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Abstract: Excessive loss of functional pancreatic β-cell mass, mainly due to apoptosis, is a 

major factor in the development of hyperglycemia in both type 1 and type 2 diabetes (T1D and 

T2D). In T1D, β-cells are destroyed by immunological mechanisms. In T2D, while metabolic 

factors are known to contribute to β-cell failure and subsequent apoptosis, mounting evidence 

suggests that islet inflammation also plays an important role in the loss of β-cell mass. Therefore, 

it is of great importance for clinical intervention to develop new therapies. γ-Aminobutyric acid 

(GABA), a major neurotransmitter, is also produced by islet β-cells, where it functions as an 

important intraislet transmitter in regulating islet-cell secretion and function. Importantly, recent 

studies performed in rodents, including in vivo studies of xenotransplanted human islets, reveal 

that GABA exerts β-cell regenerative effects. Moreover, it protects β-cells against apoptosis 

induced by cytokines, drugs, and other stresses, and has anti-inflammatory and immunoregula-

tory activities. It ameliorates the manifestations of diabetes in preclinical models, suggesting 

potential applications for the treatment of diabetic patients. This review outlines the actions 

of GABA relevant to β-cell regeneration, including its signaling mechanisms and potential 

interactions with other mediators. These studies increase our understanding of the regenera-

tive processes of pancreatic β-cells, and help pave the way for the development of regenerative 

medicine for diabetes.

Keywords: β-cell, proliferation, apoptosis, GABA, ion channel, insulin, glucagon, inflamma-

tion, diabetes

Introduction
γ-Aminobutyric acid (GABA) was initially identified as a major inhibitory neu-

rotransmitter in the brain by Roberts and Frankel in 1950.1 The biological functions 

of GABA are mediated by activation of the GABA receptors. There are two basic 

types, ie, type A and type B receptors (GABA
A
R and GABA

B
R, respectively).2 In 

the adult brain GABA
A
R is the most prevalent receptor, and upon binding GABA, it 

exerts an inhibitory effect manifested by hyperpolarization of the cell membrane.2 In 

sharp contrast, in the developing brain GABA has a depolarizing effect, acting as the 

principal excitatory transmitter and exerting trophic effects, including cell prolifera-

tion and dendritic maturation.2–4

In addition to neurons, some nonneuronal cells, such as pancreatic islet cells, are found 

to produce GABA in large quantities.5–10 In α-cells, GABA induces membrane hyper-

polarization and suppresses glucagon secretion,11–12 whereas in islet β-cells it induces 

membrane depolarization and increases insulin secretion.13–15 Moreover, GABA has 

multiple beneficial effects on β-cells, which include the stimulation of cell proliferation 
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and antiapoptotic activities,13–16 making it an attractive agent 

for diabetes treatment. Importantly, it prevents insulitis to a 

remarkable degree in preclinical models,13–16 suggesting appli-

cations in the prevention of this disease, as well as treatment 

particularly in the context of clinical islet transplantation.

GABA
GABA biology
GABA is the predominant inhibitory neurotransmitter in the 

central nervous system (CNS). It is located in about 30% of 

cerebral neurons, and affects almost all neuronal activities.17 

In the neuron, GABA is synthesized in the cytosol from its 

precursor glutamate by glutamate decarboxylase (GAD), 

and then transported into the synaptic vesicles against a 

proton electrochemical gradient.18 Exocytosis of synaptic 

vesicles is triggered when the voltage-gated calcium chan-

nels (VGCCs) open, resulting in a transient rise in cytosolic 

calcium. GABA is released into the synaptic space, and exerts 

its effect through binding to corresponding receptors.18 The 

effect of GABA is terminated rapidly after it is removed from 

the synaptic space by the actions of four types of plasma 

membrane GABA cotransporters (GAT1–4) located in the 

presynaptic terminal and in the glial cells.19

GABA is also present in peripheral organs, such as the 

testes, gastrointestinal tract, ovaries, placenta, uterus, and 

adrenal medulla, as well as the pancreas, where its concen-

tration is the highest and comparable to that in the CNS.8,17 

In accord with this, high levels of GAD have been detected 

in the islets of Langerhans.20 Moreover, it has been reported 

that both pancreatic α- and β-cells express a vesicular GABA 

transporter, which transports GABA into the intracellular 

vesicles for packaging before it is released, and GAT3, 

which mediates cellular uptake of GABA.21 The abundance 

of GABA and the presence of molecular machinery for 

GABA synthesis and release suggest an important role in 

pancreatic physiology.

GABA receptors
GABA

A
Rs are heteropentamers of different subunits that 

form fast-acting chloride channels.22 There are 19 known 

GABA
A
R subunits: α

1–6
, β

1–3
, γ

1–3
, δ, ε, θ, π, and ρ

1–3
.22–24 

GABA
A
Rs with different subunit combinations possess dif-

ferent pharmacological properties. In the CNS, a functional 

GABA
A
R is mostly found in a configuration containing two 

α-subunits, two β-subunits, and one γ-subunit.25,26 Many 

of these subunits are found in islets or β-cell lines, and it 

appears that the αβγ configuration also represents a functional 

GABA
A
R in the islet cells.

GABA
B
Rs are composed of two invariable subunits: B

1
 

and B
2
.27 This slow-acting receptor is linked to K+ channels. 

Activation of GABA
B
R stimulates the opening of K+ chan-

nels, leading to hyperpolarization of the membrane potential 

and a reduction in the activity of adenylyl cyclase.28 This 

prevents the opening of sodium channels and the VGCC to 

convey inhibitory effects.29,30

In the adult brain, GABA exerts inhibitory effects that are 

primarily due to activation of the GABA
A
R Cl– ion channel, 

which leads to Cl– influx and membrane hyperpolarization.2,31 

However, during brain development, GABA induces depolar-

izing effects, acting as the principal excitatory transmitter.3,4,32 

This is because immature neurons have a higher intracel-

lular Cl– concentration, and activation of GABA
A
R initiates 

an efflux of Cl–, leading to membrane depolarization and 

excitatory actions. GABA-induced depolarizing effects 

results in Ca2+ influx via VGCCs, and modulates a variety 

of Ca2+-dependent cellular processes, such as proliferation 

and differentiation, which are important in the formation of 

synapses and activity in the neuronal networks.

The shift from depolarizing to hyperpolarizing effects of 

GABA is associated with the onset of K+–Cl− cotransporter -2 

(KCC2) expression.32 The neuron-specific KCC2 is respon-

sible for establishing the Cl− gradient in neurons through the 

maintenance of low intracellular Cl− concentrations.32 In the 

islets, a functional KCC2 is found in the α-cells, but not in 

the β-cells,33 providing a molecular mechanism underlying 

the opposite actions of GABA in the islet β- and α-cells.

GABA and diabetes
GABA release in the endocrine system
A screen of selected peripheral organs of rats revealed 

that GABA was present at the highest concentration in the 

pancreas.8 Indeed, it has been reported that islet GABA 

content and release are increased in response to increasing 

extracellular l-glutamine concentration; when l-glutamine 

is at a physiological concentration (0.5 mM), the content 

of GABA reaches a maximum that remains stable at 5 

and 10 mM. This suggests that GABA synthesis is always 

saturated under normal circumstances.34 GABA is further 

metabolized in the mitochondria through the GABA-shunt 

pathway, which may play a role in insulin secretion.20,35

The basal release of GABA from the β-cells is relatively 

constant,6,12,36 but it is modulated depending on the metabolic 

state of these cells.37 GABA is localized in synaptic-like 

microvesicles,6 and partially localized to large dense-core 

vesicles containing insulin.21 Therefore, β-cells secrete GABA 

by both a glucose-dependent (exocytosis of insulin-containing 
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granules) and a glucose-independent mechanism.38 It appears 

that GABA is part of the fine-tuning machinery that is critical 

in maintaining islet-cell glucose competence (Figure 1).

Signaling mechanisms of GABA action
α-Cells
The signaling pathway is not fully elucidated. In neurons, 

GABA evokes Cl– currents that alter resting membrane 

potential and intracellular Ca2+ concentration.39–41 In this 

context, Ca2+ often acts as an important messenger initiating 

intracellular downstream signaling. During neuronal devel-

opment, GABA
A
R-mediated depolarization and Ca2+ influx 

via VGCCs can activate the PI3K/PKC signaling pathway.42 

Activation of these protein kinases can phosphorylate 

GABA
A
Rs and induce receptor-trafficking events.40,43–45

This is also the case with α-cells.11 In response to increas-

ing glucose levels, insulin released from β-cells activates the 

insulin receptor present on α-cells. Subsequent activation 

of Akt leads to phosphorylation of β-subunits of GABA
A
R 

that causes rapid translocation of the receptor to the plasma 

membrane. Although GABA is constantly released, the 

efficacy of the receptor-mediated inhibitory currents (Cl–) 

and membrane hyperpolarization are enhanced, due to the 

increased GABA
A
R numbers at the cell surface. In turn, 

membrane hyperpolarization shuts down the VGCC and 

inhibits α-cell exocytosis and glucagon release.11 An impaired 

insulin/Akt/GABA
A
R/glucagon secretory pathway in the islet 

might be an underlying mechanism for unsuppressed gluca-

gon secretion, despite hyperglycemia, in diabetic subjects.

β-Cells
Signaling differs sharply in β-cells, where GABA induces 

membrane depolarization.14,46,47 In isolated rodent and 

human islets, GABA was shown to stimulate Akt activation, 

promoting β-cell proliferation and survival in a GABA
A
R 

antagonist- and/or Ca2+ channel blocker-sensitive fashion.13–14 

This suggests that the GABA
A
R-mediated Ca2+-dependent 

PI3K/Akt pathway is a major mediator in conveying the 

trophic effects of GABA on β-cells.

GABA
B
R is a G-protein-coupled receptor that initi-

ates cyclic adenosine monophosphate signaling and 

Ca2+-dependent signaling. Previous studies demonstrated that 

in neurons GABA
A
R activation induced VGCC-dependent 

extracellular Ca2+ influx and Ca2+ release from intracel-

lular stores, whereas GABA
B
R evoked intracellular Ca2+ 

only.48 This is consistent with our observation that GABA-

mediated elevation of intracellular Ca2+ in human β-cells 

was blocked by the type A receptor antagonist (picrotoxin), 

while it was only partially attenuated by the type B receptor 

antagonist (saclofen).13 Notably, our studies suggested that 

GABA stimulated CREB activation in a cyclic adenosine 

monophosphate/PKA-dependent signaling pathway medi-

ated by GABA
B
R.13 CREB plays a key role in regulating 

β-cell mass homeostasis, as mice lacking CREB in their 

β-cells have diminished expression of IRS249 and display 

excessive β-cell loss.50 CREB is also a target gene of Akt 

signaling.51 Interestingly, our study showed that the GABA-

GABA
B
R-induced CREB activation was independent of the 

PI3K/Akt pathway, because upon inhibition of PI3K/Akt, 

β-cell

α-cellIR

Hyperpolarization

GABAAR
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Glucagon

Insulin

Depolarization
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Ca2+
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G
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Figure 1 Hypothetical model of intraislet cell interaction.
Notes:  Paracrine hyperpolarizing effects of GABA.  Autocrine depolarizing effects of GABA.  GABA–GABAAR-Ca2+-PI3K/Akt pathway.  Autocrine insulin action. 
 Intraislet glucagon action. There is an expanded discussion of these events in other reviews.91,92

Abbreviations: GABAAR, γ-aminobutyric acid type A receptor; IR, insulin receptor; VGCC, voltage-gated calcium channel; Gcgr, glucagon receptor; PI3K, phosphatidylinositol 
3 kinase; Akt, protein kinase B.
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activation of CREB was not suppressed, whereas blockade 

of PKA-dependent CREB did not affect GABA-stimulated 

Akt activation.13 This is of relevance, and provides a plausible 

mechanism by which GABA may be bypassing Akt activation 

in subjects with insulin resistance. 

Studies examining the role of GABA
B
R in modulating 

insulin secretion have shown variable results. It has been 

reported that in the presence of glucose at high concentra-

tion (over 10 mmol/L) GABA
B
R displays an inhibitory effect 

on insulin secretion,52,53 whereas in the presence of lower 

glucose levels it has no effect.53 In vivo studies suggest an 

important role for GABA
B
R in regulating β-cell function. For 

instance, the treatment of nonobese diabetic (NOD) mice with 

a GABA
B
R agonist delayed onset of type 1 diabetes (T1D),54 

and other studies showed GABA
B
R-dependent improve-

ment of β-cell survival and proliferation.13,16,55 In apparent 

contradiction, GABA
B1

R-deficient mice (global knockout of 

B
1
 subunit) displayed improved glucose tolerance, increased 

pancreatic insulin content, and elevated glucose-stimulated 

insulin secretion, associated with enlarged islets and insulin 

resistance.56,57 The GABA
B
R agonist baclofen inhibited 

glucose-stimulated insulin secretion in wild-type but not 

GABA
B
R-knockout islets.57 At this point, it appears that 

this receptor can have inhibitory or stimulatory effects on 

β-cell functions under various circumstances, and this merits 

further investigation.

It is interesting to note that in addition to GABA-

receptor signaling, GABA catabolism also contributes to 

insulin secretion. GABA is catabolized in the GABA-shunt 

pathway after its transamination with 2-oxoglutarate by 

GABA transaminase into succinic semialdehyde and glu-

tamate.58 It is reported that both α-ketoisocaproic acid58,59 

and glucose35 promote GABA metabolism and stimulate 

insulin secretion in a GABA-shunt-dependent fashion. 

This mechanism appears to be important, especially in 

rendering β-cells more competent in the face of a restric-

tion in the metabolic flow of the citric acid cycle set by low 

2-oxoglutarate dehydrogenase activity in response to high 

glucose stimulation.35

Effects of GABA on the immune system 
and inflammatory pathways in diabetes
The effects of GABA on the immune system are generally 

inhibitory. In humans, GABA
A
R is expressed by T cells 

(CD4+ and CD8+), B cells, and some mononuclear cells, and 

GABA
A
R agonists suppress lymphocyte proliferation.60–62 In 

mice, Tian et al63 identified GABA
A
R on T cells and showed 

that GABA (0.1–3 mM) partially inhibited (∼50%) T-cell 

responses. These effects were duplicated by a GABA
A
R 

agonist (muscimol), but not by a GABA
B
R agonist (baclofen), 

indicating that only GABA
A
R is involved. In a subsequent 

study, Tian et al64 reported that GABA protected NOD mice 

against T1D, and reduced the response of their T-helper (Th)-1 

cells to islet antigens.

Although T1D is a T-cell-dependent autoimmune 

disease, inflammatory mechanisms that are not directly 

T-cell-mediated also appear to play a major role in the 

pathogenesis.65 This is particularly apparent in multiple low-

dose streptozotocin-induced diabetes (MDSD).66 Notably, 

anti-inflammatory treatment is beneficial in both MDSD 

and autoimmune NOD mice.65,67 In agreement with this, 

we found that GABA therapy lowered the levels of inflam-

matory cytokines (eg, IL-1β, TNFα, IFNγ, and IL-12) in 

the serum of MDSD mice.14 In vitro, GABA also reduced 

the secretion of these cytokines. In contrast, it increased 

TGFβ
1
 production, which is a key regulatory (suppressive) 

cytokine.14

It is clear that GABA acts on T cells of both effector and 

regulatory function. It suppresses the action of Th1 cells,14,64 

as well as cytotoxic T lymphocytes, as demonstrated in a 

T-cell receptor (TCR) transgenic mouse model of T1D.14 

Importantly, we found that GABA increases regulatory 

T cells (T
regs

) of the Foxp3+/neuropilin-1+ phenotype,14 cur-

rently denoted thymus-derived T
regs

. Tian et  al68 reported 

similar findings in a mouse type 2 diabetes (T2D) model. We 

hypothesize that this contributes to the immunosuppressive 

effects of GABA, and the underlying molecular mechanisms 

warrant further investigation. Other investigators have also 

shown immunosuppressive effects. For instance, Bjurstöm 

et  al69 reported that low levels of GABA (as low as 100 

nM) suppressed CD4+ encephalitogenic T cells that causes 

experimental autoimmune encephalitis. These levels are 

similar to the concentration of GABA in normal plasma. 

Bhat et al70 also reported protective effects in autoimmune 

encephalitis, but they concluded that GABA acted by sup-

pressing macrophages.

We found that the immunosuppressive effects of GABA 

first observed in mice are also present in humans.15 Indeed, 

it suppressed CD3-stimulated human T-cell proliferation in 

a GABA
A
R-dependent manner. Until recently, the immu-

nosuppressive mechanisms were unclear, but we observed 

that GABA blocks calcium influx in human T cells. The 

calcium signal is a very early T-cell-activation signal, and its 

blockade is expected to lead to the inhibition of all subsequent 

activation-related events. Moreover, GABA suppressed NFκB 

activation in both human T cells and islet cells.15 This is a key 
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observation, because NFκB is a critically important pathway 

involved in both innate and adaptive immunity. Indeed, its 

activation appears closely linked to β-cell apoptosis initiated 

by inflammatory cytokines and other cell injuries.

However, it is unclear how GABA mediates these 

effects. Interestingly, we observed that GABA-induced 

effects in β-cells are associated with elevated activity 

of SIRT1, suggesting the involvement of this enzyme.71 

SIRT1 is an NAD+-dependent deacetylase that increases 

insulin secretion, and can block NFκB signaling. We found 

that the incubation of INS-1 insulinoma cells with GABA 

augmented SIRT1 expression, as did agonists acting on 

either GABA
A
R or GABA

B
R. In addition, NAD+, which is 

essential for SIRT1 enzymatic action, was increased. GABA 

increased SIRT1 activity, which resulted in deacetylation of 

the p65 component of NFκB. This type deacetylation has 

previously been shown to interfere with the activation of 

NFκB. Of note, GABA stimulated insulin production and 

reduced apoptosis, and these effects were negated by SIRT1 

inhibitors. We investigated whether SIRT1 and NAD+ are 

similarly induced by GABA in human islet cells, and found 

that this was indeed the case. As in INS-1 cells, the protec-

tive effect of GABA against human islet-cell apoptosis 

was SIRT1-dependent. Therefore, it appears that important 

beneficial effects of GABA on β-cells are due to increased 

SIRT1 and NAD+.

Of importance to islet transplantation, we found that 

GABA alleviates the toxic effects of immunosuppressive 

drugs, including rapamycin, tacrolimus (FK506), and myco-

phenolate mofetil.15 These drugs are used to prevent rejection 

of transplanted organs or islets of Langerhans, and have all 

been implicated in impairing β-cell function and survival.72–74 

Interestingly, while GABA reduced the toxicity of rapamycin, 

it collaborated with rapamycin to improve T-cell suppression. 

This suggests that GABA could be combined with other 

immunosuppressive drugs in a manner that protects islet 

cells and improves immunotherapy.

GABA and therapy of diabetes
GABA therapy of diabetes in preclinical 
models
T1D is an autoimmune disease characterized by infiltration 

of the pancreatic islets by T lymphocytes, macrophages, and 

other immune cells, and consequent loss of β-cells.65,75,76 At 

the onset of T1D, the majority of β-cells are destroyed, result-

ing in a severe lack of insulin production.77 In T2D, insulin 

resistance and β-cell failure remain the major pathophysi-

ological defects; however, mounting evidence suggests that 

islet inflammation also plays an important role in the loss 

of functional β-cell mass in T2D. Therefore, therapies of 

T1D and T2D require both suppression of the inflammatory 

process and restoration of islet β-cells.

GABA induces membrane depolarization and Ca2+-

dependent activation of cell-growth and survival pathways 

involving PI3K/Akt.13–14 This is in accord with our findings 

that GABA therapy preserves β-cell mass and prevents 

diabetes in three mouse models of T1D, ie, in the MDSD 

model, wild-type NOD mice, and transgenic TCR-8.3 NOD 

mice. Remarkably, in severely diabetic mice (MDSD model), 

GABA therapy regenerated β-cell mass and completely 

reversed hyperglycemia.14 This was associated with anti-

inflammatory and immunoregulatory events, which also 

appear to contribute to the success of therapy.

Our studies showed that activation of both GABA
A
R and 

GABA
B
R are important in mediating GABA trophic effects 

to promote β-cell replication and survival, in both rodents 

and humans,13 which is consistent with a study by Tian et al.16 

To analyze whether GABA could exert therapeutic effects 

on human islet cells, we used a suboptimal (marginal mass) 

islet-xenotransplantation model. This suboptimal mass of 

human islets was transplanted into immunodeficient NOD-

severe combined immunodeficiency-γ mice after induction of 

diabetes with streptozotocin.13 This in vivo approach revealed 

that oral GABA treatment increased graft-cell proliferation 

and decreased apoptosis, leading to a significantly enhanced 

β-cell mass. Furthermore, GABA lowered blood glucose 

levels and ameliorated glucose tolerance. Our results suggest 

that the Ca2+-dependent PI3K/Akt and CREB/IRS2 are two 

synergistic and independent signaling pathways that mediate 

the trophic effect of GABA in human islet cells.13

In addition, GABA appears to be beneficial to T2D. 

Tian et  al68 demonstrated that oral treatment with GABA 

improves glucose tolerance and insulin sensitivity in high-

fat diet-fed mice. They concluded that this was due to the 

inhibition of obesity-related inflammation and upregulation 

of T
reg

 responses.

GAD as a target antigen in T1D
GAD is colocalized with GABA6 in islets of rodents and 

humans, and the predominant isoform (GAD
65

 or GAD
67

) 

varies between species.78 GAD
65

 has long been identified as 

one of the major target antigens recognized by self-reactive 

T cells in T1D.79 We hypothesize that autoimmunity against 

GAD in the islet depletes this enzyme and hence reduces 

GABA levels, and this promotes the progression of this dis-

ease. Indeed, immunomodulation with GAD
65

 vaccination has 
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been extensively investigated for the prevention or treatment 

of T1D.79 In 1994, the Swedish pharmaceutical company 

Diamyd Medical licensed the rights to GAD
65

 as the active 

substance in the antigen-based diabetes therapy Diamyd®. 

Unfortunately, despite promising results from Phase I and 

II trials,80–82 the Phase III study failed to produce a thera-

peutic effect.83 These results are disappointing, but a recent 

publication suggests that the antigen therapy in combination 

with other agents, such as GABA, may hold promise for 

intervention in T1D.84

Combined islet-antigen and GABA 
therapy
Antigen therapy of T1D by administration of insulin, GAD, 

peptides, or other islet antigens with various adjuvant for-

mulations or delivery methods has proven effective in mice, 

but thus far clinical trials have shown only limited or no 

benefits.79,85 However, preclinical studies of combined antigen 

vaccination and GABA therapy suggest a possible avenue for 

improvement. Recently, Tian et al84 reported that combined 

therapy with proinsulin/alum and GABA synergizes to restore 

normoglycemia in newly diabetic NOD mice, sometimes with 

permanent remission of the disease. In this study, proinsulin/

alum alone failed to correct hyperglycemia, whereas GABA 

monotherapy restored normoglycemia for a limited period 

of time. Therefore, combined therapy proved necessary to 

induce remission, and was found to inhibit pathogenic T-cell 

responses and to promote β-cell proliferation.

In another study,86 the combination of oral GABA treat-

ment and immunization with a GAD/alum formulation was 

also found to be effective in a transplantation model. In 

diabetic NOD mice receiving syngeneic pancreas grafts, com-

bined therapy was much more effective than monotherapy in 

prolonging the survival of β-cells.

GABA administration to humans
Studies published as far back as 1960 showed that GABA 

can be administered orally in large amounts to humans 

(several grams/day) without serious adverse effects.87 To 

date, there are at least three reports studying the effects of 

GABA on endocrine pancreatic function in humans. In one 

study, a single oral dose of GABA (5 or 10 g) significantly 

increased plasma insulin and C-peptide levels in 12 healthy 

subjects.88 In other study, 20 mg GABA
B
R agonist baclofen 

was administered orally to ten healthy subjects 1 hour prior 

to glucose challenge and posttreatment test, which resulted 

in significantly increased insulin responses to glucose chal-

lenge and increased basal glucagon levels. However, glucose 

tolerance was not found to be changed after baclofen treat-

ment.89 In another study, it was shown that intravenous admin-

istration of GABA (2–4 mg) significantly reduced blood 

glucose levels in the majority of diabetic individuals, but 

not in the nondiabetic subjects.90 These human studies were 

quite limited in scope, but nevertheless suggest that GABA 

plays a role in regulating endocrine pancreatic function. We 

are conducting clinical trials to study the pharmacokinetics 

and pharmacodynamics of GABA in healthy subjects (http://

clinicaltrials.gov/show/NCT01917760), as well as its efficacy 

in patients with newly diagnosed T1D (http://clinicaltrials.

gov/show/NCT01781884). Our Phase I GABA study in 

health volunteers showed that GABA orally administered 

was rapidly absorbed in the gastrointestinal tract and had a 

favorable safety profile.

Conclusion
In the past five decades, the function of GABA in the CNS has 

been well documented. However, the presence of a GABAer-

gic system within the pancreas as a potential target for treating 

diabetes mellitus emerged only recently. In α-cells, GABA 

induces membrane hyperpolarization and inhibits glucagon 

secretion, and this involves an insulin-mediated GABA
A
R-

trafficking mechanism. In β-cells, GABA induces membrane 

depolarization and enhances insulin secretion. GABA also 

has beneficial effects on β-cell survival and regeneration, 

which results in enlarged β-cell mass. Furthermore, GABA 

suppresses insulitis and systemic inflammatory cytokine 

production. All these data hold promise for GABA therapy 

in regulating islet cell function, glucose homeostasis, and 

autoimmunity. Of note, similarly to rodent studies, GABA 

shows trophic effects on human islets. This is important, 

because while a number of agents exert protective and pro-

liferative effects on rodent islet cells, very few show similar 

activities on human islet cells. Orally administered GABA 

is safe for humans, and acts on peripheral GABA receptors 

but does not affect CNS functions, since it does not cross the 

blood–brain barrier, and thus it represents a promising new 

therapeutic agent for diabetes.
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