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Abstract: Osteoimmunology represents a large area of research resulting from the cross talk 

between bone and immune systems. Many cytokines and signaling cascades are involved in the 

field of osteoimmunology, originating from various cell types. The RANK/receptor activator of 

nuclear factor Kappa-B ligand (RANKL)/osteoprotegerin (OPG) signaling has a pivotal role in 

osteoimmunology, in addition to proinflammatory cytokines such as tumor necrosis factor-α, 

interleukin (IL)-1, IL-6, and IL-17. Clinically, osteoimmunological disorders, such as rheuma-

toid arthritis, osteoporosis, and periodontitis, should be classified according to their pattern of 

osteoimmunological serum biomarkers. Paget’s disease of bone is a common metabolic bone 

disorder, resulting from an excessively increased bone resorption coupled with aberrant bone 

formation. With the exception of the cellular responses to measles virus nucleocapsid protein 

and the interferon-gamma signature, the exact role of the immune system in Paget’s disease of 

bone is not well understood. The cytokine profiles, such as the increased levels of IL-6 and the 

interferon-gamma signature observed in this disease, are also very similar to those observed in 

other osteoimmunological disorders. As a potential osteoimmunological disorder, the treatment 

of Paget’s disease of bone may also benefit from progress made in targeted therapies, in particular 

for receptor activator of nuclear factor Kappa-B ligand and IL-6 signaling inhibition.
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Introduction
Osteoimmunology at a glance
This narrative review of the literature presents first, data on osteoimmunology and 

osteoimmunological disorders, and second, discusses why Paget’s disease of bone 

should be considered as a potential osteoimmunological disease. Osteoimmunology is 

an emerging research area that is the result of the cross talk regarding the relationship 

between bones and the immune systems. Various cell types are involved in osteoim-

munology processes, but most of them originate from the hematopoietic tissue. At the 

third week of human embryonic development, stem cell lineages are formed in the yolk 

sac.1,2 These lineages multiply asymmetrically, maintaining their original population 

and differentiating to other types of more specialized blood cells.3 The immunological 

basic steps begin with the primary formation of hematopoietic stem cells lineage, which 

first appears in the yolk sac, followed by mesoderms of aorta, gonads, and nephrons 

(mesonephrons), and from there will migrate later to liver, spleen, and lymph nodes. 

Around the fourth month of fetal life, these hematopoietic stem cells migrate to bone 

marrow, and at the time of birth, bone marrow is responsible for all hematopoietic 

function.4,5 Likewise, bone marrow pluripotent stem cells – which are stimulated by 

growth factors – are divided into two types of multipotent progenitor stem cells: com-

mon lymphoid cells and common myeloid cells (Figure 1).
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Lymphoid cells
Common lymphoid cells are further divided into three cell 

types: committed pro-natural killer stem cells, pro-T stem 

cells, and pro-B stem cells. Pro-natural killer stem cells 

migrate to peripheral circulation, where they become natural 

killer cells. Natural killer cells differ from B-cells and T-cells 

by not having clusters of differentiation 3 (CD3) like T-cells, 

nor CD19 and CD20 like B-cells. Pro-T stem cells (naïve 

T-cells) migrate from bone marrow to peripheral circulation, 

mature in thymus gland, and then some return to peripheral 

circulation where they become mature T-cells. Some of these 

mature cells will become T helper (TH) naïve (containing 

markers CD3, CD4) lymphocytes or T cytotoxic (containing 

markers CD3, CD8) lymphocytes. TH naïve cells differenti-

ate into TH1 cells and TH2 cells. TH1 cells when activated 

by interleukin (IL)-4 and IL-5 contribute to convert B-cells 

to plasma cells called active B-cells producing immunologi-

cal antibodies. TH2, when activated by interferon-gamma 

(IFN-γ) and tumor necrosis factor-α (TNF-α), contribute to 

activate monocytes to be highly active macrophages, epi-

thelioid cells (modified monocytes), and giant cells. IFN-γ 

receptor knockout mice showed exaggerated bone destruction 

in inflammatory arthritis in comparison with normal mice. 

IFN-γ induces TNF receptor-associated factor 6 (TRAF6) 

ubiquitination and degrades proteolytic TRAF6, ultimately 

leading to the inhibition of receptor activator of nuclear factor 

Kappa-B ligand (RANKL)-mediated osteoclastogenesis.6,7 

Activities of TH2 cells constitute the humoral immunity, 

while activities of TH1 cells and T cytotoxic cells create the 

cellular immunity. Pro-B stem cells differentiate in turn to 

be mature B-cells in peripheral blood circulation.

Myeloid cells
Common myeloid progenitor cells differentiate into 

granulocyte/macrophage progenitor and megakaryocyte 

erythroid progenitor (MKEP) cells (Figure 1). Granulocyte/

macrophage progenitor cells are divided into monocytes 

and granulocytes. Later, monocytes migrate to some tis-

sues, reside there, and change their name depending on the 

tissue, such as monocytes that migrate to inflammation sites 

are called macrophages, monocytes that migrate to skin are 

called Langerhans cells, and monocytes that migrate and 

reside in bone tissue, which will be differentiated into bone 

resorbing cells are called osteoclasts.8,9 Osteoclasts work 

mainly at the bone resorption activity controlling the bone 

turnover cycle.10 Osteoclasts are large multinucleated cells of 

hematopoietic origin. They have the capability of removing 

organic and mineral components of bone. The macrophage 

Figure 1 Main osteoimmunological cell differentiations and cell lineages.
Abbreviation: NK cell, natural killer cell.
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lineages and the myeloid dendritic cell originate hematopoi-

etically, and they are affected by the cytokines and produce 

many of them. On the other hand, osteoblasts originate from 

mesenchymal stems cells and play important roles in bone 

formation, osteoclasts differentiation, and hematopoietic 

cell growth and differentiation.11,12 The interaction or cross 

talk between osteoblast and osteoclasts play a central role in 

the osteoimmunological processes. Osteoblasts can control 

the osteoclastogenesis by two important cytokines; first the 

RANKL, which is a TNF member superfamily of proteins 

(Table 1). RANKL is a protein produced by Tumor Necrosis 

Factor ligand Super-Family member 11 (TNFSF11) gene. 

It has also been called TNF-related activation-induced 

cytokine or osteoprotegerin (OPG) ligand because it can 

be a ligand for osteoprotegerin decoy receptor. RANKL 

binds to RANK receptors, which normally are present at the 

pre-osteoclasts’ cell membrane. Its crucial role as a trans-

membrane protein synthesized by osteoblasts is to perform 

maturation, differentiation, and activation of osteoclasts.13 

Second, OPG is also a member of the TNF superfamily 

and plays a role of a decoy receptor of RANKL leading to 

inhibition of osteoclasts maturation, differentiation, and 

activation and then leading to osteoclast apoptosis (Table 1).  

So, the balance between RANKL and OPG can modulate 

the level of bone resorption.14–16 OPG works like a brake 

against the excessive bone resorption activity. A new inhibi-

tory mechanism against OPG via autoantibodies has been 

revealed by studies of Riches et al. Indeed, they discovered 

autoantibodies against OPG in a man with celiac disease, 

severe osteoporosis, and high bone turnover.17

Osteoimmunological cytokines
IL-1 is a very essential cytokine in osteoimmunological 

processes. The analysis of supernatants from phytohemag-

glutinin-stimulated peripheral blood monocytes in healthy 

humans suggested that IL-1 acts as the main stimulus of 

osteoclast-activating factor, which has a central role in osteo-

clastogenic activity. Subsequently, the same bone resorbing 

stimulating activity was found in TNF-α and IL-6. Indeed, 

IL-1, IL-6, and TNF-α increase the osteoclasts response to 

RANKL and consequently osteolysis (Table 1). Estrogen 

withdrawal after menopause has the same stimulating effect, 

increasing osteoclastic activity through IL-1, IL-6, and 

TNF-α effects.18 Proinflammatory cytokines such as TNF- α, 

IL-1, IL-6, and IL-17 (Table 1) are also elevated in patients 

with rheumatoid arthritis, contributing to increased RANKL 

expression and subsequent osteolysis.19 Schett et al have 

reviewed the important relation between autoimmunity and 

joint erosion in rheumatoid arthritis, revealing the presence 

of anti-citrullinated protein antibodies and anti-carbamylated 

protein antibodies in serum of the patients with rheumatoid 

arthritis. Molecular interaction between anti-citrullinated 

protein antibodies and the surface of osteoclast precur-

sor cells via citrullinated vimentin induces differentiation 

and production of bone-resorbing osteoclasts, resulting in 

excessive bone resorption.20 Vitamin D
3
, prostaglandin E2, 

parathyroid hormone, in addition to IL-1, IL-6, IL-11, and 

TNF-α, can also induce RANKL expression, leading to 

excessive osteoclastogenesis (Figure 2).21 Activated T-cells 

were also reported to regulate bone loss and activation of 

osteoclastogenesis in vitro through RANKL.22 Contrariwise, 

TNF-stimulated gene 6 protein is an inflammation-induced 

protein that can inhibit osteoblastogenesis and osteoclast 

activation.23 In addition, immunoreceptor tyrosine-based 

activation motif (ITAM) pathway may contribute to 

the relationship between immune system and bone as a  

co-stimulatory pathway in osteoclasts. ITAM-dependent 

receptors regulate myeloid-derived cells functions. Further-

more, ITAM-containing adapter proteins such as DNAX 

activation protein-12 and the Fc epsilon receptor I gamma 

chain (FCER1G) play an essential role in osteoclast dif-

ferentiation. Suppression of calcineurin–nuclear factor of 

activated T-cells signaling can reduce the activity of ITAM 

pathway in the late stage of osteoclast differentiation, leading 

to the reduction of osteoclast differentiation and activity.24,25 

Calcium signaling induces the calmodulin-dependent kinase 

pathway role in osteoclast formation and plays a crucial role 

in the autoamplification of the transcription factor nuclear 

factor of activated T-cells cytoplasmic-1. Further, activation 

of TRAF6 and c-Fos pathways by RANKL leads to autoam-

plification of nuclear factor of activated T-cells cytoplasmic-1 

and enhances osteoclastogenesis.21

Most frequent rheumatic 
osteoimmunological disorders and 
their related serum biomarkers
The most frequent rheumatic osteoimmunological disorders 

regroup bone metabolic diseases, such as osteoporosis and 

Paget’s disease of bone, systemic autoimmune diseases such 

as rheumatoid arthritis, systemic lupus erythematosus and 

systemic sclerosis, and other rheumatic diseases including 

osteoarthritis and spondyloarthropathies, whereas periodon-

titis is frequently associated with systemic rheumatic condi-

tions (Table 2). In almost all these disorders, serum levels of 

osteoimmunological biomarkers have been characterized in 

the literature (Table 2), and they can be combined to define a 
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α

α β γ
γ

Figure 2 Pathophysiology of Paget’s disease of bone and its relation to osteoimmunological cells and cytokines.
Abbreviations: RANKL, Receptor Activator of Nuclear factor Kappa-B Ligand; TNF, Tumor Necrosis Factor-α; iFN, interferon; MAPK, mitogen-activated protein kinase.

specific osteoimmunological pattern associated with a given 

rheumatic disease. For example, bone formation markers are 

usually increased in all these diseases, except in osteoporosis 

and rheumatoid arthritis (decreased level) and in systemic 

lupus erythematosus and systemic sclerosis (normal level). 

Bone resorption markers are also usually increased except 

for osteoarthritis and systemic lupus erythematosus (normal 

level). In addition, some proinflammatory cytokines may be 

of paramount importance at differentiating different rheu-

matic disorders. IL-17 and IL-6 levels are usually simulta-

neously increased in the same disorders, except for Paget’s 

disease of bone and systemic sclerosis; in both diseases, IL-6 

is elevated but not IL-17. Finally, the pattern of IFN-γ serum 

levels in rheumatic diseases is very interesting: it is increased 

in almost all diseases, with the exception of osteoporosis and 

psoriatic arthritis (decreased level), and rheumatoid arthritis 

and ankylosing spondylitis (normal level). Overall, a combi-

nation of one serum biomarker of bone formation, one bone 

resorption biomarker, two proinflammatory cytokines such 

as IL-17 and IL-6 in addition to IFN-γ serum levels would 

be able to classify with a good sensitivity the most frequent 

rheumatic osteoimmunological disorders. Adding other 

already available biomarkers in clinical practice, such as 

autoantibodies, would increase the specificity of such a com-

bination, and its clinical utility (ie, combination of markers 

for outcome/prognosis prediction and/or a pharmacogenomic 

test to guide the choice of any targeted biotherapy) may 

further be validated in prospective cohorts.

Paget’s disease of bone as a 
potential osteoimmunological 
disorder
Paget’s disease of bone
Paget’s disease of bone is the second most frequent metabolic 

bone disorder after osteoporosis,26 where more than 3% of 

Caucasians older than 55 years are affected. This disorder is 

characterized by an excessive increased bone resorption by 

osteoclasts accompanied by aberrant osteoblastic bone forma-

tion. This aberrant bone remodeling causes fragile and weaker 

bones. To date, about 30 mutations in SQSTM1/p62 gene have 

been reported in familial forms and unrelated patients with 

Paget’s disease of bone. Furthermore, several common single 

nucleotide polymorphisms have been associated with Paget’s 

disease of bone, in genome-wide association study, in particu-

lar in CSF1, OPTN, TNFRSF11A, PML, RIN3, and NUP205 

genes.26–28 The consequences of these polymorphisms on 

osteoclast phenotype and activity are yet unknown.

SQSTM1/p62 role and importance of 
osteoclastogenesis in Paget’s disease
The SQSTM1/p62 protein anatomical structure has some impor-

tant domains that regulate their essential functions such as Phox 

and Bem1p (PB1), ZZ, TRAF6 binding domain, LIR, KIR, 

and ubiquitin-associated (UBA) domains.29 PB1 plays a role in 

adipogenesis by inhibiting ERK1, and it also activates NF-κB 

pathway through interaction with PKCζ. ZZ domain activates 

NF-κB through the interaction with receptor interacting protein. 
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Interaction of TRAF6 with the TRAF6 binding domain can 

activate NF-κB pathway. SQSTM1/p62 can activate autophagy 

by interaction of LC3 with LIR domain, and autophagy can be 

inhibited by mTOR. The UBA domain of SQSTM1/p62 has a 

very important role for this protein function; it interacts non-

covalently with ubiquitin protein to perform post-transcriptional 

modifications and degradation by 26S multisubunit protease 

or by autophagy. The UBA domain also has an important role 

in induction and activation of some transcription factors such 

as NF-kB. In osteoclasts, NF-kB–RANK signaling pathway 

is very important for osteoclastogenesis. With impairment 

of UBA functions, ubiquitin protein cannot interact with its 

domain in SQSTM1/p62 disrupting the autophagy and NF-kB 

signaling pathways, and consequently, osteoclastogenesis.26,30,31 

The KIR domain of SQSTM1/p62 plays a role in oxidative 

stress with Keap1 (cysteine-rich protein) that has antioxidant 

elements such as antioxidant response elements/electrophile 

response element in Nrf2 pathway. Keap1-Nrf2 has a cyto-

protective action against oxidative stress, and Keap1 can be 

downregulated by SQSTM1/p62.32 Autophagy dysfunction 

may result as a consequence of SQSTM1 gene mutations and 

proteasomal pathway impairment. Ubiquitinated proteins are 

usually directed by SQSTM1/p62 protein to autophagosome. 

After binding to Atg8/LC3 at the surface of the autophagosome, 

they aggregate into polyubiquitinated non-functional proteins 

within the autophagosome in the autophagosome. Mutation in 

SQSTM1/p62 can induce abnormal autophagy process, leading 

to the accumulation of aggregated ubiquitinated proteins, which 

stimulate osteoclastogenesis by triggering of NF-kB pathway, 

and may contribute to Paget’s disease of bone.33 Athanasiou’s 

group reported very interesting data on pathogenic excessive 

osteoclastogenesis in Paget’s disease of bone.34 Neale et al 

found that macrophage-colony stimulating factor and IL-6 

induce osteoclast formation and bone resorption in Paget’s 

disease. Furthermore, elevated macrophage-colony stimulat-

ing factor in the serum may correlate with disease activity in 

patients with Paget’s disease.34 Kudo et al have also shown 

that IL-6 and IL-11 can enhance osteoclast formation and bone 

resorption through RANKL-independent mechanism. Then, the 

role of dexamethasone in osteoclastogenesis was suggested.35 

Indeed, dexamethasone can enhance proliferation and differ-

entiation of human osteoclast precursors and suppress the bone 

resorption by mature osteoclasts.36

Role of Optineurin in Paget’s disease of 
bone
Mutations of Optineurin (OPTN) gene have been reported 

in glaucoma and amyotrophic lateral sclerosis, as well as 

common genetic variants; in particular, the intronic variant 

rs1561570 was found to be associated with Paget’s disease of 

bone.37 The OPTN gene encodes a 67 kDa cytosolic protein 

that consists of 577 amino acids. The importance of OPTN 

was first raised after discovering disease-causing mutations 

in primary open-angle glaucoma.38 In addition, OPTN may be 

involved in neurofibrillary tangles and dystrophic neuritis that 

leads to Alzheimer’s disease, amyotrophic lateral sclerosis, 

Parkinson’s disease, Creutzfeldt–Jakob disease, and glial 

cytoplasmic inclusions that lead to a rare neurological disorder 

called multiple system atropy.39 Although the exact role of 

OPTN in Paget’s disease of bone pathogenesis is unknown 

yet, interaction between OPTN and TANK-binding kinase 1 

may suggest a connection with the immune system. Indeed, 

TANK-binding kinase 1 is a TNF-α-activated protein kinase, 

which may be activated by viral double-stranded DNA or by 

lipopolysaccharide. On the other hand, induction of IFN-β due 

to RNA virus infection can be suppressed by OPTN.39–41

environmental factors
Environmental factors may also contribute to Paget’s disease 

of bone.26 Although controversial in the literature, several 

studies have found a relationship between viral infections 

and excessive enhanced osteoclasts activity.42 Inclusion 

bodies contained in osteoclasts were reported to be similar 

to Paramyxoviral nucleocapsids. Measles virus, respiratory 

syncytial virus, and canine distemper virus may play a role 

in Paget’s disease of bone.43 The expression of measles virus 

nucleocapsid protein (MVNP) in osteoclasts was reported 

to lead to the formation of pagetic-like osteoclasts. MVNP 

is known to increase the production of IL-6 that in turn 

leads to increase the production of TAFII-17 and increase 

the sensitivity of osteoclasts to 1,25-(OH)
2
D3. The pagetic 

phenotype of osteoclast is characterized by hypermultinucle-

ation and hypersensitivity to 1,25-(OH)
2
D3. NF-kB signal-

ing can be increased in cells by increasing the production 

of IL-6 and IL-1.44

Paget’s disease as a potential 
osteoimmunological disorder
Paget’s disease of bone should be considered as a potential 

osteoimmunological disorder for several reasons. First, the 

RANKL-NF-κB signaling has a major role in pagetic osteo-

clast differentiation and activation, and the cytokine profile 

observed in this disease is very similar to those observed in 

other osteoimmunological diseases (Table 1). However, the 

exact role of the immune system in Paget’s disease of bone 

is not very well understood, except for cellular responses to 
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Table 3 Overview of the main clinical trials or case reports in which a cytokine or its receptor, involved in osteoimmunological 
process related to a rheumatic or musculoskeletal disorder, was targeted

Targeted 
signalling

Molecule  
name 

Molecule description Main rheumatic diseases  
treated

Level of evidence References

iL-1 Anakinra

Rilonacept

Canakimumab

Human recombinant iL-1ra

iL-1 trap, iL-1 inhibitor

interleukin-1β blocker

Rheumatoid arthritis
NOMiD syndrome
Still’s disease
Periodic fever syndromes
Acute gout
Behçet’s disease
CAPS syndromes
Periodic fever syndromes
Acute gout
CAPS syndromes
Systemic juvenile idiopathic arthritis
Acute gout 
Rheumatoid arthritis
Behçet’s disease

Randomized-controlled trials
Observational study
Case reports
Case reports
Observational study
Case reports
Randomized-controlled trials
Case reports
Observational study
Randomized-controlled trials
Randomized-controlled trials
Randomized-controlled trials
Randomized-controlled trials
Case reports

40, 128–133

iL-6 Tocilizumab iL-6 receptor inhibitor Rheumatoid arthritis
Juvenile idiopathic arthritis

Randomized-controlled trials
Randomized-controlled trials

134

iL-17 Secukinumab 
ixekizumab
Brodalumab

iL-17 inhibition
iL-17 inhibition
iL-17 receptor inhibition

Psoriatic arthritis
Psoriatic arthritis
Psoriatic arthritis

Randomized-controlled trials
Randomized-controlled trials
Randomized-controlled trials

135–137

iL-23 Ustekinumab iL-12 and iL-23 inhibition Psoriatic arthritis Randomized-controlled trials 138
OPG Recombinant 

osteoprotegerin
Recombinant osteoprotegerin Juvenile Paget’s disease Case report 139

RANKL Denosumab RANKL inhibition Osteoporosis
Treatment-induced bone loss
Bone metastases
Multiple myeloma
Hypercalcemia of malignancy
Giant cell tumor of the bone
Rheumatoid arthritis
Juvenile Paget’s disease
Paget’s disease of bone

Randomized-controlled trials
Randomized-controlled trials
Randomized-controlled trials
Randomized-controlled trials
Randomized-controlled trials
Randomized-controlled trials
Randomized-controlled trials
Case report
Case report

48, 140–143

TNF-α etanercept

Infliximab

Adalimumab

Golimumab

Certolizumab

TNF inhibitor (decoy 
receptor)

 TNF-α inhibition

TNF-α inhibition

TNF-α inhibition

TNF-α inhibition

Rheumatoid arthritis
Psoriatic arthritis
Ankylosing spondylitis 
Juvenile idiopathic arthritis
Rheumatoid arthritis
Psoriatic arthritis
Ankylosing spondylitis 
Behçet’s disease
Rheumatoid arthritis
Psoriatic arthritis
Ankylosing spondylitis 
Juvenile idiopathic arthritis
Rheumatoid arthritis
Psoriatic arthritis
Ankylosing spondylitis 
Rheumatoid arthritis
Psoriatic arthritis
Ankylosing spondylitis 

Randomized-controlled trials
Randomized-controlled trials
Randomized-controlled trials
Randomized-controlled trials
Randomized-controlled trials
Randomized-controlled trials
Randomized-controlled trials
Case reports
Randomized-controlled trials
Randomized-controlled trials
Randomized-controlled trials
Randomized-controlled trials
Randomized-controlled trials
Randomized-controlled trials
Randomized-controlled trials
Randomized-controlled trials
Randomized-controlled trials
Randomized-controlled trials

144–148

Abbreviations: IL, Interleukins; NOMID, Neonatal-onset multisystem inflammatory disease; CAPS, Cryopyrin-associated autoinflammatory syndrome; OPG, osteoprotegerin; 
RANKL, Receptor Activator of Nuclear factor Kappa-B Ligand; TNF-α, Tumor Necrosis Factor-α.

MNVP. Second, dendritic cells may also play a role in the 

pathogenesis of Paget’s disease of bone.45 Immature myeloid 

dendritic cells express CDw150, a signaling lymphocyte 

activation molecule acting as a receptor for measles virus. 

Dendritic cells matured by stimulation of Toll-like recep-

tors 2 and 4 will overexpress CDw150 up to fivefold. Then, 

human dendritic cells may increase the expression of mea-

sles virus, the latter contributing to Paget’s disease of bone 
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(Figure 2).46 In addition, Nagy et al were the first authors to 

show in the literature a remarkable increase in IFN-mediated 

signaling in Paget’s disease of bone. Increasing expression 

of IFN-α, IFN-β, and IFN-γ messenger (m)RNA, STAT-1, 

IFN-γ receptors 1 and 2, and mitogen-activated protein 

kinase were found in monocytes and lymphocytes from 

patients with Paget’s disease in comparison with healthy 

controls, suggesting a possible post-viral reaction in Paget’s 

disease of bone.47

Main osteoimmunological cytokines 
as therapeutic targets
A large majority of the already known osteoimmunological 

cytokines or their receptors have been targeted by monoclonal 

antibodies, humanized or not, and they are now indicated in 

several rheumatic disorders, mostly in rheumatoid arthritis 

(Table 3). The treatment of Paget’s disease of bone mostly 

relies on bisphosphonates to control disease activity, and no 

monoclonal antibodies have been investigated in this indica-

tion yet. But as a potential osteoimmunological disorder, the 

treatment of Paget’s disease of bone may also benefit from 

progresses in targeted therapies. For instance, denosumab, a 

monoclonal antibody inhibiting RANKL, could be relevant 

to treat Paget’s disease of bone as it prevents the osteoclas-

togenesis and promotes the apoptosis of mature osteoclasts. 

A case report has now been published on using denosumab 

in a patient with Paget’s disease of bone and impaired renal 

function, which contraindicated the use of bisphosphonates. 

In this case, the authors reported that denosumab 60 mg sub-

cutaneously administrated at 0 month, 6 months, 9 months, 

12 months, and 15 months has rapidly decreased the activ-

ity of Paget’s disease of bone as measured by biochemical 

markers and bone scan.48 It is worth mentioning that IL-6 was 

found to be elevated in pagetic osteoclasts in bone marrow 

and in peripheral blood of patients with Paget’s disease of 

bone.32 However, some other studies by Neale et al found low 

serum levels of IL-1 beta, IL-6, and TNF-α in 13 patients with 

Paget’s disease of bone in comparison with eight healthy con-

trols.34 As the IL-6 signaling is induced by MVNP, inhibition 

of IL-6 signaling should inhibit the development of pageitc 

osteoclasts.49 Then, considering the high levels of IL-6 that 

usually characterize Paget’s disease of the bone, inhibiting 

the IL-6 signaling by drugs should also be considered as a 

future therapeutic avenue that is as yet unexplored.50

Conclusion
In conclusion, Paget’s disease of bone should be considered 

as a new addition to the large family of osteoimmunological 

disorders. The cytokine profiles observed in this disease are 

also very similar to those observed in other osteoimmunologi-

cal disorders that should probably be classified accordingly. 

The treatment of Paget’s disease of bone may also benefit 

from progresses in osteoimmunology-targeted therapies, in 

particular, RANKL and IL-6 signaling inhibition.
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