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Abstract: Cystic fibrosis (CF) results from the loss or reduction in function of the CFTR (cystic 

fibrosis transmembrane conductance regulatory protein) chloride channel. The third most com-

mon CFTR mutation seen clinically is R117H. Genistein, a naturally occurring phytoestrogen, is 

known to stimulate CFTR function in vitro. We aimed to determine whether route of administra-

tion of genistein could mediate differential effects in R117H male and female CF mice. Mice 

were fed (4 weeks) or injected subcutaneously (1 week) with the following: genistein 600 mg/kg 

diet (600Gd); genistein-free diet (0Gd); genistein injection 600 mg/kg body weight (600Gi); 

dimethyl sulfoxide control (0Gi). In male R117H mice fed 600Gd, basal short circuit current (I
sc
) 

was unchanged. In 600Gd-fed female mice, there was a subgroup that demonstrated a signifi-

cant increase in basal I
sc
 (53.14±7.92 µA/cm2, n=6, P,0.05) and a subgroup of nonresponders 

(12.05±6.59 µA/cm2, n=4), compared to 0Gd controls (29.3±6.5 µA/cm2, n=7). In R117H mice 

injected with 600Gi, basal I
sc
 was unchanged in both male and female mice compared to 0Gi 

controls. I
sc
 was measured in response to the following: the adenylate cyclase activator forskolin 

(10 µM, bilateral), bumetanide (100 µM, basolateral) to indicate the Cl- secretory component, 

and acetazolamide (100 µM, bilateral) to indicate the HCO
3
- secretory component; however, 

there was no effect of genistein (diet or injection) on any of these parameters. Jejunal morphol-

ogy (ie, villi length, number of goblet cells per villus, crypt depth, and number of goblet cells 

per crypt) in R117H mice suggested no genistein-mediated difference among the groups. Serum 

levels of genistein were significantly elevated, compared to respective controls, by either 600Gd 

(equally elevated in males and females) or 600Gi (elevated more in females versus males). These 

data suggest a sex-dependent increase in basal I
sc
 of R117H mice and that the increase is also 

specific for route of administration.
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Introduction
Genistein is a naturally occurring isoflavonic phytoestrogen, found in high concentra-

tions in soy products.1 We and others have demonstrated genistein’s ability to stimulate 

the cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl-) channel 

in isolated cells,2–5 and intact isolated tissues.6–10 Both wild-type (Wt) CFTR5 and the 

most common cystic fibrosis (CF) disease-associated mutation (∆F508-CFTR) are 

known to be stimulated by genistein.11,12 Genistein increases the open probability of 

∆F508-CFTR to levels analogous to those seen with Wt CFTR,11,12 thus indicating a 

potential therapeutic benefit of genistein designed for CF treatment.

The effectiveness of genistein in improving the function of ∆F508-CFTR in in 

vitro cell systems, with half-maximal effective concentration (EC
50

) of 5  µM, is 
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within the physiological range achievable via diet.2,13 Indeed, 

micromolar concentrations of genistein can be measured 

in serum.14 Mice consuming 750  mg/L genistein have 

been shown to generate plasma genistein concentrations of 

∼2 µM,15 and moreover, we have previously shown that a diet 

containing genistein 600 mg/kg food (600Gd) for 4 weeks 

yields serum concentrations of ∼4–8 µM in Wt female and 

male mice,8 yielding levels that are comparable to a soy milk 

diet in humans.16

Use of genistein as a pharmacological tool to manipulate 

tissue function has been demonstrated in several systems: 

1) Noël et  al17 have demonstrated that subcutaneous (sc) 

injection of 50 µM genistein (or MPB-07), in the presence 

of isoprenaline (10 µM), induced salivary secretion in Cftr+/+ 

mice; 2) acute bilateral application of genistein increases 

short circuit current (I
sc
), ie, increases anion secretion, in Wt 

murine distal colon;18 3) acute application of genistein has 

been shown to increase current and conductance in depo-

larized colonic mucosa of normal and CF mice.19 We have 

previously shown that exposure to dietary genistein (600Gd, 

for 4 weeks) stimulated basal Cl- secretion across freshly 

isolated segments of jejunum from Wt female mice, but not 

in male mice.8 More recently, we have demonstrated that 

daily sc injections of genistein (600  mg/kg body weight, 

600Gi) for periods of 1–2 weeks, elicit stimulation of basal 

Cl- secretion across freshly isolated segments of jejunum 

from Wt female and male mice.20,21

The clinically relevant CFTR missense mutation, R117H 

(replacement of arginine by histidine at residue 117), has a 

wide range of phenotypic variability and is included in many 

mutation panels for newborn screening. This membrane-

spanning mutation reaches the plasma membrane – ie, 

the protein is correctly processed – but does not function 

appropriately, ie, the protein exhibits defective conduction 

(class IV) and gating (class III) abnormalities.22,23 These 

R117H mice have been shown to have beneficial responses to 

a synthetic triterpenoid, CDDO (2-cyano-3,12-dioxooleana-

1,9(11)-dien-28-oic acid), as indicated by signif icant 

improvements in markers for airway disease.24 Interestingly, 

relatively recent evidence suggest that the R117H mutation 

has little impact on Cl- secretion from freshly isolated human 

rectal biopsies nor on nasal Cl- secretion.25

Additional evidence suggests that beneficial effects of 

genistein on CFTR-mediated Cl- secretion may be a result 

of 1) either potentiation of the CFTR Cl- channel by binding 

to CFTR and the stabilization of the CFTR channel into its 

open state13 or 2) the promotion of CFTR retention in the 

plasma membrane.26 To date, there have been no studies to 

assess the effect of dietary genistein or daily sc genistein 

injections on intestinal function in R117H CF mice. In this 

study, we have compared the effects of 4 week consumption 

of a genistein-enriched diet (600Gd) or a genistein-free diet 

(0Gd) with the effects of 1 week treatment consisting of daily 

sc injections of genistein (600Gi) or vehicle control (0 mg/kg 

body weight/day, 0Gi) on small intestinal (jejunal) epithelial 

anion secretion (transepithelial short circuit current, I
sc
, using 

freshly excised intestinal segments) in R117H female and 

male mice. In addition, we examine the effect of genistein on 

intestinal morphology. Based on our previous work describ-

ing genistein’s action on Wt jejunal Cl- secretion, we predict 

that genistein would increase intestinal I
sc
 in R117H male 

and female mice to likely intermediate levels to those that 

we have previously noted in Wt female mice fed the same 

genistein-containing diet8 or the levels in Wt-male and Wt 

female mice injected with the same genistein dose.20

Materials and methods
Mice
Male and female mice carrying the R117H CFTR mutation 

were generously provided by the CF Mouse Models Core at 

Case Western Reserve University (Cleveland, OH, USA) and 

were housed in an animal care facility with 12:12-hour light–

dark cycle, two mice per cage, until used. Mice consumed 

food and water ad libitum. Body weight was measured weekly 

during the studies and general health was monitored daily. 

Mice were randomly assigned to either genistein-containing 

diet (600  mg genistein/kg food, 600Gd) or genistein-free 

(0 mg genistein/kg food, 0Gd) diet and were fed either of 

these two diets for 4 weeks. Mice of a separate subgroup 

were randomly assigned to either genistein-injected (600 mg 

genistein/kg body weight, 600Gi) or dimethyl sulfoxide 

(DMSO) control-injected group (0Gi) for a period of 1 week. 

Mice were asphyxiated in an atmosphere of 100% CO
2
, 

followed by surgical thoracotomy to induce pneumothorax. 

Animal care and treatments were conducted in accordance 

with established guidelines, and all protocols were approved 

by the Midwestern University Institutional Animal Care and 

Use Committee.

Diets
Casein-based diets were purchased from Dyets Inc. 

(Bethlehem, PA, USA) and contained either 600Gd or 0Gd.8 

Importantly, diets contained equivalent amounts of protein 

(20.3 g), carbohydrate (66 g), and fat (5 g), with an estimated 

energy content of 16.28 kJ/g. Diets were formulated as a 

powder and mice were allowed to free feed. All mice assigned 
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to the injection studies were fed genistein-free (0Gd) diet. 

Diet composition is described previously in the study by 

Al-Nakkash et al.8

Bioelectric measurement  
of intestinal secretion
Via an abdominal incision, ∼5  cm of middle portion of 

jejunum was removed and placed in ice-cold oxygen-

ated Krebs bicarbonate ringer (KBR) buffer. Each mouse 

yielded three to four jejunum pieces, isolated as described 

previously.18,27–29 Jejunum sections mounted in the Ussing 

chambers had 0.3 cm2 exposed surface area. Transepithelial 

short circuit current (I
sc
, reported as µA/cm2) was measured 

via an automatic voltage clamp (VCC-600; Physiologic 

Instruments, San Diego, CA, USA) and the experimental 

conditions and methods were as previously described.8,20,21,30 

Intestinal tissue pieces were constantly maintained in 1 µM 

indomethacin (minimizing tissue exposure to endogenously 

generated prostanoids due to manipulation and mount-

ing of the tissue).31 Glucose (10 mM) was added to the 

serosal KBR bath and mannitol (10 mM) was substituted 

for glucose in the mucosal KBR bath to avoid an inward 

current due to Na+-coupled glucose transport.30 Once 

mounted, the serosal side was exposed to tetrodotoxin 

(0.1 µM), minimizing variations in intrinsic intestine neural 

tone.32 Intrinsic neural tone limits the absorptive capacity 

of the murine mucosa and neural block is denoted by a 

decrease in I
sc

.

Experimental protocols
Tissues were exposed to KBR buffer for 20  minutes and 

steady-state basal I
sc

 was measured at that time. Cyclic 

adenosine monophosphate-dependent anion secretion was 

assessed by bilateral application of 10  µM forskolin (at 

20 minutes) and steady-state forskolin response was measured 

at 50 minutes. Addition of bumetanide (100 µM, serosal), a 

Na+/K+/2Cl- cotransporter, evaluates the Cl- secretory compo-

nent. Addition of acetazolamide (100 µM bilateral) assesses 

the secretory component represented by HCO
3
-. At the end 

of each experiment, glucose (10 mM, mucosal) was added 

to stimulate Na+-coupled glucose transport to assess tissue 

viability (denoted by .10% increase in I
sc
). In a subgroup 

of mice, basal I
sc
 was determined, and at time 20 minutes, 

100  µM of phosphodiesterase inhibitor was added (bilat-

eral), and at time 40 minutes, 200 µM was added. Tissues 

that failed to respond to glucose within this parameter were 

discarded. Experiments were performed in the presence of 

KBR buffer (Cl-/HCO
3

- present), containing the following 

(in mM): 115 NaCl, 25 NaHCO
3
, 5 KCl, 1.2 MgCl

2
, and 1.2 

CaCl
2
, pH 7.4.

Histology and morphology
Freshly isolated pieces of jejunum were embedded and flash 

frozen in Optimal Cutting Temperature compound (Tissue-

Tek OCT compound; Sakura Finetek USA, Torrance, CA, 

USA). Frozen sliced sections (8–10  µm) of murine jeju-

num were stained with a standard hematoxylin and eosin 

protocol, prior to performing the morphometric analyses 

to evaluate basic histological measurements. In brief, sec-

tions were exposed to the following wash protocol: hema-

toxylin 30 seconds, water rinse 10 seconds, Scott’s solution 

5 seconds, water rinse 10 seconds, 95% ethanol 5 seconds, 

eosin 15  seconds, rinses with 95% ethanol 10  seconds, 

100% ethanol rinse 10 seconds, followed by treatment with 

Histo-Clear for 15 seconds. Crypt depth, villi length, and 

numbers of goblet cells per crypt and villus were measured 

using AxioVision LE (Carl Zeiss, freeware), from images of 

hematoxylin-and-eosin-stained jejunum sections. All images 

were taken at ×10 magnification. Averages of measurements 

were taken from six separate slices per frozen section of 

jejunum (ie, per mouse), with data being presented as the 

average of seven mice per group.

Serum genistein
At the time the mice were euthanized, blood samples were 

obtained by cardiac puncture, and the serum was separated 

by centrifugation and then stored at -80°C. Serum samples 

were analyzed for genistein level by high-performance liquid 

chromatography using a modification of the methodology 

of Franke et al.33 Values represent the average of duplicate 

serum samples.

Chemicals
Forskolin was purchased from Calbiochem (La Jolla, CA, 

USA) and stored as a 10 mM stock in DMSO at -20°C. 

Genistein was purchased from LC Laboratories (Woburn, 

MA, USA) and acetazolamide was purchased from MP 

Biomedicals (Solon, OH, USA). All other chemicals were 

obtained from Sigma-Aldrich (St Louis, MO, USA).

Statistics
Data are expressed as mean ± standard error of mean (SEM). 

Numbers in parentheses are numbers of tissues used from 

separate individual mice. One-way analysis of variance 

with Newman–Keuls multiple comparison test or t-tests 

was performed using GraphPad (GraphPad Software, Inc., 
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La Jolla, CA, USA), and P,0.05 was considered statistically 

significant.

Results
Mouse weights and serum genistein
During the 4 week diet and 1 week injection studies, mouse 

weights were monitored (Table 1). As shown in Table 1, 

significant increases in weight (from start weight) were 

observed in females fed 0Gd and in a subgroup of females fed 

600Gd. Interestingly, there was no difference in the final body 

weight of females fed 600Gd that concomitantly exhibited 

an increase in basal I
sc
 (responders) versus those that did not 

have increased basal I
sc
 (nonresponders). Mice in the injection 

study did not gain as much weight as those on the diet studies, 

likely due to the fact that diet mice were fed and maintained 

for additional duration (4 weeks on the diet study versus the 

1 week injection studies).

Serum genistein concentrations are shown in Figure 1. 

Serum genistein levels were significantly elevated by genistein 

treatment in both male and female mice, regardless of route 

of administration (diet or injection). Of note, in both male 

and females alike, diet route of administration yielded 

significantly greater serum genistein levels compared to 

the injected counterparts. Interestingly, there was no dif-

ference in the serum genistein level of those females fed 

600Gd that concomitantly exhibited an increase in basal I
sc
 

(responders: 740.3±271.7 ng/mL, n=3) versus those that did 

not have increased basal I
sc
 (nonresponders: 1094.8±592.1 

ng/mL, n=4).

Ussing chamber bioelectric measurements
Diet study
Basal I

sc
 was significantly increased in a subgroup of female 

mice fed 600Gd for 4 weeks (53.14±7.92 µA/cm2, n=6) com-

pared to those fed 0Gd (29.30±6.47 µA/cm2, n=7, P,0.05; 

Figures 2 and 3A). Interestingly, another subgroup of female 

mice fed 600Gd for 4 weeks did not exhibit an increase in 

basal I
sc
 (12.05±6.59  µA/cm2, n=4; Figure 2). Moreover, 

we found that basal anion secretion in jejuna removed from 

male mice fed 600Gd for 4 weeks (39.20±11.72 µA/cm2, 

n=9) was comparable to those from male mice fed 0Gd 

(34.89±7.67 µA/cm2, n=9; Figure 3A). The effect of bilateral 

application of 10 µM forskolin was determined, and steady-

state forskolin-stimulated I
sc
 was significantly increased only 

in the subgroup of females that had exhibited a significantly 

elevated basal I
sc

 (Figure 3B). Addition of bumetanide 

(100 µM, serosal), to assess the Cl- secretory component, 

only resulted in a significant increase in the percentage inhi-

bition with bumetanide in the subgroup of 600Gd females 

with elevated basal I
sc
 (Figure 3C). There was no effect of 

acetazolamide (100 µM, bilateral) on the HCO
3
- contribution 

toward the I
sc
, in any of the groups (Figure 3D).

Injection study
Basal I

sc
 was unchanged after 1 week of daily genistein 

injections (600Gi), compared to 0Gi controls, for both male 

and female R117H mice (Figure 4A). In R117H mice, in 

either sex with either 600Gi or 0Gi, we found no change in 

I
sc
 following the addition of bilateral application of 10 µM 

forskolin, bumetanide (100 µM, serosal), or acetazolamide 

(100 µM, bilateral) (Figure 4B–D).

Table 1 Effect of genistein on R117H body weights

Start body 
weight (g)

End body  
weight (g)

Delta body 
weight (g)

Males, 0Gd 26.92±1.05 (9) 28.26±1.73 (9) 1.33±0.88 (9)
Males, 600Gd 25.86±1.17 (8) 26.85±1.43 (8) 0.99±0.54 (8)
Females, 0Gd 18.28±0.41 (7) 20.02±0.44 (7)* 1.74±0.34 (7)
Female responders, 
600Gd

20.40±1.49 (6) 22.32±2.03 (6) 1.92±0.94 (6)

Female  
nonresponders,  
600Gd

18.61±0.83 (4) 19.98±0.65 (4)* 1.36±0.25 (4)

Males, 0Gi 19.82±0.47 (5) 20.31±0.32 (5) 0.49±0.32 (5)
Males, 600Gi 20.53±0.99 (5) 20.76±1.14 (5) 0.23±0.22 (5)
Females, 0Gi 18.09±0.71 (5) 16.84±1.21 (5) -1.25±0.93 (5)
Females, 600Gi 16.09±0.51 (5) 16.19±0.66 (5) 0.10±0.73 (5)

Notes: Body weights were measured for both female and male R117H mice assigned 
to one of four groups: fed 600Gd for 4 weeks, fed 0Gd for 4 weeks, injected with 
600Gi for 1 week, or injected with 0Gi for 1 week. Data are expressed as mean ± 
SEM. Numbers in parentheses are numbers of mice per group. *Significant increase 
from start body weight, P,0.05.
Abbreviations: 600Gd, 600 mg genistein/kg diet; 0Gd, genistein-free diet; 600Gi, 
600 mg genistein/kg body weight; 0Gi, dimethyl sulfoxide control; SEM, standard 
error of the mean.
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Role of phosphodiesterase enzymes
To determine the role of phosphodiesterase enzymes on 

basal I
sc
 in R117H male and female mice, we examined the 

effect of IBMX (3-isobutyl-1-methylxanthine, a nonspecific 

phosphodiesterase enzyme inhibitor, bilateral). Despite a 

trend for an increased I
sc
 following addition of IBMX, there 

was no significant effect of either 100 µM or 200 µM IBMX 

on basal I
sc
 in male and female jejuna (Figure 5), likely 

due to the large variability in the responses between mice. 

There was a trend for a greater increase in I
sc
 with IBMX in 

females versus males, but again, large variability nullified 

this potential effect.

Jejunum histology
To determine whether there were genistein-mediated or 

sex-dependent effects on intestinal morphology, histological 

sections of jejunum were stained using hematoxylin and eosin 

and analyzed for wall thickness, villi length, crypt depth, 

and numbers of goblet cells within entire villi and crypts 

using Axiovision software. Data are shown in Table 2, and 

representative hematoxylin-and-eosin-stained histological 

images are shown in Figure 6. Number of goblet cells per 

villus was significantly greater in the female 0Gd group 

compared to their male counterparts (P,0.05), which may 

indicate a greater mucus production in R117H females versus 

males, that were fed the casein-based genistein-free diet. 

There were no other effects of sex or genistein (regardless of 

route of administration) on the parameters measured.

Discussion
We provide here the first evidence that chronic consumption 

of dietary genistein (600Gd, for 4 weeks) increases basal I
sc
 in 

freshly isolated jejunum segments removed from a population 

of female R117H mice, but not in R117H males.

Dietary isoflavones (such as genistein) are found in soy 

and are digested in an average daily diet. Soy-rich diets 

can generate micromolar serum genistein concentrations.34 

Consumption of genistein-containing diets correlates with 

elevated serum levels of genistein: 1 µM serum genistein 

concentrations can be obtained in rats consuming a diet 

of 750 µg genistein/g/day,35 and serum levels of ∼1.5 µM 

or ∼0.5  µM serum genistein in mice have been detected 

after consumption of 1,000 or 500 mg/kg dietary genistein, 

respectively, for 4 weeks.36 Moreover, we have previously 

demonstrated that Wt female and Wt male mice fed 600Gd 

for 4 weeks have serum genistein levels of ∼8 µM and ∼4 µM 

respectively, which correlated with a significant genistein-

mediated increase in basal I
sc
 in females (∼36 µA/cm2), but 

not in males.8 Furthermore, we have recently demonstrated 

that serum genistein levels significantly increased in both 

600Gi-treated females (after 1 week to ∼9 µM) and 600Gi-

treated males (after 2 weeks to ∼4 µM), and this translated 
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into significant genistein-mediated increases in basal I
sc
 

(of ∼85 µA/cm2) in both Wt females and Wt males. Thus, in 

Wt mice, sc injections produced similar potentiative effects 

on basal jejunal I
sc
 in both female and male mice, and, more-

over, these increases in I
sc
 were considerably greater than the 

increases seen via the diet route of administration. This was 

not the case with the R117H mice, and while serum genistein 

levels were substantially greater in 600Gi-treated males and 

females, basal I
sc
 was not modified. We demonstrate here 

that serum genistein levels in R117H males and females 

injected with 600Gi are significantly greater compared to 

the levels found after dietary route of administration, 600Gd. 

Moreover, R117H female mice fed genistein diet have signifi-

cantly greater serum genistein levels (942±319 ng/mL, n=7) 
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Figure 3 Effect of a 4 week genistein diet (600Gd) on average Isc in jejunum from R117H mice.
Notes: (A) Average basal Isc from the R117H male (M) and female (F) mice, fed either 600Gd or 0Gd. (B) Average steady-state forskolin-stimulated (10 µM, bilateral)  
Isc from male and female mice fed 600Gd or 0Gd. (C) Percentage inhibition of steady-state forskolin-stimulated Isc by bumetanide (100 µM, serosal). (D) Percentage inhibition 
of steady-state forskolin-stimulated Isc by acetazolamide (100 µM, bilateral). Values are mean ± SEM. * indicates significant difference, P,0.05, n=6–9 per group.
Abbreviations: Isc, short circuit current; 600Gd, 600 mg genistein/kg diet; 0Gd, genistein-free diet; SEM, standard error of the mean.
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compared to males fed 600Gd (336±71 ng/mL, n=9), which 

may contribute to the disparity and sex-dependent basal 

I
sc
 increases. However, in these R117H mice, compared to 

our previous Wt-mice studies, it is notable and distinct that 

increases in serum genistein do not correlate consistently with 

increases in basal I
sc
. This disparity may be a consequence 

of the fact that the serum genistein levels attained in R117H 

mice are not comparable to those in Wt mice. Clearance rates 

of serum genistein may well be different between R117H 

and Wt mice, in addition to sex-dependent clearance rates, 
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Figure 4 Effect of genistein injections on average Isc in jejunum from R117H mice.
Notes: (A) Average basal Isc from the R117H male (M) and female (F) mice, injected with either 600Gi or 0Gi for 1 week. (B) Average steady-state forskolin-stimulated (10 µM, 
bilateral) Isc from male and female mice injected with 600Gi or 0Gi for 1 week. (C) Percentage inhibition of steady-state forskolin-stimulated Isc by bumetanide (100 µM, 
serosal). (D) Percentage inhibition of steady-state forskolin-stimulated Isc by acetazolamide (100 µM, bilateral). Values are mean ± SEM. 
Abbreviations: Isc, short circuit current; 600Gi, genistein injection 600 mg genistein/kg body weight; 0Gi, dimethyl sulfoxide control; SEM, standard error of the mean.
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Figure 5 Effect of the nonspecific phosphodiesterase enzyme inhibitor IBMX on basal Isc in jejunum from R117H mice.
Notes: (A) Average data from R117H males: basal Isc (0–20 minutes); addition of bilateral IBMX (100 µM and 200 µM) is shown (n=6). (B) Average data from R117H females: 
basal Isc (0–20 minutes); addition of bilateral IBMX (100 µM and 200 µM) is shown (n=6). (C) Average change in (delta) Isc following addition of 100 µM and 200 µM IBMX 
(bilateral) to jejunum of male and female R117H mice (n=6 per group).
Abbreviations: Isc, short circuit current; IBMX, 3-isobutyl-1-methylxanthine.

Table 2 Effect of genistein on jejunum morphology

Villi length (μm) Crypt depth (μm) Goblet cells per villus Goblet cells per crypt

Male, 0Gd (8) 343.9±15.4 106.7±5.4 2.4±0.7 0.8±0.3
Male, 600Gd (8) 354.3±23.1 104.2±7.3 3.5±1.0 1.2±0.5
Female, 0Gd (7) 331.9±29.3 101.8±4.2 6.9±2.0* 2.2±0.8
Female responders, 600Gd (4) 314.4±28.1 93.5±13.8 5.9±1.9 2.3±1.3
Female nonresponders, 600Gd (4) 326.2±24.9 106.9±14.9 5.5±1.5 1.9±0.8
Male, 0Gi (5) 400.2±15.9 117.5±5.6 2.8±1.1 1.5±0.5
Male, 600Gi (5) 390.2±23.5 125.5±13.8 1.4±0.3 0.6±0.2
Female, 0Gi (5) 358.4±32.3 139.7±9.7 2.4±0.4 1.6±0.7
Female, 600Gi (5) 396.5±44.5 122.7±9.8 2.6±0.9 0.9±0.4

Notes: The following measures were taken in both female and male mice that were injected daily with 600Gi or 0Gi for 1 week or were fed 600Gd or 0Gd for 4 weeks. 
Data are expressed as mean ± SEM. Numbers in parentheses are the numbers of mice per group. *Significantly different from male counterparts, P,0.05.
Abbreviations: 600Gd, 600 mg genistein/kg diet; 0Gd, genistein-free diet; 600Gi, 600 mg genistein/kg body weight; 0Gi, dimethyl sulfoxide control; SEM, standard error 
of the mean.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical and Experimental Gastroenterology 2015:8 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

85

Sex- and route-specific effect of genistein in R117H CF mice

because evidence suggests that after consuming the same 

genistein-rich diets, female mice have greater circulating 

levels than their male counterparts.37,38

In the murine intestine, the major route for Cl- exit 

across the apical membrane is via the CFTR Cl- 

channel,39–41 although it is widely accepted that other 

candidate pathways (ClC-2 and/or ClC-4) exist for this  

apical membrane Cl- exit.42,43 The presence of ClC-2 and 

ClC-4 is thought to be responsible for the lack of severe 

intestinal impact observed in a subset of CF mice.43 In 

addition, members of the family of Ca2+-activated Cl- 

channels (CLCA), mCLCA2 and mCLCA3, have been 

proposed to be involved in intestinal function of both CF 

and Wt mice.44 Whether or not our observed increase in 

I
sc

 following the 4-week genistein-feeding regimen in the 

subgroup of female R117H mice is due to activation of 

CLC channels remains to be seen.

Genistein’s ability to improve epithelial function, namely, 

to increase epithelial secretion, has remained both intrigu-

ing and questionable. Mall et  al6 suggested that genistein 

activated both Wt- and ∆F508-CFTR in oocytes and non-CF 

human tissue, yet they did not garner support for genistein’s 

use as a pharmacological tool in CF. More recently, Yu et al45 

demonstrated that combined application of curcumin with 

genistein did in fact synergistically rescue the gating defect 

associated with G551D-CFTR. Various other CFTR activators 

have been tested by several laboratories in the past decade. 

Such small-molecule correctors have varying effects on CF 

epithelia and, not surprisingly, appear to be CF mutation-

dependent moieties.46 Caputo et al47 suggested that felodipine 

and PG-01 acted on the CFTR mutations E193K, G970R, and 

G551D, whereas the sulfonamide SF-01 was not as effective. 

A therapeutic potential has been hypothesized for the naturally 

occurring coumarin compound osthole, given its ability to 

stimulate ∆F508-CFTR-mediated Cl- secretion in colonic 

mucosa.48 In addition, the compound RP193 (a modified 

pyrrolo[2,3-b]pyrazine derivative) has been shown to potenti-

ate ∆F508- and G551D-CFTR activity in the presence of low 

forskolin concentrations in cell culture systems.49 Ivacaftor 

(VX-770) has been shown in vitro to increase ∆F508 and 

G551D channel opening in recombinant cells, to increase 

Cl- secretion in human CF bronchial epithelia,50 to improve 

lung function indices in CF subjects who have the G551D 

mutation,51 and more recently, to effectively activate a wider 

range of CFTR gating mutations in vitro, eg, G1349D, S1255P, 

S1251N, G1244E, G551S, and G178R.52

Interestingly, the R117H CFTR mutation has received less 

attention in the field of potential candidate pharmacomodulators. 

This is likely a consequence of the fact that the R117H mis-

sense mutation has a combination of both conductance and 

gating dysfunction, thus functional rectification may be 

challenging.22,25 Utilizing a cell culture system, Clancy et al53 

have previously shown activation of R117H CFTR by adenos-

ine and its nucleotides. We conclude that given the variety of 

CFTR activators available, the mechanism(s) involved in the 

activation of CFTR (and its many mutated forms) are no doubt 

both numerous, and complex.

While the mechanism(s) underlying the genistein-

mediated (600Gd) increase in jejunum anion secretion in the 

subpopulation of R117H females is(are) currently unclear, 

our data suggest the following: 1) it is not a result of changes 

in intestinal morphology, ie, not related to changes in crypt 

A
50 µm

B

50 µm

Figure 6 Representative sections from R117H jejunum stained with hematoxylin 
and eosin.
Notes: (A) Typical section from a 0Gd-administered male R117H mouse jejunum. 
(B) Typical section from a 600Gd-administered male R117H mouse jejunum. Images 
taken at ×10 magnification.
Abbreviations: 600Gd, 600 mg genistein/kg diet; 0Gd, genistein-free diet.
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depth (responders: 96.5±13.8 µm, n=4, versus nonresponders: 

106.9±14.9  µm, n=4) or number of goblet cells in crypts 

(responders: 2.3±1.3, n=4, versus nonresponders: 1.9±0.8, n=4); 

2) it is not related to change in body weight (ie, growth of 

those mice fed the 600Gd); however, there was a trend for 

these responding mice to gain somewhat more weight at the 

end of the study (responders: 1.92±0.94 g, n=6, versus non-

responders: 1.36±0.25 g, n=4); 3) it is not related to changes 

in serum genistein levels (responders: 740±272 ng/mL, n=3, 

versus nonresponders: 1,095±592 ng/mL, n=4); 4) it is related 

to an increase in Cl- secretion, as evidence by the signifi-

cantly elevated bumetanide-sensitive I
sc
 in responders versus 

nonresponders. This study provides the first evidence that con-

sumption of dietary genistein (600Gd), a naturally occurring 

isoflavone, can mediate an increase in basal intestinal anion 

secretion in a population of R117H female mice.
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