.5 mM 

ethylenediaminetetraacetic acid). 

We generated a post-microsomal supernatant by ultracen-

trifugation (105,000× g for 2 hours), and determined the con-

centrations of protein for all post-microsomal supernatants 

with a Bradford assay kit (Bio-Rad Laboratories, Hercules, 

CA, USA) containing bovine serum albumin as the standard. 

Finally, the activity of the TrxR enzyme was measured using 

a colorimetric assay (Cayman Chemical Co, Ann Arbor, MI, 

USA) as described by the manufacturer. 

nuclear protein extraction, NF-κB p65 
DNA-binding assay, and immunoblotting
We seeded HT-29 cells (2×106) for approximately 17 hours 

(overnight) using 10 cm dishes, followed by incubation 

with various concentrations of HS-NAP at the indicated 

time intervals. We then extracted nuclear protein using an 

extraction kit (Cayman Chemical Co); we then determined 

the protein concentrations using a Bio-Rad reagent (Bio-Rad 

Laboratories), and the nuclear extracts were stored at −80°C 

until use. From the nuclear extracts, we determined the DNA 

binding activity of NF-κB by using the NF-κB (p65) tran-

scription factor assay kit (Cayman Chemical Co), in which 

the specific DNA sequence containing the NF-κB response 

element is immobilized in a 96-well plate.

Briefly, we added 50 µg of nuclear proteins to wells 

containing transcription factor buffer, and then incubated 

them overnight (total volume of 100 µL at 4°C). We also 

followed the kit instructions for the use of blank wells, the 

positive control (tumor necrosis factor alpha-stimulated HeLa 

cell nuclear extract provided with the kit), and the nonspe-

cific binding samples (provided with the kit). We detected 

NF-κB binding by adding the NF-κB primary antibody to all 

wells (except the blank wells), and incubating for 1 hour at 

room temperature. We then washed the wells and added the 

secondary antibody (conjugated to horseradish peroxidase), 

incubating for an additional 1 hour at room temperature; to 

continue with the procedure, we added 100 µL of develop-

ing solution, followed by a 45-minute incubation with gentle 

shaking; after this time, we added the “stop” solution, and 

measured the absorbance of all wells at 450 nm. Finally, 

we calculated the percent of change in activity for each test 

sample relative to the average of untreated samples.

We used antibodies against IκBα (L35A5), phospho-

IκBα (Ser32; 14D4), NF-κB p65 (D14E12), and phospho-

IKKα/β (Ser176/180; 16A6) from Cell Signaling Technology 

(Boston, MA, USA) for the immunodetection of each protein 

in nuclear extracts or cell lysates.

HT-29 mouse xenograft model
For this prevention study, we used 5-week-old athymic 

male nude (nu/nu) mice (Charles River Laboratories Inc, 

Wilmington, MA, USA), housed according to institutional 

and National Institutes of Health guidelines. Our institu-

tional animal care and research committee approved all 

experimental procedures. After 1 week of acclimation, we 

randomly divided the mice into two groups containing six 

mice each; we started a “pre-initiation” regimen in which 

we administered vehicle (1% methylcellulose) to the control 

group and HS-NAP (100 mg/kg body weight) to the treatment 

group; we dosed both groups daily by gavage. After 1 week 

of treatment, we inoculated both groups (right hind flank) 

with HT-29 cells (3×106) suspended in 50% v/v Matrigel 

(BD Biosciences, San Jose, CA, USA), using a 1 mL syringe 

and 22-gauge needle. We followed this protocol for a total of  

24 days after inoculation, and then euthanized all animals; 

we identified, isolated, weighed, and stored the tumor tissues 

in formalin for immunohistochemistry studies. 

Additionally, we measured tumor size using electronic cal-

ipers at regular intervals, starting at day 6 post-administration 

until the end of the experiment. We calculated tumor volumes 

using the formula: (length × width2)/2.

immunohistochemistry
We fixed tissue specimens in formalin (paraffin-enclosed) for 

examination, following a previously reported procedure.7 We 

used the following antibodies: for proliferation, Ki-67 (1:200 

dilution) and primary rabbit NF-κB p65 (1:100 dilution); 

for apoptosis, Promega TUNEL system (Promega Corpora-

tion, Madison, WI, USA). For NF-κB scoring, we took five 

slides from each animal by using the following semiquan-

titative scoring system.36 The extent of staining was graded 

as follows: 0, no staining; 1+, #25% of cells positive; 2+, 

26%–50% of cells positive; 3+, $51% of cells positive. The 

intensity of staining was scored as follows: 0, no staining; 

1+, faint; 2+, moderate; and 3+, strong. 1+, 2+, and 3+ were 

recorded as 1, 2, and 3 points, respectively.

To compare differences in staining, we calculated an 

expression index (EI) using the following formula: EI = 

extent of staining × intensity of staining. We evaluated 

all slides using a light microscope (×200, Carl Zeiss, 

Oberkochen, Germany). A negative control was done in all 

cases by omitting the primary antibody. 

statistical analysis
The in vitro data are presented as the mean ± standard 

error of the mean for at least three different sets of plates 
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done in triplicate. In vivo treatment groups and numbers of 

animals in each group are indicated in the figure legends. 

Comparison between treatment groups was done using 

Student’s t-tests. P,0.05 was considered to be statistically 

significant.

Results
HS-NAP inhibits growth of HT-29 cells
We evaluated the inhibition of cell proliferation exerted by 

the test drug (HS-NAP) and the parent compound naproxen 

using HT-29 human colon cancer cells. This cell line is 

a commonly used model due to its sensitivity to chemo-

therapeutic drugs, and it is also commonly used in xenograft 

tumor models of CRC. Cells that were plated 1 day earlier 

were treated with vehicle, naproxen, or HS-NAP at various 

concentrations for 24 hours; growth inhibition was then 

measured using the MTT assay, and IC
50

 values were deter-

mined. While naproxen inhibited the proliferation of HT-29 

cells at very high concentrations (1–5 mM), we observed 

that HS-NAP exerted a much more potent effect, inhibiting 

cell proliferation within the 1–100 µM range (Figure 1B). 

We also observed that the effect exerted by HS-NAP was 

concentration-dependent, with a calculated IC
50

 of 72±5 µM 

(the IC
50

 of naproxen was 2,800±190 µM). By comparing the 

two IC
50

 values, we suggest that there is a 400-fold increase 

in potency by the test drug HS-NAP.

Effect of HS-NAP on proliferation, cell 
cycle progression, and apoptosis
The inhibitory effect on cell proliferation exerted by HS-NAP 

may occur through effects on basic cellular processes such as 

modulation of cell cycle progression or induction of cancer 

cell death. To investigate the effect of HS-NAP on cell pro-

liferation, we treated HT-29 cells with HS-NAP at different 

concentrations: 0.5× IC
50

 (36 µM); IC
50

 (72 µM); and 2× IC
50

 

(144 µM). In all cases, we incubated cells for 24 hours, fol-

lowed by determination of PCNA expression.

We observed that HS-NAP reduced PCNA expression in 

HT-29 cells in a dose-dependent manner. In this regard, the 

magnitude of reduction was 29%±3% at 36 µM, 51%±5% 

at 72 µM, and 74%±4% at 144 µM (Figure 2A). Likewise, 

we observed that HS-NAP caused a concentration-dependent 

accumulation of HT-29 cells in the G
0
/G

1
 phase (Figure 2B), 

while fewer cells were in S and G
2
/M phases. HS-NAP 

increased the population of cells in G
0
/G

1
 phase from 37.2% 

(control cells) to 48.8%, 69.7%, and 77.3% at 36, 72, and 

144 µM, respectively. The population of cells in the S 

phase also decreased from 40.9% in control cells to 32.0%  

(at 36 µM), 17.7% (at 72 µM), and 13.3% (at 144 µM). 

Finally, we also observed a decrease in the number of cells 

in the G
2
/M phase as a result of incubation of HT-29 cells 

with increasing concentrations of HS-NAP; in this regard, 

we calculated that approximately 21.9% of cells were in 

Figure 2 HS-NAP inhibits proliferation by altering cell cycle progression and inducing apoptosis. 
Notes: cells were treated with vehicle, 0.5× ic50 (36 µM), 1× ic50 (72 µM) or 2× ic50 (144 µM) HS-NAP for 24 hours and analyzed for (A) proliferation by Pcna 
expression; (B) cell cycle phases by PI staining and flow cytometry; (C) apoptosis by Annexin V staining and flow cytometry. In (A and C), the results are shown as the mean ±  
standard error of the mean for three different experiments performed in duplicate. *P,0.05 and **P,0.01 compared with control. in (B), the results are representative of 
two different experiments. 
Abbreviations: HS-NAP, H2S-releasing naproxen; PI, propidium iodide; PCNA, proliferating cell nuclear antigen; IC50, half maximal inhibitory concentration.
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the G
2
/M phase when no drug was added (control), but this 

changed to 19.2% (at 36 µM), 12.6% (at 72 µM), and 9.4% 

(at 144 µM). 

In this experiment, we observed that HS-NAP signifi-

cantly increased the number of cells undergoing apoptosis. 

At 36 µM, 72 µM, and 144 µM, the percentage of apoptotic 

cells increased to 11.6%±2%, 54.3%±4%, and 71.3%±3%, 

respectively (Figure 2C). Based on these results, it is likely 

that HS-NAP inhibits the proliferation of HT-29 cells by G
1
 

arrest and induction of apoptosis.

HS-NAP inhibits the NF-κB Dna 
signaling pathway in HT-29 cells
Since NF-κB is implicated in cell survival and oncogen-

esis, we examined the effect of the test drug HS-NAP on 

NF-κB-DNA binding in HT-29 cells. Nuclear extracts from 

treated and untreated cells were prepared and examined as 

described in the Materials and methods section.

Our results suggest that HS-NAP inhibits binding 

between NF-κB (p65) and DNA in a concentration-dependent 

manner (Figure 3A). The DNA-NF-κB binding decreased to 

22%±3% at 36 µM (0.5× the IC
50

 value), 53%±2% at 72 µM 

(IC
50

), and 59%±4% at 144 µM (2.0× the IC
50

 value). We 

also observed a significant decrease in the levels of nuclear 

p65 (immunoblotting), using lamin as the internal control 

(Figure 3B). These results suggest that HS-NAP inhibits the 

nuclear translocation of p65.

It is well established that integral to NF-κB activa-

tion is the dissociation of IκB, which is mediated through 

phosphorylation and subsequent proteolytic degradation of 

Figure 3 Effect of HS-NAP on the NF-κB pathway.
Notes: (A) HS-NAP inhibited NF-κB transcription factor activity in HT-29 cells. Cells were treated with vehicle or HS-NAP for 6 hours and nuclear proteins were harvested. 
DNA binding activity of NF-κB was determined from nuclear extracts. The decrease in NF-κB transcription factor activity of each sample relative to the vehicle control 
(100%) was determined. (B) Western blot analyses of a concentrated nuclear protein extract was performed by immunoblotting for p65 protein of NF-κB. results are shown 
as the mean ± standard error of the mean of three different sets of experiments. *P,0.05 and **P,0.01 compared with vehicle-treated controls. (C) cytoplasmic fractions 
of HS-NAP-treated cells were examined for total IκBα, iKKα, and iKKβ levels, and (D) for phosphorylated iκBα, iKKα, and iKKβ by immunoblotting. results are shown as 
the mean ± standard error of the mean of three different sets of experiments. *P,0.05 compared with control.
Abbreviations: HS-NAP, H2S-releasing naproxen; NF-κB, nuclear factor kappa B; p-, phosphorylated; ELISA, enzyme-linked immunosorbent assay; IC50, half maximal 
inhibitory concentration.
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this inhibitory subunit. Consequently, we also examined if 

the observed reduction of the nuclear translocation of p65 

occurs by suppression of IκBα degradation. We observed 

that the total amount of cytoplasmic IκBα was not altered 

by HS-NAP (Figure 3C), whereas the phospho-IκBα 

was reduced to 60% at 144 µM compared with untreated 

control (Figure 3D). These results suggest that HS-NAP 

does not cause degradation of IκBα in HT-29 cells, since 

phosphorylation IκBα is reduced by HS-NAP, although this 

response only occurs at the highest concentration (144 µM, 

2× IC
50

 value). 

The phosphorylation of IκBα at specific serine resi-

dues is mediated by two Iκ kinases (IKKs), namely IKKα 

and IKKβ.37 Therefore, we examined the levels of both 

phosphorylated IKKα and phosphorylated IKKβ in the 

presence of HS-NAP. In this regard, we observed that 

this compound did not alter the total levels of IKKα and 

IKKβ; instead, we observed a decreased level of the cor-

responding phosphorylated IKKα and IKKβ at 1× IC
50

 

(72 µM) and 2× IC
50

 (144 µM). Therefore, we suggest 

that HS-NAP prevents the activation of IKKs, inhibits 

phosphorylation-mediated degradation of IκBα, and pre-

vents the translocation of NF-κB p65 into the nucleus. In 

repeated experiments for these events, we continued to find 

reduction of phosphorylation of IκBα to approximately 

60% of the control, implying that HS-NAP-mediated 

reduction of nuclear p65 may occur through additional 

mechanisms.

HS-NAP inhibits thioredoxin reductase 
activity
The redox balance of cells via Trx/TrxR may influence 

the function of NF-κB by regulating its ability to bind to 

DNA.38–40 The function of Trx is known to be dependent 

upon the activity of TrxR, so we examined the activity of 

TrxR in HT-29 colon cancer cells when incubated in the 

presence of different concentrations of HS-NAP. As shown in 

Figure 4, HS-NAP strongly inhibited TrxR activity. HS-NAP 

decreased the enzymatic activity of TrxR from 120 µmol/

min/mg protein in the control group to 82.5 µmol/min/mg 

protein at 0.5× IC
50

 (69% of control at 36 µM), to 39.7 µmol/

min/mg protein at 1× IC
50

 (33% of control at 72 µM), and 

to 25.9 µmol/min/mg protein at 2× IC
50

 (22% of control at 

144 µM). 

HS-NAP inhibits tumor growth in a 
HT-29 xenograft model
Athymic nude male mice were pre-initiated for 7 days via gav-

age with vehicle or HS-NAP (100 mg/kg) and then injected 

in the right flank with HT-29 cells for the development 

of subcutaneous tumors as described in the Materials and 

methods section. Daily administration of the test agents con-

tinued to the end of the experiment (Figure 5A). At the end 

of the study, HS-NAP-treated mice showed a considerable 

reduction in tumor volume compared with the control group 

(Figure 5B and C). The mean tumor volumes at the time of 

sacrifice for the control group and HS-NAP were 789.6±11 

mm3 and 31.1±4 mm3, respectively. This is equivalent to a 

mean reduction of 96% (P,0.01).

Immunohistochemical staining of the tumors were per-

formed for expression of NF-κB p65 and for Ki67, which 

is a biomarker for tumor cell proliferation. The untreated 

tumors showed strong expression of Ki67 (85%±3%) and 

NF-κB (30%±4%) that was reduced in the treated tumors 

to 38%±2% and 4.5%±2%, respectively (Figure 6A and C). 

In addition, HS-NAP increased apoptosis in the tumors 

(19.5%±3%) compared with the control (1.8%±1%) as 

measured by TUNEL staining for multiple tissue sections 

(Figure 6B). Therefore, HS-NAP suppressed tumor growth 

by a combination of increased apoptosis and reduced cell 

proliferation. 

Figure 4 HS-NAP inhibits thioredoxin reductase activity. 
Notes: cells were treated with vehicle or 0.5×, 1×, and 2× ic50 HS-NAP for 
24 hours, followed by measurement of thioredoxin reductase activity (µmol/min/mg). 
Thioredoxin reductase activity was inhibited by HS-NAP in a dose-dependent 
manner. results are shown as the mean ± standard error of the mean of three 
different experiments performed in duplicate. *P,0.02 compared with vehicle-
treated controls. 
Abbreviations: TrxR, thioredoxin reductase; HS-NAP, H2S-releasing naproxen; 
ic50, half maximal inhibitory concentration.
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Figure 5 HS-NAP inhibits tumor xenograft growth. 
Notes: athymic nu/nu mice were treated for 7 days via gavage with vehicle (n=6) or HS-NAP (100 mg/kg, n=6) and then injected in the right flank with HT-29 cells for the development 
of subcutaneous tumors. Daily administration of the test agents continued to the end of the experiment according to the protocol in (A). Treated and untreated mice are shown in 
(B). average tumor volume as a function of time is shown in (C). HS-NAP significantly reduced tumor volume at days 18 and 24. *P,0.01 compared with vehicle-treated control.
Abbreviation: HS-NAP, H2S-releasing naproxen.

Discussion
The overarching milestone of this investigation is the sig-

nificant decrease in tumor growth (by ~96%), observed in 

animals dosed orally with the test drug HS-NAP, which 

represents a remarkable effect, and suggests a potential 

cancer chemoprevention use for this H
2
S-releasing naproxen 

derivative. Taken together with previous published reports 

showing that HS-NAP essentially produced no toxicity in the 

gastrointestinal tract,15,41 a feature that was also observed in 

the present study but not formally evaluated, sets the phar-

macological properties of HS-NAP apart from that of the 

much more toxic parent compound naproxen.

At the cellular level, we determined that HS-NAP inhibited 

cell proliferation, altered the cell cycle progression, and induced 

apoptosis of cancer cells. These events were associated with 

inhibition of NF-κB signaling, both by reducing the nuclear 

translocation of NF-κB and decreasing NF-κB-DNA binding. 

These results are further supported by the enzyme inhibi-

tory effect exerted by HS-NAP on the TrxR enzyme, which 

according to some literature reports, may be related to decreased 

NF-κB-DNA binding.39 Besides, the inhibition of TrxR activity 

may also cause cancer cell apoptosis via caspase-dependent and 

caspase-independent pathways.35 Consequently, we submit that 

the mechanism of action exerted by HS-NAP is the result of a 

combination of all the effects described earlier, and collectively 

contribute to the significant reduction in tumor volume.

Our results also suggest that HS-NAP inhibits the transloca-

tion of p65 to the nucleus by inhibiting IKK phosphorylation; 

this is encouraging considering that inactivation of NF-κB in 

different cancer cells has been shown to stop the ability of 

cancer cells to grow.19 However, HS-NAP reduced the phospho-

IκBα to only approximately 50%–60% at high concentration 

(2× IC
50

) and did not completely inhibit IκBα phosphorylation, 

although nuclear translocation of NF-κB was strongly reduced. 

This discrepancy cannot be explained at the current time. In 

previous studies, we reported the effects of a similar hybrid 

compound, namely a H
2
S-releasing aspirin. In that report, we 

observed a marked reduction of phosphorylation of IκBα and 
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Figure 6 HS-NAP inhibits proliferation (A), induces apoptosis (B), and decreases NF-κB (C) p65 in vivo. 
Notes: The average mitotic index at sacrifice was determined by Ki-67 staining (*P,0.05 versus control), TUnel staining (*P,0.03 versus control), and p65 staining 
(*P,0.05 versus control). Representative fields used for quantification of the staining are shown. The scale bar represents 200 µm.
Abbreviations: HS-NAP, H2S-releasing naproxen; NF-κB, nuclear factor kappa B.

κ

κ

a concomitant inactivation of IKKs.7 For HS-NAP, it may be 

envisaged that the observed reduction of p65 (and its subsequent 

nuclear translocation), could be due to NF-κB-independent 

pathways, such as the likelihood of a modification of NF-κB 

itself by sulfuration via H
2
S released from the HS-NAP. At the 

level of biochemical events, some known molecular targets of 

H
2
S are intracellular signaling proteins and transcription factors 

(reviewed in Kashfi and Olson10). For this, further studies of 

HS-NAP and its metabolic kinetics will be explored. In con-

clusion, HS-NAP suppressed the proliferation of CRC HT-29 

cells, inhibited xenograft tumor progression, and suppressed 

NF-κB activity. Therefore, HS-NAP is a potential cancer 

chemopreventive agent and merits further study.
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