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Abstract: In this work, a peptide for ocular delivery (POD) and human immunodeficiency 

virus transactivator were conjugated with biodegradable poly(lactic-co-glycolic acid) (PGLA)–

polyethylene glycol (PEG)-nanoparticles (NPs) in an attempt to improve ocular drug bioavail-

ability. The NPs were prepared by the solvent displacement method following two different 

pathways. One involved preparation of PLGA NPs followed by PEG and peptide conjugation 

(PLGA-NPs-PEG-peptide); the other involved self-assembly of PLGA-PEG and the PLGA-PEG-

peptide copolymer followed by NP formulation. The conjugation of the PEG and the peptide 

was confirmed by a colorimetric test and proton nuclear magnetic resonance spectroscopy. Flur-

biprofen was used as an example of an anti-inflammatory drug. The physicochemical properties 

of the resulting NPs (morphology, in vitro release, cell viability, and ocular tolerance) were 

studied. In vivo anti-inflammatory efficacy was assessed in rabbit eyes after topical instillation 

of sodium arachidonate. Of the formulations developed, the PLGA-PEG-POD NPs were the 

smaller particles and exhibited greater entrapment efficiency and more sustained release. The 

positive charge on the surface of these NPs, due to the conjugation with the positively charged 

peptide, facilitated penetration into the corneal epithelium, resulting in more effective preven-

tion of ocular inflammation. The in vitro toxicity of the NPs developed was very low; no ocular 

irritation in vitro (hen’s egg test–chorioallantoic membrane assay) or in vivo (Draize test) was 

detected. Taken together, these data demonstrate that PLGA-PEG-POD NPs are promising 

vehicles for ocular drug delivery.

Keywords: peptide for ocular delivery, flurbiprofen, controlled release, ocular tolerance, anti-

inflammatory

Introduction
Cataract is one of the most common causes of partial loss of vision, with an estimated 

16 million people affected worldwide. Surgical intervention is still the standard cataract 

treatment. Flurbiprofen (FB) is a nonsteroidal anti-inflammatory drug (NSAID), 

which has been introduced into ocular therapy recently, not only for the management 

of inflammatory diseases that affect ocular structures, but also for use during eye 

surgery.1 NSAIDs are widely used topically to inhibit intraoperative miosis, reduce 

postoperative inflammation, treat seasonal allergic conjunctivitis, and both prevent 

and treat cystoid macular edema.2 They have also recently been found to be useful in 

decreasing bacterial colonization of contact lenses and preventing bacterial adhesion 

to human corneal epithelial cells.3

The bioavailability of ophthalmic drugs in aqueous solutions is usually low due to 

their rapid elimination after mucosal instillation, a consequence of reflex blinking and 
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tear drainage, as well as of the presence of the corneal barrier. 

In fact, only 5% of the applied dose reaches intraocular tis-

sues after corneal penetration.4 Research into biomaterials 

has therefore included the use of biodegradable polymeric 

nanoparticles (NPs) in ocular drug delivery, one of the most 

promising applications of NPs, as they offer a controlled 

release profile of a drug which is entrapped in the polymeric 

matrix .5–7 These are advantages that suggest that the required 

therapeutic effects could easily be achieved.8 Over the years, 

the potential of a variety of synthetic biodegradable poly-

mers such as polylactic acid, polyglycolic acid, and their 

copolymer, poly(lactic-co-glycolic acid) (PLGA), for the 

production of NPs, has been extensively explored due to their 

biocompatibility, biodegradability, and mechanical strength.9 

It has been described that PLGA NPs are internalized in 

cells partly through fluid phase pinocytosis and also through 

clathrin-mediated endocytosis, and they rapidly escape the 

endolysosomes and enter the cytoplasm. The reticuloen-

dothelial system eliminates the NPs from the blood stream. 

Subsequent PLGA hydrolysis leads to metabolite monomers 

(lactic and glycolic acids), which are easily metabolized via 

the Krebs cycle.10

Furthermore, they are easily formulated via several 

production methods such as solvent displacement,11 solvent 

diffusion, emulsification–evaporation, and phase-inversion 

procedures.12,13 These polymers, which are commercially 

available in a range of molecular weights and copolymer 

ratios,14,15 have been approved by the US Food and Drug 

Administration and the European Medicine Agency for use 

in drug delivery in humans.16

FB has previously been formulated in PLGA NPs by 

Vega et al17 who achieved good stability and appropriate 

physicochemical properties for ocular administration, without 

causing ocular irritation at any level. Recently, other authors 

have reported that by means of a suitable modification of the 

PLGA NPs, the stability of the encapsulated drug, its release 

profile, and delivery to a specific target can be optimized.18–20 

PLGA has thus been combined with hydrophilic polymers 

such as polyethylene glycol (PEG) and polyethylene oxide. 

The modification of preformed NPs with PEG (ie, PEGyla-

tion) brings about substantial changes in their physicochemi-

cal properties.21 PEG is a hydrophilic, nonionic polymer that 

has been shown to be highly biocompatible, and it can be 

added to NPs via a great number of different routes including 

covalent binding, mixing during NP preparation, and surface 

adsorption. The presence of PEG on the surface of NPs may 

provide other advantages, such as increasing their systemic 

circulation half-life and mucoadhesion.22

Furthermore, cell-penetrating peptides (CPPs) can be 

conjugated with NPs to enhance the cellular and nuclear 

uptake of the cargo molecules. CPPs are short (20 amino 

acids) cationic peptide sequences from a range of proteins 

that are capable of transporting molecules across the cell 

membrane. Despite the lack of a clear understanding of their 

mechanism of action, it has been demonstrated that CPPs 

can deliver different cargoes into cells, including peptides, 

proteins, viral particles, liposomes, and NPs.23,24 The most 

extensively studied CPPs are the human immunodeficiency 

virus transactivator protein (HIV-Tat),25 the herpes simplex 

virus type 1 protein VP2226 and the homeodomain transcrip-

tion factor Antennapedia.27 Several authors have studied the 

potential use of HIV-Tat28 and herpes simplex virus-VP2229 

in delivering recombinant proteins to human embryonic 

retinoblast in culture and to retinal tissues in vivo. It has been 

observed that while both peptides act efficiently in vitro, their 

performance in the retina in vivo is limited. Recently, a novel 

CPP for ocular delivery was reported (peptide for ocular 

delivery [POD]), that is capable of transporting both small 

and large molecules across the plasma membrane. Moreover, 

it enters the corneal epithelium, sclera, choroid, and the dura 

of the optic nerve via topical application. POD, is useful in 

a vehicle that targets ocular tissues and has bacteriostatic 

properties.30,31 Furthermore, the cornea possesses negative 

surface charges, and it is expected that cationic colloidal 

NPs may penetrate through the negatively charged ocular 

tissues more efficiently than anionic carriers.32 Read et al 

also demonstrated that PEGylated CPPs such as PEG-POD 

are promising candidates for gene delivery.33 The addition 

of a PEG moiety to the POD resulted in small, discrete, 

and spherical NPs, without any aggregation being observed 

in vitro. Moreover, they studied the gene transfer efficiency, 

with POD being more efficient for subretinal DNA delivery 

than two other CPPs: HIV-Tat 28 and CK30.34 Particularly, 

PEG-POD DNA NPs have been utilized to deliver a plasmid 

expressing various marker genes or glial cell line-derived 

neurotrophic factor to mice, enabling rescue of photoreceptor 

degeneration. Thus, PEG-POD NPs have been considered a 

therapeutically relevant nonviral DNA vehicle with potential 

application in therapy for retinal degeneration.35,36

The main aim of the current study is to improve the cor-

neal epithelium penetration of NPs composed of PLGA-PEG 

by means of conjugating two different CPPs (POD and HIV-

Tat), the final objective being to achieve a longer sustained 

release of FB, which has been used as an example of NSAID 

drug. Peptide-derivatized NPs were obtained by the solvent 

displacement method. Their physicochemical properties, 
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in vitro release kinetics, ex vivo interaction with corneal 

permeation, cytotoxicity, and ocular tolerance (in vitro and 

in  vivo) were studied. Anti-inflammatory efficacy assays 

were also performed to determine whether these novel formu-

lations (PLGA-NPs-PEG-peptide and PLGA-PEG-peptide 

NPs) could form the basis of a suitable strategy for ocular 

delivery of NSAIDs.

Materials and methods
Materials
PLGA with a 50:50 monomer ratio (Resomer® RG 503H, 

34 kDa, viscosity 0.32–0.44 dL/g) together with the PLGA 

50:50 and PEG copolymer (Resomer® RGP type d5055 

[PLGA-PEG®]) were purchased from Boehringer Ingelheim 

(Ingelheim, Germany). Maleimide-PEG-NH
2
 (2,000 Da) 

was obtained from Jenkem (Beijing, People’s Republic 

of China). Methoxy-PEG-NH
2
, N-hydroxysuccinimide 

(NHS), ethyl-3-(3-dimethylaminopropyl) carbodiimidey-

drochloride (EDC), N-diisopropylethylamine (DIEA), 

N-diisopropylcarbodiimide, 2-(1H-7-azabenzotriazol-1-yl)-

1.1.3.3-tetramethyluroniumhexafluorophosphate (HATU), 

1-hydroxybenzotriazole, and FB were purchased from Sigma 

(St Louis, MO, USA). Amino acids and NovaSyn TGR resin 

were purchased from Novabiochem (Hohenbrunn, Germany). 

N,N-Dimethylformamide (DMF) was obtained from Schar-

lau (Barcelona, Spain). Poloxamer 188 (Lutrol® F68) was 

from BASF (Barcelona, Spain) and 5(6)-carboxytetrameth-

ylrhodamine (Rho) was obtained from Merck (Hohenbrunn, 

Germany). Double-distilled water was used after filtration in 

a Millipore system. All other chemicals and reagents used in 

the study were of analytical grade.

Peptide synthesis
The POD (CGGG[ARKKAAKA]

4
)  and HIV-Tat 

(CGGGGYGRKKRRQRRR) peptides were synthesized in 

the solid phase using fluorenylmethoxycarbonyl protected 

amino acids following procedures previously described.37,38 

The polyglycine sequence is an adequate spacer while the 

N-terminal cysteine reacts with maleimide-activated PEG. 

Carboxamide peptides were obtained using NovaSyn TGR 

resin (0.25 eq/g). HATU was used as a coupling reagent in 

DMF activated with DIEA.

All the synthesized peptides were characterized by 

reversed-phase high-performance liquid chromatography 

(RP-HPLC). The RP-HPLC system consisted of an Agilent 

1260 pump (Quat Pump VL) with a UV-Vis 1260 ALS 

detector set at 215 nm. A reversed-phase column (Kromasil 

C18 25×0.46 cm and 5 µM mean particle size) with a flow 

rate of 1 mL/min was used. Matrix-assisted laser desorption/

ionization-time of flight (MALDI-TOF) mass spectrometry 

was used to determine the molecular weight. 2.5-Dihydroxy-

benzoic acid was used as the matrix, and the peptides were 

dissolved in acetonitrile (ACN)/water 30% v/v with 0.01% 

v/v trifluoroacetic acid at a concentration of 1 mg/mL. The 

sample was run in an AutoFlex III Smart Bean Bruker mass 

spectrometer, operating in reflector mode, and positive ions 

were monitored. A nitrogen laser beam at 200 nm was used, 

and 500 shots were averaged for each spectrum. The crude 

peptides were purified by semipreparative HPLC, yielding 

a purity of more than 95%.

Preparation of NPs
General procedure
NPs containing FB were prepared by the solvent displace-

ment technique described by Fessi et al11 under the optimized 

conditions determined previously.17,39–41 Briefly, an organic 

solution of 90 mg of polymer PLGA 503H in 5 mL of acetone 

containing FB (10 mg) was poured, under moderate stir-

ring, into 10 mL of an aqueous solution, adjusted to pH 3.5, 

containing 100 mg of Lutrol® F68. The resulting colloidal 

suspension was stirred for 5 minutes. The acetone was then 

evaporated, and the NP dispersion volume was concentrated 

under reduced pressure. Empty NPs were prepared using the 

same procedure but without FB being added to the organic 

phase.

The NPs were obtained by two different routes: one 

involving the preparation of PLGA NPs followed by PEG 

and peptide conjugation; and the other involving the self-

assembly of PLGA-PEG and the PLGA-PEG-peptide 

copolymer followed by NP formulation (Figure 1).

Synthesis of PEGylated-PLGA NPs and peptide 
conjugation: PLGA-NPs-PEG-peptide
PLGA NPs in suspension were incubated with 2.4 mg 

(21  μmol) of NHS, and then 4.1 mg (21 μmol) of EDC 

was added. The pH was adjusted to 3.5, and the mixture 

was incubated for 6 hours at room temperature with gentle 

stirring. The resulting PLGA-NHS-activated particles were 

covalently linked to 5.2 mg (2.6 μmol) NH
2
-PEG-maleimide. 

Next, PLGA-PEG NPs were covalently linked to 2.6 μmol 

of POD (9.4 mg) or HIV-Tat (5 mg) peptides. The reac-

tion procedure is shown in Figure 1A. The presence of the 

peptides was confirmed by MALDI-TOF mass spectrometry 

under the same conditions as explained above. Finally, the 

unreacted PEG and peptide was separated from the NPs by 

centrifugation at 14,000 rpm and 4°C for 30 minutes.
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The free PEG was quantified via a 2,4,6-trinitrobenze-

nesulphonic acid (TNBS) assay.42,43 In separate test tubes, 

100 μL of aqueous solution containing free PEG or borate 

buffer was prepared (pH 8.0 for the blank) by mixing 900 μL 

of 0.1 M borate buffer (pH 9.3) and 40 μL of 0.03 M TNBS. 

The solution was incubated at room temperature for 

30 minutes, and the absorption at 420 nm was determined 

spectrophotometrically. The amount of conjugated PEG was 

calculated by subtracting the amount of free PEG from the 

total amount added.

Unreacted POD and HIV-Tat were quantified using 

Ellman’s assay.44 A solution of 0.1–0.2 μmol of the peptides 

in sodium phosphate buffer was prepared and then 100 µL 

of DTNB (5.5 dithiobis[2-nitrobenzoic acid]) was added to 

the peptide solution, and the mixture was left to stand for 

15 minutes. DTNB and the buffer were used as reference 

solutions. Absorbance was determined spectrophotometri-

cally at 410 nm. The concentration of sulfhydryl groups, and 

thus of the corresponding free peptide, was calculated using 

the following equation:

	 SH = (A
410

 [sample] - A
410

 [reference])/13,650� (1)

Synthesis of PLGA-PEG and PLGA-PEG-peptide
As shown in Figure 1B, PLGA was preactivated before PEGy-

lation with maleimide-PEG-amine. One gram (32.3 μmol) 

of PLGA, with an inherent viscosity of 0.32–0.44 dL/g was 

dissolved in 2 mL of chloroform with stirring in a tightly 

sealed vial. Then, 45 mg (234.7 μmol) of EDC and 27 mg 

(234.7 μmol) of NHS was added, and the mixture was 

stirred overnight in a tightly sealed vial. The preactivated 

PLGA-NHS was precipitated with 8 mL of diethyl ether and 

centrifuged at 4,000 rpm for 10 minutes at room temperature. 

Following centrifugation, the supernatant was discarded 

and the polymer redissolved in 2 mL of chloroform. This 

precipitation/dissolution washing cycle was repeated three 

times before the activated PLGA-NHS ester was dried under 

vacuum and stored at -20°C. Then, 500 mg (16.2 μmol) of 

PLGA-NHS was dissolved in 2 mL of chloroform, and once 

it was fully dissolved, 35 mg (17.5 μmol) of maleimide-PEG-

amine or metoxi-PEG-amine (nontargeted particles) and 
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Figure 1 Synthesis of (A) PLGA-NPs-PEG-peptide and (B) PLGA-PEG-peptide polymer followed NPs preparation.
Abbreviations: EDC, ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride; FB, flurbiprofen; NHS, N-hydroxysuccinimide; NPs, nanoparticles; PEG, polyethyleneglycol; 
PLGA, poly(lactic-co-glycolic acid); SH, sulfhydryl group.
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20 μL (117.15 μmol) of DIEA was added, the vial was tightly 

sealed, and the mixture was stirred overnight. The product 

was precipitated with 8 mL of an ice-cold 80/20 mixture 

of diethyl ether/methanol and centrifuged at 4,000 rpm for 

10 minutes. After the supernatant was discarded, the product 

was redissolved in 2 mL of chloroform, and the washing cycle 

was repeated twice more. The PLGA-PEG copolymer was 

dried under vacuum and stored at 4°C. The percentage yield 

was calculated as follows:

[weight of  PLGA PEG]
Yield (%) 100

[weight of  PLGA NHS and PEG-amine] 

−
= ×

−
� (2)

To conjugate the peptides with the PLGA-PEG-maleimide, 

2.7 μmol of POD (9.8 mg) or HIV-Tat (5.2 mg) was dissolved 

in 250 μL of ACN/DMF and added to 100 mg (2.7 μmol) of 

the polymer dissolved in 1 mL of chloroform. The mixture 

was covered tightly and stirred overnight. The product was 

precipitated with 3 mL of an ice-cold 80/20 mixture of diethyl 

ether/methanol, centrifuged at 4,000 rpm for 10 minutes, the 

supernatant discarded, and the product redissolved in 1 mL of 

chloroform. This cycle was repeated twice more, and then the 

PLGA-PEG-peptide was dried under vacuum.

Proton nuclear magnetic resonance (1H-NMR) was used 

to assess the grafting of PEG to PLGA and the conjugation 

with the peptide. The PLGA-PEG was dissolved in deuterated 

chloroform and the PLGA-PEG-peptide in dimethyl sulfoxide 

(DMSO)-d
6
. The spectrum was recorded at 298 K on a Varian 

Inova 500 MHz spectrometer (Agilent Technologies, Santa 

Clara, CA, USA). Then, PLGA-PEG NPs and PLGA-PEG-

peptide NPs containing FB were prepared following the 

general procedure described above.

Characterization of NPs
Particle size, polydispersity index, and zeta potential
The mean particle size, polydispersity index, and zeta poten-

tial (Z
pot

) were determined via dynamic light scattering using 

a Zetasizer nano ZS (Malvern Instruments, Malvern, UK) 

at 25°C. The measurements were performed on samples 

previously diluted in Milli-Q® water (Millipore Corporation, 

Billerica, MA, USA). Z
pot

 is a measure of the electric charge 

at the surface of NPs, an indirect measure of their physical 

stability. Z
pot

 values were calculated by determining the 

electrophoretic mobility using the Helmholtz–Smoluchowski 

equation, as previously reported.39 The values we report are 

the mean ± standard deviation (SD) of at least three different 

batches of each NP formulation.

Entrapment efficiency
The nonentrapped FB was separated by filtration/

centrifugation using Amicon centrifugal filter devices with 

100 kDa Ultracel membrane (Millipore Corporation) at 

3,000 rpm for 10 minutes (Digicen 20-R centrifuge, Madrid, 

Spain). The samples were diluted (1:10) before injection with 

Milli-Q water to avoid deposition of free FB on the NPs. 

The concentration of FB in the supernatant was measured by 

RP-HPLC. The mobile phase was composed of ACN/water 

(65:35) acidified with phosphoric acid (pH 2.5). The column 

effluent was examined spectrophotometrically at 254 nm and 

the flow rate was set at 1 mL/min. The retention time of FB 

was 11.8 minutes. The calibration curve was linear in the 

range 0.0014–0.75 mg/mL with a correlation coefficient, r2, 

of 0.999. The percentage FB entrapment efficiency (EE) was 

calculated as indicated below:

	
[total amount of FB free FB] 

EE (%) 100
[total amount of FB]

−
= × � (3)

Morphological studies
The morphology of the NPs was studied by scanning electron 

microscopy (SEM). The NPs were centrifuged at 14,000 rpm 

at 4°C for 30 minutes. The supernatant was discarded and the 

pellet was dried under vacuum. Samples were attached to a 

metal stub, sputter coated with chrome, and viewed under 

Hitachi S43000 SEM apparatus.

In vitro drug release
In vitro release studies of FB from the NPs were carried out 

by applying the bulk equilibrium dialysis bag technique.45 The 

experiments were performed under ‘‘sink conditions’’ in order 

to avoid interference of FB solubility in the in vitro release. 

An NP formulation containing 1 mg/mL of FB, a control solu-

tion of FB (1 mg/mL), and 0.3 mg/mL commercial eye drops 

(Ocufen®) were placed into dialysis sacs (cellulose membrane 

with a molecular weight cut-off of 12,000 Da [Iberlabo, Madrid, 

Spain]) into 150 mL of phosphate buffered saline (PBS) 

(0.1 M, pH 7.4). The dialysis sacs were previously equilibrated 

in PBS. The temperature was maintained at 32°C (surface eye 

temperature) with moderate, continuous stirring. At specific 

time intervals, 1 mL was taken from the release medium and 

immediately replaced with 1 mL of fresh PBS. The concen-

tration of the drug released was assessed as described above. 

Values are reported as the mean ± SD of three replicates.

Data obtained from in vitro release studies were fitted to 

the Korsmeyer–Peppas equation to determine the mechanism 
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of drug release from the NPs.46 The Korsmeyer–Peppas 

model is,

	 M
t
/M∞ = k ⋅ tn� (4)

where M
t
 is the amount of drug released at time t, M∞ is 

the total amount released, M
t
/M∞ 

is the fraction of drug 

released at time t, k is the release rate constant, and n is 

the diffusion exponent that indicates the mechanism of 

drug release. Several mechanisms may be involved in 

the release process from spherical matrices: drug dif-

fusion from NPs (or the Fickian mechanism; n0.43), 

non-Fickian transport (or case-II transport, zero order; 

n0.85) or a combination of both processes (anoma-

lous transport; 0.43n0.85). In order to fit only the 

Korsmeyer–Peppas empirical model, an initial 60% of 

drug released was used.

Fluorescence studies to visualize the NPs
Synthesis of PLGA-PEG-peptide-Rho
To evaluate the interaction of the PLGA-PEG-peptide NPs 

with the corneal epithelium, the peptides were prelabeled 

with Rho. A volume of 50 mg of peptidyl resin (contain-

ing POD or HIV-Tat) was added to 12.9 mg of Rho. The 

reaction was carried out using N-diisopropylcarbodiimide 

and 1-hydroxybenzotriazole in DMF medium for 24 hours 

in the dark. MALDI-TOF mass spectrometry was used to 

determine the molecular weight of the Rho-peptide. The 

degree of labeling was calculated separately by determining 

the peptide and Rho molar concentrations of the conjugate 

based on absorbance measurements; these concentrations 

were then expressed as a ratio (Rho:peptide molar ratio). 

Then, unlabeled peptides (2 mg [0.6 μmol]) POD or 1 mg 

[0.6 μmol] HIV-Tat) and the labeled Rho-peptides (0.9 mg 

[0.25 μmol]) Rho-POD or 0.4 mg [0.22 μmol] Rho-HIV-

Tat) were conjugated with 30 mg (0.84 μmol) of polymer 

PLGA-PEG-maleimide, as detailed above. The new NPs not 

containing FB were prepared using the solvent displacement 

method as described above. The amount of Rho-peptides 

in the NPs was determined by fluorescence spectroscopy 

(excitation at 555 nm and emission at 580 nm). Standard 

curves were obtained by diluting Rho with blank PLGA-

PEG NPs in the concentration range 0.1–1 μM. The PLGA-

PEG-peptide-Rho NPs were analyzed by fluorescence 

microscopy. The particles were excited with a 572 nm laser 

and emissions registered between 570 and 590 nm. This 

channel was depicted as green to facilitate visualization 

on the computer screen.

Ex vivo study by confocal laser scanning 
microscopy
In these studies, New Zealand white rabbits with no signs 

of abnormalities or ocular inflammation and weighing 

1.8–2.2  kg were used. All experiments were performed 

according to the ARVO (Association for Research in 

Vision and Ophthalmology) resolution for the use of 

animals in research and the corresponding protocols were 

approved by the ethics committee for animal experimenta-

tion of the University of Barcelona. Volumes of 50 μL of 

each formulation were administered into the conjunctival 

sac of the rabbit. After 2 hours of instillation, the rabbits 

were killed. A corneal specimen, freshly extracted, was 

directly mounted on a glass slide, and both the membrane 

dye wheat germ agglutinin and the nucleus dye 2,5′-bi-

1H-benzimidazole, 2′-(4-ethoxyphenyl)-5-(4-methyl-1-

piperazinyl) (Hoechst) were added. Images were taken 

using confocal laser scanning microscopy (CLSM) with 

a Leika TCS SP2 AOTF laser, 40×/1.25 oil objective and 

background fluorescence were registered by laser excitation 

at 364, 488, and 561 nm.

Cytotoxicity assays
The cytotoxicity of the NPs was evaluated using a 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay. 

HeLa and HepG2 cells were cultured in Dulbecco’s Modi-

fied Eagle’s Medium (D5796; Sigma) supplemented with 

10% heat-inactivated fetal bovine serum (Invitrogen) and 1% 

penicillin-streptomycin (P11-010; PAA) under 5% CO
2
 at 

37°C. The HeLa and HepG2 cells were cultured in 96-well 

plates by adding 100 μL of a suspension of 100,000 cells/mL 

(total density of 10,000 cells/well) and incubated for 24 hours 

to allow cell attachment. The medium was then replaced with 

150 µL of medium containing FB-loaded PLGA-PEG-POD 

NPs and PLGA-PEG-HIV-Tat NPs at different concentrations 

(0.01–25 mg/mL) and incubated for 24 hours in triplicate. Then, 

the culture medium was removed from the wells to avoid inter-

ference and replaced with 100 μL of MTT (5 mg/mL in PBS was 

prepared and diluted 1:5 with fresh medium). The plates were 

again incubated for 3 hours under the same conditions. After 

this time, the medium was aspirated and replaced by 100 μL 

of DMSO to dissolve the crystals formed in the previous step 

and then incubated for 2 hours at room temperature in the dark. 

Finally, absorbance was measured spectrophotometrically at 

570 nm using a SpectraMax M5 spectrophotometer (Molecular 

Devices, Sunnyvale, CA, USA). Untreated cells were used as a 

control with 100% viability. The results were processed using 

GraphPad Prism 5 software.
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Ocular tolerance assays
In vitro HET-CAM
The risk of ocular irritation by the NPs was assessed using the 

hen’s egg test–chorioallantoic membrane (HET-CAM) assay.47 

Hen’s eggs were incubated for 9 days and after this time defec-

tive eggs were discarded. The shell around the air cell was 

removed and the inner membranes extracted to reveal the 

CAM. NPs were added to the membrane and left in contact 

for 5 minutes. After proceeding with the positive control, one 

egg was treated with 0.1 M sodium hydroxide and six eggs 

were used for each sample tested. After exposing the CAM and 

rinsing it with PBS, 300 μL of the test solution was applied to 

the CAM. The intensity of the reactions was semiquantitatively 

assessed on a scale from 0 (no reaction) to 3 (strong reaction). 

The time of onset and intensity of reactions occurring within 5 

minutes were recorded. The ocular irritation index (OII) was 

then calculated using the following expression:

	 OII = �(301 − h) × 5/300 + (301 − l)  

× 7/300 + (301 − c) × 9/300
� (5)

where h is the time (in seconds) to the beginning of hemor-

rhage, l time to lysis, and c time to coagulation. The following 

classification was used: OII 0.9, slightly irritating; 0.9 

OII 4.9, moderately irritating; 4.9 OII 8.9, irritating; 

and 8.9 OII 21, severely irritating.

In vivo Draize test
An In vivo Draize test was performed to confirm the results 

obtained by the HET-CAM assay. The study was conducted 

using a modified Draize test.48 The irritation associated with 

the instillation of hypotonic and hypertonic suspensions may 

lead to reflex tearing or reflex blinking. The osmolality of the 

samples, measured with a Fiske osmometer, was adjusted with 

5% (w/v) glucose to the tear osmolality (around 280 mOsm/

kg).49 In order to avoid these effects in the ocular assays, the 

formulations tested were adjusted to tear fluid (pH 7.4) using 0.1 

N sodium hydroxide. A single instillation of 50 μL of each NP 

was applied to one eye of the New Zealand white rabbits, and 

the other eye was used as a control. After 1 hour of exposure, 

the eyes were observed to evaluate possible injury to the cornea, 

conjunctiva, or iris, and subsequent readings were taken after 1, 

2, 3, 4, and 7 days. The Draize score was determined by visual 

assessment of changes in the ocular structure involving cornea 

(turbidity or opacity), iris (inflammation degree), and conjunc-

tiva (congestion, swelling, and discharge). Ocular lesions were 

quantified using the mean total score (MTS) equation:

	 MTS = Σ X1(n) × 5 + Σ X2(n) × 2 + Σ X3(n) × 5� (6)

where X1(n), X2(n), and X3(n) are the cornea, conjunctiva, 

and iris scores, respectively, and n is the number of rabbits 

included in the ocular tolerance assay. Three animals were 

used for each formulation.

Anti-inflammatory efficacy assay
In order to study the prevention and treatment of ocular 

inflammation in cataract surgery by NPs, inflammation was 

induced by topical administration of sodium arachidonate 

(SA) (0.5% w/v) dissolved in PBS (pH 7.4). Following the 

experimental procedure described by Spampinato et al50 SA 

was inoculated in the right eye of five groups of six rabbits 

while the left eye was used as a control. The osmolarity 

and pH of each formulation were adjusted. The treatment 

protocol consisted of the induction of ocular inflamma-

tion by SA, and after 30 minutes the instillation of 50 μL 

of each formulation. In order to evaluate the prevention 

of inflammation (prophylaxis) by the NPs, 50 μL of each 

sample was instilled in the conjunctival sac of the right eye 

30 minutes before induction of ocular inflammation by SA. 

Ocular inflammation was assessed from 60 minutes to 210 

minutes, and the ocular inflammation score was calculated 

using the MTS as described above. Corneal transparency is 

not affected by SA, so this parameter was not considered. 

The total score of the conjunctiva and iris are expressed as 

mean ± SD.

Statistical analysis
All the data were presented as mean ± SD. Specific com-

parison between groups was carried out with an unpaired 

Student’s t-test (two tailed). For multiple-group comparison, 

one-way ANOVA was carried out to analyze the significant 

differences (P0.05) between groups, followed by Tukey 

post hoc analysis after having confirmed normality and equal 

variance assumptions by the Kolmogorov–Smirnov statistical 

test. SPSS IBM21 for Windows was used throughout.

Results and discussion
Synthesis of POD and HIV-Tat
Two different CPPs (POD and HIV-Tat) containing cysteine 

at the N-terminus were synthesized using solid phase 

methods.51 The crude peptides were purified by semiprepara-

tive HPLC, yielding over 95% purity. The purified synthetic 

products were characterized by MALDI-TOF (Figure S1).

Characterization of PLGA-NPs-PEG-
peptide
As previously described by Vega et al17,39 and Araújo et al40 

PLGA NPs are promising systems for the delivery and 
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controlled release of FB in ocular tissues. In this work, 

considering the results previously published by our group, 

optimized PLGA NPs incorporating FB were obtained using 

the solvent displacement technique. Lutrol® F68 was chosen 

as a surfactant to stabilize the NPs in aqueous suspension 

since, due to its nonionic character, it does not strongly 

irritate ocular tissues. Furthermore, it is accepted for ocular 

administration by regulatory authorities.52

POD and HIV-Tat were conjugated with PLGA NPs using 

PEG as a spacer by means of a maleimide-thiol coupling 

reaction. MALDI-TOF mass spectroscopy confirmed that 

the reactions went to completion. The mass spectra of the 

peptides (POD and HIV-Tat) as well as their conjugation 

with PLGA-PEG-maleimide NPs are shown in Figure S1. 

The molecular weights obtained correspond to a combina-

tion of PEG and POD (5,500–5,900 Da) or HIV-Tat (3,700–

4,400 Da). The peptides and PEG located on the surface were 

determined after each reaction step. These concentrations 

were determined indirectly by quantifying the amount of 

peptides remaining in solution. The conjugation efficiency 

was 2.5%, and the percentages of POD and HIV-Tat peptides 

were 1.2% and 2.1%, respectively.

Characterization of PLGA-PEG and 
PLGA-PEG-peptide
PLGA-PEG (PEG, 2,000 Da) was synthesized with the pri-

mary aim of studying whether the form of presentation of 

PEG in PLGA-PEG® (PEG®, 5,000 Da) influences the NP 

properties in accordance with the different molecular weights. 

Furthermore, bifunctional PEG containing a maleimide group 

at one terminus and an amine group at the other was used to 

form PLGA-PEG-maleimide. With the aim of characterizing 

the synthetic PLGA-PEG, this copolymer was analyzed by 
1H-NMR spectroscopy. The 1H-NMR analysis revealed four 

characteristic peaks at 1.5 ppm (CH
3
 lactide proton), 3.6 

ppm (CH
2
-CH

2 
ethylene glycol protons), 4.8 ppm (CH

2
 gly-

colide proton), and 5.2 ppm (CH lactide proton) (Figure S2). 

A small peak was also observed at 6.7 ppm corresponding 

to the maleimide methine protons. These results confirm the 

presence of both PLGA and PEG domains in the PLGA-PEG 

synthetic copolymer. We also used 1H-NMR to determine the 

resulting molar ratio of PLGA to PEG and of PEG to maleim-

ide by integration of the PLGA (CH
3
), PEG (CH

2
-CH

2
), and 

maleimide peaks, the conjugation efficiencies achieved being 

between 7%–15% and 2%–35% for PEG to PLGA and for 

maleimide to PEG, respectively. Then, POD and HIV-Tat 

were conjugated with the PLGA-PEG via cysteine/maleim-

ide linkage. The 1H-NMR spectra of PLGA-PEG-POD and 

PLGA-PEG-HIV-Tat are shown in Figure 2, confirming the 

peptide coupling to PLGA-PEG-maleimide polymer. The 

amount of peptide (POD or HIV-Tat) in the polymer was 

expressed as a mass percentage, according to the following 

equation:53

	 Peptide Peptide

Peptide
PLGA PLGA

100 (M  [I /n])
W

(M  [I  {CH, 5.2}])
=

δ=
� (7)

where M
Peptide 

and M
PLGA 

(130 g/mol) are, respectively, the 

molecular weight of the peptides and PLGA; I
PEPTIDE

 is the 

peak integral of POD (amide/amine region, 7.0–8.2 ppm) 

and HIV-Tat (tyrosine [Tyr] signal at 6.64 ppm); I
PLGA

 is the 

peak integral of the –CH groups in the polylactic acid unit 

of the PLGA corresponding to one proton; and n is number 

of protons (76 H for amide, amine, and guanidinium side 

chains in POD and 2 H for the isolated signal at 6.64 ppm 

corresponding to two aromatic protons of Tyr in HIV-Tat). 

Following this procedure, the calculated functionalization 

levels obtained were between 3.3%–3.9% and 2.3%–3.2% for 

PLGA-PEG-POD and PLGA-PEG-HIV-Tat, respectively.

Physicochemical characterization  
of FB-loaded NPs
For ocular administration drug delivery systems, particle size 

is an important parameter since it affects the risk of irritation 

and discomfort; certain sizes induce tearing and rapid drain-

age of the instilled dose thereby reducing the bioavailability 

and residence time of the drug in the conjunctival sac.54 In 

general, as shown in Tables 1 and 2, all the formulations we 

prepared had a suitable particle size for ocular administration 

(smaller than 250 nm diameter) and also the PI was lower 

than 0.1, indicating narrow particle size distributions.

The results of the physicochemical characterization of 

PLGA-NPs-PEG-POD and PLGA-NPs-PEG-HIV-Tat are 

shown in Table 1. The results show that the final conjugations 

had slightly increased particle sizes, indicating that the attach-

ment of PEG and peptides to the surface of PLGA NPs took 

place (Figure 1A). In contrast, the size of PLGA-NPs-PEG-

POD and PLGA-NPs-PEG-HIV-Tat was similar, indicating 

that neither the choice of peptide nor the level of function-

alization of the NPs affected their size. Moreover, high EE 

was obtained (between 70.3%±5.6% and 76.5%±3.8%), 

indicating that PEG and peptide surface conjugation did not 

lead to a dramatic loss of the drug. Nonsignificant differ-

ences in the EE of FB were observed for PLGA-NPs-PEG-

HIV-Tat. The following P-values were obtained: 0.764 for 
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A Residual impurity
from polymer

sample

Residual
DMF

f1 (ppm)
8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7

Maleimide
free proton

PLGA-PEG-Mal-POD

Peptide POD

B

f1 (ppm)
7.25 7.20 7.15 7.10 7.05 7.00 6.95 6.90 6.85 6.80 6.75 6.70 6.65 6.60 6.55 6.50 6.45 6.40 6.35

Maleimide
free proton

2H Tyr 2H Tyr

PLGA-PEG-Mal

PLGA-PEG-Mal-TatHIV

Figure 2 The 1H-NMR spectra of PLGA-PEG-POD and PLGA-PEG-HIV-Tat confirm the peptide coupling to PLGA-PEG-maleimide polymer.
Notes: 1H-NMR spectra in DMSO-d6 at 25°C of (A) PLGA-PEG-maleimide-POD copolymer and POD peptide. We used the specified amide/amine side chain region for 
peptide signal integration. (B) For PLGA-PEG-maleimide-HIV-Tat and PLGA-PEG-maleimide, we clearly see a reduction of the maleimide methine protons signal intensity and 
the appearance of Tyr aromatic protons from HIV-Tat peptide after conjugation.
Abbreviations: 1H-NMR, proton nuclear magnetic resonance; DMF, N,N-Dimethylformamide; DMSO, dimethyl sulfoxide-d6; HIV-Tat, human immunodeficiency virus 
transactivator; Mal, maleimide; PEG, polyethyleneglycol; PLGA, poly(lactic-co-glycolic acid); POD, peptide for ocular delivery; Tyr, tyrosine.

PLGA-NPs-PEG-HIV-Tat versus PLGA NPs and 0.473 for 

PLGA-NPs-PEG-HIV-Tat versus PLGA-NPs-PEG. Thus, 

no release of initial loaded FB took place during these reac-

tion steps. However, in the case of PLGA-NPs-PEG-POD, 

the EE of FB was up to 20% lower than that obtained for 

PLGA NPs (P=0.042). Table 2 shows the physicochemical 

properties of the PLGA-PEG-peptide NPs prepared from 

POD and HIV-Tat grafted onto the PLGA-PEG-maleimide 

copolymer, following the strategy illustrated in Figure 1B. 

The PLGA-PEG NPs obtained with the diblock copolymer 

that was synthesized in our laboratory were smaller than 

the NPs prepared from the commercial diblock copolymer 

(PLGA-PEG®). This may be due to the reduction of the 

molecular weight of the copolymer (PLGA segments).55,56 

However, PLGA-PEG-peptide NPs (with greater molecular 

weight than PLGA-PEG NPs due to the peptide conjugation) 
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were smaller in the case of PLGA-PEG-POD NPs than in 

the case of PLGA-PEG-HIV-Tat NPs. Finally, the PLGA-

PEG-peptide NPs exhibited significantly higher EE values 

(81.0%±1.7%–82.9%±0.8%) than PLGA-PEG NPs (P=0.004 

and P=0.007 for POD and HIV-Tat, respectively). These 

results indicate that a slight drug association exists when the 

peptides are within the polymer matrix.

Some different characteristics were observed depending 

on the preparation method. In general, PLGA-PEG-peptide 

NPs were smaller and with relatively higher EE values than 

PLGA-NPs-PEG-peptide.

The Z
pot

 value is also an important NP physicochemical 

parameter, as it can influence the stability of the particles. 

In theory, larger magnitudes of Z
pot

 values, whether posi-

tive or negative, tend to stabilize particle suspension. The 

electrostatic repulsion between NPs with the same electric 

charge prevents their aggregation.57 Our Z
pot

 results show 

highly negative values for PLGA NPs and PLGA-PEG NPs 

due to the ionization of the carboxylic end groups of the 

polymer surface.58 Conjugation with positively charged POD 

or HIV-Tat changed the anionic Z
pot

 of the resultant NPs to 

cationic; this effect was higher for PLGA-NPs-PEG-peptides, 

whereas PLGA-PEG-peptide NPs had lower Z
pot

 values due to 

the presence of PEG and the peptides in the polymer matrix, 

which mask the PLGA charge. As previously reported, the 

presence of a positive charge is expected to promote ocular 

mucoadhesion due to electrostatic interactions with the 

negatively charged ocular mucosa.59

Morphology
The morphology of the NPs was determined by SEM (Figure S3). 

A spherical shape can be appreciated with a particle size of some 

120 nm and a narrow size distribution. SEM analysis confirmed 

the dynamic light scattering data on NP size. Similar results were 

obtained for all the NPs involved in this study, indicating their 

suitability for ophthalmic applications.54

In vitro release profiles
Sustained release of FB over several hours might greatly 

improve its therapeutic efficacy. The in vitro release behavior 

of FB from NPs containing POD and HIV-Tat, a solution of 

FB (1 mg/mL) in 0.1 M PBS (pH 7.4), and the commercial 

eye-drops Ocufen® were therefore analyzed. We used the 

dialysis bag diffusion technique (Figure 3). As expected, 
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Table 1 Physicochemical properties (with and without FB) and EE of PLGA NPs, PLGA-NPs-PEG, and PLGA-NPs-PEG-peptide

NPs composition Size ± SD (nm) PI ± SD Zpot ± (mV) EE ± SD (%)

PLGA 50:50 NPs 148.4±2.0 0.064±0.027 -29.1±1.3 –

PLGA 50:50 NPs + FB 190.5±1.5 0.065±0.020 -30.4±3.3 77.1±4.2
PLGA-NPs-PEG 164.5±1.8 0.079±0.018 -32.5±1.5 –

PLGA-NPs-PEG + FB 170.3±3.5 0.084±0.014 -30.6±0.7 75.4±2.0
PLGA-NPs-PEG-POD 203.8±1.4 0.060±0.009 33.2±1.7 –

PLGA-NPs-PEG-POD + FB 219.9±1.2 0.082±0.010 30.2±1.4 70.3±5.6
PLGA-NPs-PEG-HIV-Tat 218.4±0.9 0.075±0.045 25.2±2.6 –

PLGA-NPs-PEG-HIV-Tat + FB 210.7±0.2 0.076±0.050 20.2±1.2 76.5±3.8

Notes: Values are expressed as mean ± SD; n=3.
Abbreviations: EE, entrapment efficiency; FB, flurbiprofen; HIV-Tat, human immunodeficiency virus transactivator; NPs, nanoparticles; PEG, polyethylene glycol; 
PI, polydispersity index; PLGA, poly(lactic-co-glycolic acid); POD, peptide for ocular delivery; SD, standard deviation; Zpot, zeta potential.

Table 2 Physicochemical properties (with and without FB) and EE of PLGA NPs, PLGA-PEG NPs, PLGA-PEG-peptide NPs

NPs composition MW (kDa) Size ± SD (nm) PI ± SD Zpot ± SD (mV) EE ± SD (%)

PLGA-PEG NPs PLGA (34) PEG (2) 105.1±0.2 0.080±0.026 -24.3±3.3 –

PLGA-PEG NPs + FB 128.9±0.9 0.079±0.017 -12.6±3.0 73.3±3.3
PLGA-PEG® NPs PLGA (95) PEG (5) 147.7±1.1 0.095±0.039 -24.0±0.7 –

PLGA-PEG® NPs + FB 150.8±1.0 0.096±0.017 -20.9±1.1 78.0±2.5
PLGA-PEG-POD NPs PLGA (34) PEG (2) POD (3.6) 85.9±0.9 0.011±0.020 15.2±0.3 –

PLGA-PEG-POD NPs + FB 103.7±0.3 0.097±0.014 18.6±1.5 82.9±0.8
PLGA-PEG-HIV-Tat NPs PLGA (34) PEG (2) HIV-Tat (1.9) 102.8±1.1 0.012±0.010 20.0±0.4 –

PLGA-PEG-HIV-Tat NPs + FB 123.1±1.7 0.103±0.007 14.0±0.8 81.0±1.7

Notes: Values are expressed as mean ± SD; n=3.
Abbreviations: EE, entrapment efficiency; FB, flurbiprofen; HIV-Tat, human immunodeficiency virus transactivator; NPs, nanoparticles; PEG, polyethylene glycol; 
PEG®, Resomer® RGP type d5055; PI, polydispersity index; PLGA, poly(lactic-co-glycolic acid); POD, peptide for ocular delivery; SD, standard deviation; Zpot, zeta potential.
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the diffusion of FB from the PBS solution and Ocufen® was 

faster and was completed in 120 minutes. The NPs showed 

a biphasic pattern, ie, an immediate release (“burst effect”) 

followed by a slower release profile. The initial fast release 

was attributed to the fraction of the drug that is adsorbed or 

weakly bound to the NP surface. After this initial phase, the 

drug exhibited delayed release.

As can be observed in Figure 3A, release of the drug from 

PLGA NPs was significantly faster than from NPs with con-

jugated peptides. Release of the drug was significantly slower 

for PLGA-NPs-PEG-HIV-Tat than from PLGA-NPs-PEG-

POD (56.5% and 83.3%, respectively) after 120 minutes of 

follow-up. The more delayed release of FB from HIV-Tat 

(compared to POD) resulted in a maximum release profile 

of 90% over the whole study period (8 hours). This might 

be due to the greater amount of HIV-Tat peptide per unit 

of NP surface area, compared to POD, as described above. 

Figure 3B shows the release profiles of FB from PLGA-PEG 

NPs, PLGA-PEG® NPs, and PLGA-PEG-peptide NPs. No 

significant differences were observed between PLGA-PEG 

NPs and PLGA-PEG® NPs; and release of the drug was faster 

than observed from PLGA-PEG-peptide NPs, in agreement 

with previous results.41 In contrast to the results obtained 

for the PLGA-NPs-PEG-peptide formulations, the release 

of the drug was slower for PLGA-PEG-POD NPs than for 

PLGA-PEG-HIV-Tat NPs (46.1% and 80.9%, respectively). 

It seems that the presence of POD inside the polymeric 

matrix produced a more retarded release of the drug than 

for the other NP formulations, probably due to the greater 

FB-POD interaction, as observed in the EE results shown 

in Table 2. This interaction might introduce resistance to 

the diffusional release of the drug, thereby yielding a more 

sustained release of FB.

The development of advanced drug delivery systems 

relies on the judicious and careful selection of components, 

configurations, and geometries, which can be facilitated 

through mathematical modeling of controlled release sys-

tems. Therefore, data obtained from the in vitro release stud-

ies were modeled by the Korsmeyer–Peppas kinetics equation 

to establish the mechanism of FB release from PLGA-NPs-

PEG-peptide and PLGA-PEG-peptide NPs. The diffusion 

exponent (n) and the release rate constant (k) obtained are 

indicated in Table S1. All the NPs had n values in the range 

0.47–0.74; with a coefficient, r2, of between 0.948 and 0.989. 

These results indicated that the release of FB from these 

systems follows a non-Fickian diffusion mechanism, which 

is probably governed by a combination of drug diffusion and 

polymer chain relaxation during polymer swelling.60

As already demonstrated, the PLGA-PEG-peptide NPs 

derived from the modified polymer showed the best results; 

specifically, PLGA-PEG-POD NPs were the smallest NPs, 

and they exhibited both the highest EE and the most sustained 

release. So, these NPs should be considered as candidates for 

drug delivery into intraocular tissues, and they were selected 

for further biological studies.

Ex vivo CLSM study of the interaction 
of PLGA-PEG-peptide NPs with the 
corneal epithelium
In order to evaluate the NPs as delivery carrier to uptake 

the corneal epithelium, the peptides were labeled with Rho 

and were used to prepare fluorescent NPs. The MALDI-

TOF spectra revealed the presence of the labeled peptides 

and, furthermore, revealed the absence of unlabeled peptide 

molecules (Figure S4). The degree of peptide labeling was 

determined by measuring the absorbance of free and labeled 

Figure 3 In vitro release profiles of FB from (A) PLGA-NPs-PEG-peptide, (B) PLGA-PEG NPs, and PLGA-PEG-peptide NPs.
Abbreviations: FB, flurbiprofen; HIV-Tat, human immunodeficiency virus transactivator; NPs, nanoparticles; PEG, polyethyleneglycol; PEG®, Resomer® RGP type d5055; 
PLGA, poly(lactic-co-glycolic acid); POD, peptide for ocular delivery.
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peptides, yielding 0.003 mol Rho/mol POD and 0.04 mol 

Rho/HIV-Tat. Then, PLGA-PEG-Rho-peptide NPs were 

produced, and the results showed that the PLGA-PEG-Rho-

POD and PLGA-PEG-Rho-HIV-Tat NPs contained similar 

concentrations of labeled peptide (approximately 0.25 μM). 

The physicochemical parameters (Table S2) were similar 

to those obtained for the unlabeled NPs. An optimal size 

for ocular delivery (100 nm) and the positive charge was 

maintained. Fluorescence microscopy was used to visualize 

the labeled NPs (Figure S5). The fluorescence images were 

also similar for both NPs and illustrate that a homogeneous 

particle size distribution was obtained.

Cornea is the major route of anterior drug absorption. 

There are three corneal layers, namely epithelium, stroma, 

and endothelium, and all of them have a distinct role in 

transcorneal drug permeability. The corneal epithelium is 

the major limiting barrier in transcorneal drug absorption. 

CLSM images showed the corneal epithelium of the rabbit 

once it had been exposed to PLGA-PEG-Rho-POD NPs and 

PLGA-PEG-Rho-HIV-Tat NPs (Figure 4). Although both 

peptides increase the interaction with the mucin (data not 

shown), the ex vivo study by CLSM show that PLGA-PEG-

POD NPs have a better interaction than PLGA-PEG-HIV-Tat 

NPs with epithelial cells. More fluorescent spots can be seen 

in the images that correspond to the NPs containing POD than 

those containing HIV-Tat. This suggests that the PLGA-PEG-

Rho-POD NPs interact more with the corneal epithelium. 

As previously reported in the literature, the penetration rate 

was dependent on the coating composition.61 Kompella et al62 

demonstrated that corneal epithelial uptake of 20 nm NPs can 

be elevated from approximately 2%–16% by surface coating 

or functionalizing NPs.

Hoechst dyes and wheat germ agglutinin were used to 

distinguish the boundaries of the nucleus and the cell mem-

brane, respectively. We observed that the fluorescent spots 

were mainly distributed around the nucleus of the cells, indi-

cating that the NPs penetrated the corneal epithelium through 

a transcellular pathway. These results are in agreement with 

those reported by other authors for PLGA-PEG,41 poly-ε-

caprolactone,63 and poly(alkyl cyanoacrylate)64 NPs.

Figure 4 CLSM images of a cross-section of (A) corneal epithelium at depth of 10 μm, (B) pretreated with PLGA-PEG-HIV-Tat-Rho NPs, (C) pretreated with PLGA-PEG-
POD-Rho NPs, (D) their corresponding phase contrast with nucleus, and (E) cell membranes.
Abbreviations: CLSM, confocal laser scanning microscopy; HIV-Tat, human immunodeficiency virus transactivator; NPs, nanoparticles; PEG, polyethyleneglycol; PLGA, 
poly(lactic-co-glycolic acid); POD, peptide for ocular delivery; Rho, 5(6)-carboxytetramethylrhodamine.
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In vitro cytotoxicity of PLGA-PEG-
peptide NPs
To assess the cellular cytotoxicity of the NPs, HeLa and 

HepG2 cell lines were used. Cytotoxic activity was evalu-

ated at concentrations ranging from 0.1 to 25 mg/mL. Fol-

lowing 24 hours of exposition to the NPs, cell viability was 

assessed using the MTT assay. The results were plotted onto 

a fitted curve to obtain median lethal dose (LD
50

) values ​​

(NP concentration​​s at which cell viability is 50%). PLGA-

PEG NPs without FB were used as a control. While the 

FB solution showed higher cytotoxicity, the experimental 

LD
50

 values for PLGA-PEG-HIV-Tat NPs were 10.8 mg/

mL in HepG2 cells and 8.4 mg/mL in HeLa cells, whereas 

the PLGA-PEG-POD NPs rendered values of 4.4 mg/mL 

and 3.9 mg/mL, respectively (Figure 5). These results cor-

respond to approximately 200–300 mg/kg of body weight 

in an adult human, suggesting low in vitro cytotoxicity, as 

this would be a much higher intravenous dose than required 

for in vivo drug delivery.65 Representative photographs of 

HeLa and HepG2 cells are shown, with no NPs added (left 

column), incubated with NPs at LD
50

 values (center col-

umn), and incubated with NPs at lethal dose values (right 

column) (Figure 5C).

Ocular tolerance assays
For an ocular instillation drug delivery system, it is 

extremely important to test ocular tolerability. In accor-

dance with the concept of the 3Rs (reduction, refinement 

and, replacement), several techniques are available to 

reduce and replace animal testing. In vitro screening 

serves as a preliminary method to assess possible risk in 

animal studies. Since a single in vitro test cannot mimic 

complete in vivo behavior, eg, the entire systemic mecha-

nism including inflammation, penetration/permeability, 

and tolerance, the assays were also carried out on male 

albino rabbits.
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Figure 5 Cytotoxicity of PLGA-PEG-peptide NPs on (A) HepG2 and (B) HeLa cells lines using the MTT assay, and photographs of (C) HepG2 and HeLa cells incubated 
with NPs to LD50 and LD100 concentrations.
Abbreviations: HIV-Tat, human immunodeficiency virus transactivator; LD50, median lethal dose; LD100, lethal dose; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 
tetrazolium; NPs, nanoparticles; PEG, polyethyleneglycol; PLGA, poly(lactic-co-glycolic acid); POD, peptide for ocular delivery.
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In vitro HET-CAM
The CAM is a noninnervated complete tissue containing 

arteries, veins, and capillaries, and it is technically easy to 

study. It responds to injury via an inflammatory process 

similar to that observed in the conjunctival tissue of a rabbit 

eye. The well-developed CAM vascularization provides an 

ideal model for ocular irritation studies.

The HET-CAM, a suitable alternative to animal testing, is 

based on direct application onto the CAM and the subsequent 

reactions, such as hemorrhage, intravasal coagulation, or lysis 

of blood vessels, which are microscopically assessed along 

a time-course.47 These irritancy effects may occur within 

5 minutes of mucosal administration of the sample onto the 

HET-CAM, according to the INVITTOX protocol.66

Ocular tolerance assays for free FB in PBS showed slight 

irritancy. In contrast, when the different NP formulations 

developed in this work were added, no signs of ocular irri-

tancy were detected within 5 minutes; the irritancy index was 

zero (Figure S6). With respect to the effect of particle size on 

ocular irritancy, as described by Schoenwald and Stewart,54 

only particles of 20 μm mean diameter induced irritation. 

Thus, the FB-loaded NPs seem to be suitable systems for 

ocular administration, and the observed long-term changes 

in their average size do not reach the critical range.

In vivo Draize test
Topical application of the NPs to rabbit eyes showed 

no signs of irritation in the cornea, conjunctiva, or iris 
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Figure 6 Comparison of anti-inflammatory efficacy of PLGA-PEG NPs, PLGA-PEG-peptide NPs, and Ocufen® in the (A) treatment and (B) prevention of ocular inflammation 
induced by SA in the rabbit eye.
Notes: Values are expressed as mean ± SD; *P0.05, **P0.01, and ***P0.001 significantly lower than the inflammatory effect induced by SA; $P0.05, $$P0.01, and 
$$$P0.001 significantly lower than anti-inflammatory efficacy of Ocufen®.
Abbreviations: HIV-Tat, human immunodeficiency virus transactivator; NPs, nanoparticles; PEG, polyethyleneglycol; PLGA, poly(lactic-co-glycolic acid); POD, peptide for 
ocular delivery; SA, sodium arachidonate; SD, standard deviation.
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(MTS =0) (Figure S7). These  results are in accordance  

with those obtained in the HET-CAM test.

Anti-inflammatory efficacy assay
Two studies were performed to determine the anti-inflammatory 

efficacy of the NPs in order to probe their usefulness for pre-

venting and treating inflammation during cataract surgery.

Conjunctival inflammation with significant hyperemia 

was induced by SA, peaking at 30 minutes. In general, NPs 

containing FB (Table 2) and Ocufen® significantly decreased 

the ocular inflammation, showing no significant differ-

ences among them (Figure 6). Only PLGA-PEG-POD NPs 

exhibited better anti-inflammatory response than the other 

formulations at 120 minutes in the prevention of inflam-

mation (Figure 6B), and the SA-induced inflammation was 

inhibited 210 minutes after SA instillation. These results are 

in accordance with those obtained in the ex vivo study by 

CLSM, where it was demonstrated that PLGA-PEG-POD 

NPs had a better interaction than PLGA-PEG-HIV-Tat 

NPs with epithelial cells. Thus, the in vivo results might 

be explained on the basis of the prolonged retention in the 

precorneal area and also in the uptake/internalization into 

the corneal epithelium.

As can be observed in Figure 6A, in the case of treatment, 

no improvement was achieved using PLGA-PEG-POD-NPs, 

while a better anti-inflammatory efficacy was observed in the 

prevention of inflammation (Figure 6B and Figure S8). These 

results could be related to the different absorption of NPs in 

healthy and inflamed tissues. The instillation of SA prior to 

administration of NPs led to enhanced lacrimation and thus 

increasing precorneal loss and clearance of NPs. Our results 

showed that PLGA-PEG-POD NPs enhance the ocular tissue 

residence time and the anti-inflammatory efficacy of FB.

Conclusion
In this study, we proposed PLGA-PEG NPs modified with 

POD or HIV-Tat as an effective ocular drug delivery sys-

tem to reduce inflammation after cataract surgery. Of the 

formulations devised, PLGA-PEG-POD NPs showed the 

best results: uniformly spherical shape with a particle size 

of 103.7±0.3 nm. Their morphology was confirmed by SEM 

and fluorescence microscopy. Moreover, their positive Z
pot

 

(18.6±1.5 mV) promotes ocular mucoadhesion. Furthermore, 

these NPs present higher EE and more sustained release of 

FB, the anti-inflammatory drug studied. PLGA-PEG-POD 

NPs enhanced the delivery of drugs to the corneal epithelium 

and represent an effective system for increasing the bioavail-

ability of FB. The NPs were tolerated well by human cell 

line models (HeLa and HepG2) and did not induce any sign 

of irritation during ocular tolerance studies (either in vitro 

or in vivo). Their anti-inflammatory efficacy suggests that 

PLGA-PEG-POD NPs may be employed to prevent ocular 

inflammatory reactions in which the SA cascade is activated. 

These results indicated that PLGA-PEG-POD NPs could 

offer an effective ocular drug delivery system that would 

facilitate permeation of FB via topical application.
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Figure S1 MALDI-TOF mass spectra of (A) POD, (C) HIV-Tat peptides, and (B and D) the conjugation with maleimide-PEG-amine.
Abbreviations: HIV-Tat, human immunodeficiency virus transactivator; MALDI-TOF, matrix-assisted laser desorption/ionization-time of flight; PEG, polyethyleneglycol; 
POD, peptide for ocular delivery.
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Figure S2 1H-NMR spectra of (A) PLGA-PEG-metoxi and (B) PLGA-PEG-maleimide copolymers.
Abbreviations: 1H-NMR, proton nuclear magnetic resonance; PEG, polyethyleneglycol; PLGA, poly(lactic-co-glycolic acid).
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Table S1 Release kinetics obtained after fitting FB release data from PLGA-NPs-PEG-peptide and PLGA-PEG-peptide NPs into 
Korsmeyer–Peppas model

NPs composition Korsmeyer–Peppas model* Transport mechanism

r2 k ± SD (h-n) n ± SD
NPs obtained following the scheme indicated in Figure 1A
PLGA-NPs-PEG-POD 0.948 7.23±1.32 0.47±0.02 Non-Fickian or anomalous diffusion
PLGA-NPs-PEG-HIV-Tat 0.974 2.67±0.07 0.63±0.01 Non-Fickian or anomalous diffusion
NPs obtained following the scheme indicated in Figure 1B
PLGA-PEG-POD NPs 0.989 2.71±1.48 0.60±0.07 Non-Fickian or anomalous diffusion
PLGA-PEG-HIV-Tat NPs 0.967 2.56±0.20 0.74±0.11 Non-Fickian or anomalous diffusion

Notes: Values are expressed as mean ± SD; n=3; *non-significant differences were observed between POD and HIV-Tat NPs obtained following schemes of Figure 1A and B.
Abbreviations: FB, flurbiprofen; HIV-Tat, human immunodeficiency virus transactivator; k, the release rate constant; n, the diffusion exponent; NPs, nanoparticles; PEG, 
polyethyleneglycol; PLGA, poly(lactic-co-glycolic acid); POD, peptide for ocular delivery; SD, standard deviation.

Figure S3 Scanning electron microscopy analysis of PLGA-PEG-POD NPs.
Abbreviations: NPs, nanoparticles; PEG, polyethyleneglycol; PLGA, poly(lactic-co-glycolic acid); POD, peptide for ocular delivery.
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Table S2 Physicochemical properties of PLGA-PEG-peptide-Rho NPs

NPs composition Size ± SD (nm) PI ± SD Zpot ± SD (mV)

PLGA-PEG-POD-Rho NPs 87.2±0.3 0.112±0.041 22.6±2.7
PLGA-PEG-HIV-Tat-Rho NPs 99.7±1.2 0.083±0.028 15.8±0.8

Abbreviations: HIV-Tat, human immunodeficiency virus transactivator; NPs, nanoparticles; PEG, polyethyleneglycol; PI, polydispersity index; PLGA, poly(lactic-co-glycolic 
acid); POD, peptide for ocular delivery; Rho, 5(6)-carboxytetramethylrhodamine; SD, standard deviation; Zpot, zeta potential.
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Figure S4 MALDI-TOF spectra of (A) Rho-POD and (B) Rho-HIV-Tat peptides.
Abbreviations: HIV-Tat, human immunodeficiency virus transactivator; MALDI-TOF, matrix-assisted laser desorption/ionization-time of flight; Rho, 5(6)-carboxytetram
ethylrhodamine; POD, peptide for ocular delivery.

A B

Figure S5 Fluorescence microscopy images of (A) PLGA-PEG-peptide-Rho NPs and (B) green emission of all scanned NPs.
Abbreviations: NPs, nanoparticles; PEG, polyethyleneglycol; PLGA, poly(lactic-co-glycolic acid); Rho, 5(6)-carboxytetramethylrhodamine.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

629

CPPs conjugated to PLGA-PEG NPs improves ocular drug delivery

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2015:10

Figure S6 Photographs of CAM 5 minutes after the addition of NPs containing FB: (A) PLGA NPs, (B) PLGA-PEG NPs, (C) PLGA-PEG-POD NPs, (D) PLGA-PEG-HIV-Tat 
NPs, and (E) positive control (0.1 M sodium hydroxide).
Abbreviations: CAM, chorioallantoic membrane; FB, flurbiprofen; HIV-Tat, human immunodeficiency virus transactivator; NPs, nanoparticles; PEG, polyethyleneglycol; 
PLGA, poly(lactic-co-glycolic acid); POD, peptide for ocular delivery.

Figure S7 Draize test after instillation of PLGA-PEG-POD NPs (A) and inflammation induced by SA (B).
Abbreviations: NPs, nanoparticles; PEG, polyethyleneglycol; PLGA, poly(lactic-co-glycolic acid); POD, peptide for ocular delivery; SA, sodium arachidonate.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

630

Vasconcelos et al

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/international-journal-of-nanomedicine-journal

The International Journal of Nanomedicine is an international, peer-
reviewed journal focusing on the application of nanotechnology  
in diagnostics, therapeutics, and drug delivery systems throughout  
the biomedical field. This journal is indexed on PubMed Central, 
MedLine, CAS, SciSearch®, Current Contents®/Clinical Medicine, 

Journal Citation Reports/Science Edition, EMBase, Scopus and the 
Elsevier Bibliographic databases. The manuscript management system 
is completely online and includes a very quick and fair peer-review 
system, which is all easy to use. Visit http://www.dovepress.com/
testimonials.php to read real quotes from published authors.

International Journal of Nanomedicine 2015:10

Figure S8 Anti-inflammatory effect of PLGA-PEG-POD NPs in the prevention of ocular inflammation induced by SA.
Note: The images were taken 30 minutes after inducing inflammation.
Abbreviations: NPs, nanoparticles; PEG, polyethyleneglycol; PLGA, poly(lactic-co-glycolic acid); POD, peptide for ocular delivery; SA, sodium arachidonate.
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