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Abstract: Different toxic agents have a varying potential to induce the production of the proin-

flammatory chemokine, CXCL8 (interleukin [IL]-8), in lung cells. A critical question is which 

mechanisms determine the magnitude and persistence of the CXCL8 responses to different 

stimuli. To approach this, we compared the potential of the phorbol ester, 12-O-tetradecanoylphor-

bol-13-acetate (TPA), and sodium fluoride (NaF) to induce CXCL8 responses in A549 cells, 

with emphasis on the importance of nuclear factor kappa B (NF-κB)- and mitogen-activated 

protein kinase (MAPK) signaling. Notably, TPA induced a greater release of CXCL8 than did 

NaF. Furthermore, TPA induced a strong, rapid, but transient upregulation of CXCL8 messenger 

(m)RNA, whereas NaF induced a weaker, more delayed, but persistent upregulation. With respect 

to signaling, TPA led to an early, strong, and relatively transient extracellular signal-regulated 

kinase (ERK)1/2 phosphorylation, and a less marked and even more transient phosphorylation 

of c-jun-N-terminal kinases (JNK1/2) and p38. In contrast, NaF elicited a lower, but relatively 

sustained increase in phosphorylation of ERK1/2, and a marked phosphorylation of p38 and 

JNK1/2, with the JNK1/2 response as most transient. Only ERK1/2 inhibition affected the TPA 

response, whereas inhibition of all the three MAPK cascades reduced NaF-induced CXCL8 

release. TPA also induced an early, marked phosphorylation/translocation of p65 (NF-κB), 

whereas NaF induced slower, less pronounced effects on p65. The CXCL8 responses by TPA 

and NaF were reduced by p65-siRNA. In conclusion, all MAPK cascades were involved in 

NaF-induced CXCL8 release, whereas only ERK1/2 activation was involved in response to 

TPA. Furthermore, NF-κB activation appeared to be indispensable for CXCL8 induction. The 

early response, magnitude, and persistency of MAPK and NF-κB signaling seemed to be critical 

determinants for the potential to induce CXCL8. These findings underscore that a strong, rapid, 

and relatively transient activation of ERK1/2 in combination with NF-kB may be sufficient 

for a strong induction of CXCL8, which may exceed the effects of a more moderate ERK1/2 

activation in combination with activation of p38, JNK1/2, and NF-κB.

Keywords: TPA, sodium fluoride, CXCL8, MAPK, NF-κB, A549 cells

Introduction
The chemokine CXCL8 (interleukin [IL]-8) plays a crucial role in lung inflammation 

by recruiting neutrophils to the sites of injury or infection.1 Elevated CXCL8 levels 

are typical in airway diseases such as chronic obstructive pulmonary disease, cystic 

fibrosis, and severe asthma, and are believed to be an important factor in the patho-

genesis of such disorders.2–4 In addition, CXCL8 also has mitogenic, motogenic, and 

angiogenic properties and may contribute to cancer development.5 Thus, elucidating 

the mechanisms of CXCL8 regulation is of considerable therapeutic interest.
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Activation of CXCL8 production is known to be 

mediated via several signal pathways, including different 

mitogen-activated protein kinases (MAPKs) and the nuclear 

factor kappa B (NF-κB) transcription factor. The MAPKs are 

members of a family of serine-threonine kinases, to which 

many externally activated signaling pathways converge.6 Both 

extracellular signal-regulated kinase-1 and -2 (ERK1/2), the 

c-jun-N-terminal kinases (JNK1/2), and the p38 MAPKs 

seem to influence CXCL8 synthesis, the contribution of 

each depending on the cell type and stimulant.7–13 The cen-

tral element of the classical NF-κB pathway is a homo- or 

heterodimer, most typically consisting of the p65/p50 dimer, 

which within resting cells is inactivated in the cytosol due 

to binding to IκB. Upon stimulation, IκB is phosphorylated, 

ubiquitinated, and degraded, thus allowing p65/p50 to translo-

cate to the nucleus and bind to κB-sites in promoters of target 

genes.14 NF-κB signaling is regarded as indispensable for 

inducible CXCL8 regulation. The effect of NF-κB activation 

alone on the CXCL8 response is, however, normally marginal. 

Therefore, a combined activation of NF-κB and at least one of 

the main MAPK cascades are required to stimulate any con-

siderable increase in CXCL8 production. Maximal CXCL8 

responses are believed to require a combined activation of 

NF-κB along with all the three main MAPK cascades.15 In 

particular, post-transcriptional stabilization of CXCL8 mes-

senger (m)RNA by p38 has been suggested to be essential to 

achieve high levels of CXCL8 release, as CXCL8 mRNA oth-

erwise is highly unstable and degrades rapidly in the absence 

of p38 activity.15 The MAPK and NF-κB cascades are usually 

regarded as separate pathways. However, it has also been 

reported that MAPK activation may be localized upstream 

to the activation of NF-κB, possibly depending on both the 

stimulator and cell type.12,16–19

A large range of toxic agents are known to interact with 

the lung epithelial cell layer, triggering innate immune 

responses and the release of proinflammatory cytokines, 

including CXCL8.20 However, the ability to stimulate CXCL8 

production varies considerably. Proinflammatory cytokines, 

such as IL-1 and tumor necrosis factor (TNF)-α, may upregu-

late CXCL8 release by 100-fold, while other agents cause 

more moderate 5–10-fold increases.15 An important question 

is which mechanisms determine the magnitude and persis-

tence of the observed CXCL8 responses. We have previously 

reported varying potentials to induce CXCL8 responses in 

lung cells by different toxic agents.21–26 Of note, the phorbol 

ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), induced 

a strong CXCL8 response in A549 cells that markedly 

exceeded the effect of sodium fluoride (NaF),9 and with a 

different time course of response. TPA, a classical promoting 

agent in studies of cancer development, is a rapid and strong 

activator of protein kinase C (PKC), and also a potent MAPK 

activator.27 TPA usually seems to exert its cellular effects via 

ERK1/2 activation,18,19 although it has also been reported that 

TPA may activate p38.28 Fluoride exposure in the form of 

hydrogen fluoride is involved in airway disease, as reflected 

by an association with occupational asthma in epidemiologic 

studies,29 and with respiratory inflammation in experimental 

human clinical studies.30,31 To investigate how these effects 

might be elicited, mechanistic studies of fluoride responses 

are of essence. In addition to our previous in vitro studies 

on fluoride exposure in lung epithelial cells,8,9,26,32–34 several 

mechanistic studies on fluoride exposure have emerged the 

recent years, including studies on the role of MAPK in COX-2 

upregulation in lung epithelial cells,35 on oxidative stress and 

lipoxygenase activity in monocytes/macrophages,36,37 and 

on MAPK and oxidative stress in microglia cells.38 NaF has 

been reported to mediate its effect via a persistent G-protein 

activation and/or phosphatase inhibition.39,40 In A549 cells, 

NaF induced a weak, delayed, but persistent PKC activation, 

in contrast to TPA that elicited a strong, rapid, but transient 

effect. Upon PKC inhibition, the stimulatory effect of TPA on 

CXCL8 release was nearly abolished, whereas the response of 

NaF on CXCL8 release was only partially reduced.9 Further-

more, NaF elicited a persistent activation/phosphorylation of 

MAPKs, involving both EGF receptor and Src-dependent 

processes in A549 cells. The NaF effect was partially reduced 

by the inhibition of the MAPKs ERK1/2, p38, and JNK1/2, 

respectively, whereas the combined inhibition of different 

MAPKs (p38/JNK, p38/ERK1/2, and ERK1/2/JNK1/2) 

completely abolished the response.8,9,33 In the present study, 

we have compared the CXCL8 responses induced by TPA and 

NaF with respect to the involvement of MAPK and NF-κB 

pathways, with emphasis on the magnitude and duration of 

the response.

Materials and methods
Reagents
Nutrition mixture F12 HAM Kaighn’s modification culture 

medium was obtained from Sigma-Aldrich Co. (St Louis, MO, 

USA). Fetal bovine serum (FBS) was from EuroClone SpA 

(Milano, Italy). Ampicillin and fungizone were purchased 

from Bristol-Myers Squibb (New York, NY, USA) and peni-

cillin/streptomycin from BioWhittaker® (VWR International, 

Radnor, PA, USA). NaF was obtained from Honeywell 
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International, Inc. (Morristown, NJ, USA). TPA, SB202190, 

PD98059, SP600125, curcumin, MG132, and BAY11-7082 

were purchased from Calbiochem-Novabiochem Corporation 

(San Diego, CA, USA); phenylmethylsulfonyl fluoride and 

pyrrolidine dithiocarbamate (PDTC) were from Sigma-

Aldrich Co. JNK2 SMARTpool small interfering (si)RNA 

reagent against JNK2 and nonspecific control pool (negative 

control) were from Upstate Biotechnology, Inc. (Lake Placid, 

NY, USA). HiPerFect transfection reagent was from Qiagen 

NV (Venlo, the Netherlands). SiRNA against p65 and nonsense 

siRNA were from Cell Signaling Technology, Inc. (Danvers, 

MA, USA). Cytokine ELISA assay for human CXCL8 (IL-8) 

(Cyto-Set® CHC1304) was supplied by Thermo Fisher Sci-

entific (Waltham, MA, USA). Acrylamide/Bis-acrylamide 

mix (30%), TEMED, and Bio-Rad DCTM Protein Assay were 

from Bio-Rad Laboratories Inc. (Hercules, CA, USA). The 

Compartment Protein Extraction Kit was from BioChain Insti-

tute, Inc. (Newark, CA, USA). The Absolutely RNATM reverse 

transcription (RT) polymerase chain reaction (PCR) Miniprep 

kit was from Stratagene California (La Jolla, CA, USA). The 

predesigned TaqMan® Gene Expression Assays, TaqMan 

Universal PCR Master Mix, and the High-Capacity cDNA 

Archive Kit were purchased from Thermo Fisher Scientific. 

SuperSignal® West Dura chemoluminiscence system was 

obtained from Thermo Fisher Scientific, and the stripping 

solution (Mild Antibody Stripping Solution®) was obtained 

from Chemicon International, Inc. (Billerica, MA, USA). All 

other chemicals were purchased from commercial sources at 

the highest purity available.

Antibodies
Specific antibodies against phospho-p38 (Thr180/Tyr182), 

p38, phospho-JNK1/2 (Thr183/Tyr185), JNK 1/2, IκBα, 

phospho-IκBα (Ser32), p65, phopho-p65 (Ser536), glycer-

aldehyde 3-phosphate dehydrogenase (GAPDH), and histon 

H1 were obtained from Cell Signaling Technology, Inc. 

Antibodies against phospho-ERK1/2 (Tyr-204) were obtained 

from Santa Cruz Biotechnology Inc. (Dallas, TX, USA). The 

antibody against JNK2 was from Upstate Biotechnology, 

Inc., and the antibody against β-actin was obtained from 

Sigma-Aldrich Co.

Cell cultures and exposure
A549 cells, a human epithelial lung cell line, from the 

American Type Culture Collection (Manassas, VA, USA) were 

cultured in F12 HAM Kaighn’s modification medium, supple-

mented with ampicillin (0.1 mg/mL), penicillin (0.1 mg/mL), 

streptomycin (0.1 mg/mL), fungizone (0.25 µg/mL), and 10% 

heat-inactivated FBS. The cells (passage number 79–100) 

were plated in 35 mm six-well culture dishes (2×104 cells/

well) and grown to near confluency at 37°C in a humidi-

fied atmosphere of 5% CO
2
 in air. The cells were exposed 

to varying concentrations of NaF (1.0–3.75 mM) and TPA 

(1–100 nM) for the indicated periods of time. When used, 

pharmacological inhibitors were added 1 hour prior to NaF 

or TPA exposure and kept in the culture medium during the 

whole incubation period. The concentrations of MAPK inhibi-

tors PD98059 (25 µM), SB202190 (10 µM), and SP600125 

(20 µM) were based on previous studies of concentration–

response relationships for the respective inhibitors.9 For the 

NF-κB inhibitors, different concentrations were examined: 

curcumin (0–100 µM); MG132 (0–10 µM); BAY11-7082 

(0–10 µM); or PDTC (0–75 µM).

Separation of nuclei and cytosol
For the extraction of nuclei and cytosol, we used a 

Compartment Protein Extraction Kit from BioChain Institute, 

Inc. The cells were lysed, and cytosolic and nuclei proteins 

were isolated according to producer’s recommendations. 

Protein concentrations in the lysate fractions were measured 

by Bio-Rad DC Protein Assay. Then, 6 µg of protein were 

loaded on a 10% Acrylamide/Bis gel. The amounts of p65 in 

the cytosolic and nuclei fractions were analyzed by Western 

blotting.

Transfection with siRNA against JNK  
and p65
A549 cells at a density of 200,000 cells/well were transfected 

with 10 nM siRNA against JNK2 and p65, using HiPerfect 

transfection reagent (18 µL/well) according to the procedure 

by Qiagen NV using the fast-forward protocol.41 The effec-

tiveness of gene silencing was analyzed by Western blotting 

at 48 hours, 72 hours, or 96 hours by measuring the JNK2 and 

p65 protein levels in relation to β-actin. A negative siRNA 

control, SMARTpool (Upstate Biotechnology, Inc.), was used 

for the JNK experiments and SignalSilence® Control siRNA 

for the p65 experiments. Cells transfected with siRNA against 

JNK2 and p65 or negative control siRNA were exposed to 

NaF and TPA for 20 hours, 48 hours after transfection, and 

CXCL8 levels were measured by ELISA.

Measurements of CXCL8
CXCL8 protein levels in the cell medium were determined 

by ELISA assay. The growth medium was harvested and 
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centrifuged at 250× g to remove cells. The final supernatants 

were stored at -70°C. CXCL8 levels were determined accord-

ing to the manufacturer’s guidelines. Absorbance was measured 

and quantified using a plate reader (SunriseTM; Tecan Trading 

AG, Maennedorf, Switzerland) complete with software 

(Magellan version 1.10), and color intensity was converted to 

nanograms of CXCL8 using appropriate standards.

Measurements of CXCL8 mRNA
CXCL8 mRNA levels were determined by real-time PCR. 

Total mRNA was isolated from cells according to the sup-

plier’s recommendations using the Absolutely RNATMRT-

PCR Miniprep kit, and reverse transcribed to cDNA on a 

PCR System 2400 (PerkinElmer) using a High-Capacity 

cDNA Archive Kit (Applied Biosystems; Thermo Fisher 

Scientif ic). Real-time PCR was performed using the 

Applied Biosystems 7500 Real-Time PCR System, with 

predesigned TaqMan Gene Expression Assays (18S, 

Hs99999901_s1 and CXCL8, Hs00174103_m1) and 

TaqMan Universal PCR Master Mix. For these analyses, 

1 µg of total RNA was reverse transcribed to complemen-

tary (c)DNA using a High-Capacity cDNA Archive Kit. 

The cDNAs were diluted 1:20 in a solution of nuclease-free 

water, TaqMan Universal Master Mix, primers, and probe 

before performing the real-time PCR. The expression of 

each gene of interest (GOI) in each sample was normal-

ized against housekeeping genes (HKG), and expressed 

as the fold change compared to the untreated control, as 

calculated by the ∆∆Ct-method:

  ∆Ct = Ct(GOI) − Ct(HKG)	 (1)

  ∆∆Ct = ∆Ct(treated) −∆Ct(control)	 (2)

  Fold change = 2(−∆∆Ct)		  (3)

Immunoblotting
Total and phosphorylated protein levels were detected 

by Western blotting. Cells were resuspended in ice-cold 

lysis buffer (20 mM Tris-HCL; pH=7.5; 150 mM NaCl; 

1 mM EDTA; 1 mM EGTA; 2.4 mM Na-pyrophosphate; 

1.0 mM orthovanadate; 1 mM NaF; 21 mM leupeptin; 

1.5 mM aprotinin; 15 mM pepstatin A; and 1% TritonTM-X), 

sonicated for 5×1 second, and centrifuged for 8,000× g 

for 10 minutes. Protein determination was done in the 

supernatant by the Bio-Rad DC Protein Assay. Proteins 

(12.5  µg/well) from whole-cell lysates were separated 

by 10% SDS-PAGE and blotted onto nitrocellulose 

membranes. To ensure that the protein levels of each 

well were equal, Ponceau staining was used for loading 

control. The membranes were then probed with antibodies 

against the respective phosphorylated MAPKs (p-ERK1/2, 

p-JNK1/2, or p-p38) prior to incubation with horseradish 

peroxidase-conjugated secondary antibodies. The blots 

were developed using the SuperSignal West Dura chemolu-

miniscence system according to the manufacturer’s 

instructions. Finally, the membranes were stripped by 

incubation for 15 minutes at room temperature with Mild 

Antibody Stripping Solution and reprobed for the total 

amount of the respective kinases (ERK2, JNK2, p38) 

and/or β-actin. Using a similar procedure, the membranes 

were probed with antibodies against different NF-κB 

components (IκBα, p-IκBα, p65, p-p65) and reprobed 

with histon H1 and GAPDH.

Statistical analysis
Statistical calculations were performed by Student’s t-test or 

analysis of variance with post-tests for multiple comparisons, 

as indicated in the figure legends. Significance was assigned 

to a P-value #0.05.

Results
CXCL8 responses to fluoride and TPA in 
A549 cells
A549 cells were exposed to NaF (0–5 mM) and TPA 

(0–100 nM) for 20 hours. NaF significantly increased 

CXCL8 levels at 2.5 mM, with a maximal response 

(∼6-fold increase) at 3.75 mM, and a subsequent reduc-

tion at 5 mM (Figure 1A). In accordance with previous 

results obtained by propidium iodide and Hoechst 33342 

staining,32 NaF appeared to have a marginal effect on cell 

viability at 3.75 mM, whereas a substantial reduction in 

viability was observed at 5 mM, as judged visually by 

microscopy (a decrease in cell density and an increase in 

rounded/floating cells – not quantified). In comparison, 

TPA was much more potent, with responses in the nM 

range, and with a 20-fold increase in CXCL8 release from 

the cells at 100 nM, as measured after 20 hours’ exposure 

(Figure 1B). No change in viability was observed (not 

quantified). The time–course relationships for CXCL8 

mRNA expression were also examined. NaF (3.75 mM) 

only slowly upregulated CXCL8 mRNA levels (∼2-fold 

at 1 hour; ∼12-fold at 2 hours), reaching a maximal level 

(∼65-fold) at 6–10 hours. In contrast, TPA triggered a 

much more rapid and marked mRNA response for CXCL8, 

with a half-maximal response (45–50-fold) at ∼1 hour, 

a peak at 2 hours (∼90-fold), and then a progressive decline 
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Figure 1 Concentration-dependent release of CXCL8.
Notes: CXCL8 after exposure to (A) NaF and (B) TPA. A549 cells were exposed to NaF (0–5 mM) and TPA (0–100 nM) for 20 hours, and assessed for the release of 
CXCL8 by ELISA. The data represent the mean ± SEM of three independent experiments. *Significant increase of CXCL8 release; P#0.05. One-way ANOVA with Dunnett’s 
multiple comparisons test. The statistics were performed on log-transformed data.
Abbreviations: CXCL8, interleukin-8; NaF, sodium fluoride; TPA, 12-O-tetradecanoylphorbol-13-acetate; ELISA, enzyme-linked immunosorbent assay; SEM, standard 
error of the mean; ANOVA, analysis of variance.
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Figure 2 Time-dependent increase in CXCL8 mRNA expression in A549 cells upon 
exposure to NaF and TPA.
Notes: A549 cells were exposed to 3.75 mM of NaF and 100 nM of TPA for up to 
10 hours, and assessed for CXCL8 mRNA by real-time PCR. The data represent 
the mean ± SEM of four independent experiments. *Significant increase (P,0.05) 
in CXCL8 mRNA. #Significantly different (P,0.05) from the CXCL8 increase in 
TPA-treated cells. Two-way ANOVA with Šidák’s multiple comparisons test. The 
statistics were performed on log-transformed data.
Abbreviations: CXCL8, interleukin-8; NaF, sodium fluoride; TPA, 12-O-
tetradecanoylphorbol-13-acetate; mRNA, messenger RNA; PCR, polymerase chain 
reaction; SEM, standard error of the mean; ANOVA, analysis of variance.

up to 10 hours (Figure 2). The cumulative mRNA response 

for NaF and TPA seemed to be of approximately the same 

magnitude for up to 10 hours.

Importance of time of exposure for the 
CXCL8 responses
To assess whether short-term or prolonged signaling was required 

for the CXCL8 responses triggered by NaF and TPA, the culture 

medium was removed from the A549 cell cultures after incuba-

tion for 0.5 hour, 1 hour, 3 hours, 4 hours, 6 hours, 8 hours, and 

10 hours. The cells were subsequently washed (three times) 

and resupplemented with fresh medium up to the time point 

for CXCL8 analysis at 20 hours. These experiments showed 

only a slight increase in CXCL8 responses with medium shift 

after 0.5–3 hours for NaF exposure. Further, after medium shift 

at 4–6 hours, the response seemed to be approximately half of 

the response in the cells cultured for 20 hours without medium 

replacement (Figure 3A), suggesting that prolonged signaling 

was required for the NaF-induced response. For TPA exposure, 

on the other hand, the media shift as early as 30 minutes did not 

reduce the maximal CXCL8 release; it was even higher when 

TPA was removed from the cells (Figure 3B), suggesting that 

the early signaling was sufficient.

Involvement of MAPK in NaF- versus  
TPA-induced CXCL8 release
We have previously shown that NaF induced a time- and 

concentration-dependent increase in the activation/

phosphorylation of the MAPKs ERK1/2, p38, and JNK, 

with a persistent increase in the period from 1–4 hours 

in A549 cells.8,9,33 In the present study, we compared the 

effects of NaF (3.75 mM) and TPA (100 nM) in the same 

experiments on the duration of MAPK phosphorylation 

upon exposure up to 4 hours for NaF and TPA, as assessed 

by Western analysis (Figure 4). TPA strongly enhanced 

ERK1/2 phosphorylation, with a maximum response 

already noted after 15–30 minutes. After 2 hours, the TPA-

induced ERK1/2 phosphorylation was diminished, but it 

remained elevated compared to the control at least 4 hours 

after exposure (Figure 4Ab). NaF induced a much weaker, 

although sustained, ERK1/2 phosphorylation, with relatively 

similar levels from 15 minutes to 4 hours (∼2.5%–5% of the 

maximal value for TPA) (Figure 4Aa). Thus, the ERK1/2 
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phosphorylation after TPA exposure was ∼25-fold higher 

than after NaF exposure. In contrast, NaF exposure led to a 

stronger induction of p38 phosphorylation, with a distinct 

and sustained 3-fold increase lasting from 1–4 hours after 

exposure (Figure 4Ba), whereas TPA only weakly and tran-

siently affected p38 phosphorylation, peaking at 30 minutes 

(∼1.7-fold increase), returning to control levels after 1 hour 

(Figure 4Bb). Furthermore, NaF induced a very strong 

JNK1/2 phosphorylation (∼20-fold) after 1 hour, which 

sharply declined at 2 hours (Figure 4Ca). TPA induced a 

low-to-moderate and transient JNK1/2 response, peaking 

at 15 minutes, returning to background levels after 1 hour 

(Figure 4Cb).

Selective pharmacological MAPK inhibitors were then 

used to assess the role of the three MAPK cascades in 

TPA-induced CXCL8 responses in A549 cells. Figure 5A 

shows that pretreatment with the MEK/ERK1/2 inhibitor 

PD98059 (25 µM) reduced the responses substantially. 

The p38 inhibitor SB202190 (10 µM) affected CXCL8 

release from TPA-exposed cells marginally, whereas the 

JNK1/2 inhibitor SP600125 (20 µM) seemed to slightly 

reduce the response, but this was not statistically significant 

(Figure 5A). Similarly, JNK2 silencing with siRNA only 

resulted in a slight, statistically nonsignificant reduction in 

TPA-induced CXCL8 (Figure 5B). The effect of siRNA on 

the JNK2 levels is shown in Figure 5C. Of note, the level 

of inhibition of TPA-induced CXCL8 by the three MAPK 

inhibitors appeared to reflect their activation level by TPA 

(Figure 4). Thus, the failure of SB202190 and SP600125 

(and siJNK2) to elicit a statistically significant suppression 

of TPA-induced CXCL8 was likely due to a too low activa-

tion of p38 and JNK in TPA-exposed cells. In Table 1, the 

percentage inhibition obtained by PD98059, SB202190, and 

SP9000125 in TPA-exposed cells are compared to similar 

experiments in NaF-exposed cells, based upon our previ-

ously published study.8

Involvement of NF-κB activation in 
fluoride- versus TPA-induced CXCL8 
release
IκBα degradation and p65 phosphorylation and 
translocation
In Figure 6A, the time courses for fluoride- and TPA-

induced IκBα degradation are presented. The IκBα levels 

were only slightly reduced during the first hour of NaF (3.75 

mM) exposure, but more strongly diminished (50%–60%) 

at 2–4 hours (Figure 6Aa). After TPA (100 nM) exposure, 

the IκBα levels were abruptly, but transiently, reduced 

(∼90% reduction) after 30 minutes, already returning to 

initial levels after 2 hours’ exposure (Figure 6Ab). Similarly, 

TPA induced a more marked increase in IκBα phosphoryla-

tion than did NaF in the period up to 1–2 hours, with the 

increase in IκBα phosphorylation preceding the decline 

in IκBα levels (data not shown). NaF elicited a gradual 

phosphorylation of p65, increasing from 30 minutes after 

exposure and reaching a sustained and maximal response 

(∼2-fold) from 1–4 hours (Figure 6Ba). In contrast, TPA 

induced a rapid phosphorylation of p65, already peaking 

after 15–30 minutes (∼3-fold increase), and gradually 

returning to background levels from 1–2 hours after expo-

sure (Figure 6Bb). The time course for p65 translocation 

from the cytosol to the nuclei after NaF and TPA exposure 

is presented in Figure 6C. Upon NaF exposure, no transloca-

tions were observed at 15 minutes and 30 minutes, whereas 

the highest level of translocation was observed at 2 hours 
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Figure 4 Time-dependent changes of MAPK ERK1/2, p38, and JNK1/2 phosphorylation upon NaF and TPA exposure.
Notes: (A) MAPK ERK1/2, (B) p38, and (C) JNK1/2. A549 cells were exposed to (Aa, Ba, and Ca) NaF (3.75 mM) and (Ab, Bb, and Cb) TPA (100 nM) for the time 
periods indicated. The MAPK phosphorylations were assessed by Western analysis. The phosphorylated ERK1/2 was related to β-actin. Phosphorylated p38 was related to 
total p38, whereas phosphorylated JNK1/2 was related to β-actin. A typical experiment is shown by Western blot and subsequent optical quantification. Values are expressed 
in percentage of the maximal phosphorylation observed. The experiment is representative of 3–5 experiments.
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kinase; MAPK, mitogen-activated protein kinase.

(2.2-fold compared to untreated controls), followed by a 

reduction at 4 hours (Figure 6Ca). TPA exposure resulted 

in a rapid and more marked translocation to the nuclei, 

with ∼4-fold increase already observed after 30 minutes, 

and with a persistent response (.3-fold) up to 4 hours 

(Figure 6Cb).

Effect of NF-κB inhibitors on the NaF- and  
TPA-induced CXCL8 responses
The degradation of IκBα may be prevented by different 

proteosomal inhibitors,42–46 and this has been demon-

strated to affect the cytokine responses to different agents 

including TPA.46 In initial experiments, we pretreated 
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(20 µM) prior to exposure with 100 nM of TPA for 20 hours, and assessed for CXCL8 release by ELISA. (B) The cells were transfected with siRNA against JNK2 and 
nonspecific siRNA for 48 hours, exposed for 100 nM of TPA for 20 hours, and assessed for CXCL8 release. The values are presented in percentage of the TPA response, 
and represent the mean ± SEM of three independent experiments. *Significant reduction as analyzed by multiple t-tests (P#0.05). (C) JNK1/2 levels after exposure to siRNA 
against JNK2 as shown by a typical Western blot. The JNK1/2 levels were related to β-actin.
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the cells with curcumin, a well-known proteosomal 

inhibitor,44–46 and they were exposed to NaF or TPA. 

Curcumin substantially reduced the fluoride- and TPA-

induced IκBα degradation (Figure 7A) and abolished the 

p65 phosphorylation, as assessed in cell lysates (Figure 

7B) and p65 translocation to the nuclei (Figure 7C) after 

exposure to both agents. Furthermore, curcumin almost 

completely abolished the CXCL8 response to both NaF 

and TPA (Figure 8D). However, since curcumin has been 

reported to inhibit MAPKs and other signaling systems,46 

we examined the concentration-dependent effects of 

other well-established proteosomal inhibitors, such as 

BAY11-7082, MG132, and PDTC, known to inhibit IκBα 

Table 1 The relative effect of MAPK inhibitors on NaF- and 
TPA-induced CXCL8 release

Inhibitor % inhibition of CXCL8 release

NaF  TPA

PD98059 43.6 55.4
SB202190 41.0 12.4ns

SP600125 58.5 32.6ns

Notes: The table compares the percent inhibition of CXCL8 release by the p38 
inhibitor SB202190 (10 μM), the ERK1/2 inhibitor PD98059 (25 μM), and the 
JNK1/2-inhibitor SP600125 (20 μM) in A549 cells exposed to 3.75 mM of NaF8 or 
100 nM of TPA for 20 hours. nsNot statistically significant. Data from Refsnes M, 
Skuland T, Schwarze PE, Øvrevik J, Låg M. Fluoride-induced IL-8 release in human 
epithelial lung cells: relationship to EGF-receptor-, SRC- and MAP-kinase activation. 
Toxicol Appl Pharmacol. 2008;227(1):56–67.8 
Abbreviations: MAPK, mitogen-activated protein kinase; NaF, sodium fluoride; TPA, 
12-O-tetradecanoylphorbol-13-acetate; CXCL8, interleukin-8; ERK, extracellular 
signal-regulated kinase; JNK, c-jun-N-terminal kinase.
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Figure 6 Time-dependent changes of NaF- and TPA-induced IκBα degradation, p65 phosphorylation, and p65 translocation.
Notes: (A) NaF- and TPA-induced IκBα degradation; (B) p65 phosphorylation; and (C) p65 translocation. A549 cells were exposed to 3.75 mM of NaF (Aa, Ba, Ca) and to 
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are shown by typical Western blots (out of 3–5 separate experiments) and by optical quantification of the protein bands. (A) IκBα levels were related to β-actin; (B) p65 
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degradation in a range of studies.43,47 For NaF, small, but 

not significant reductions in CXCL8 release were observed 

for BAY11-7082, MG132 and PDTC (Figure 8Aa, Ba and 

Ca). For TPA, PDTC showed a minor, nonsignificant reduc-

tion (Figure 8Cb), whereas BAY11-7082 and MG132 did 

not exert any reduction (Figure 8Ab and Bb). No apparent 

signs of cytotoxicity were observed for the inhibitors. We 

also assessed the potential role of NF-κB in fluoride- and 

TPA-induced responses by using siRNA against p65. The 

NaF- and TPA-induced CXCL8 releases were partially 

suppressed (∼50% and ∼40% reduction, respectively) by 

siRNA, although inhibition of the TPA-induced response 

did not reach statistical significance (Figure 9A). Of note, 

p65 protein levels were almost completely knocked down 

in by siRNA transfection, as assessed by Western blotting 

(Figure 9B).
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Effect of MAPK inhibitors on the  
NF-κB-system
To examine whether ERK1/2, JNK1/2, and p38 exerted 

their effect via NF-κB-dependent or independent pathways, 

we examined the ability of selective MAPK inhibitors to 

interfere with NF-κB. Subsequent to NaF exposure, neither 

of the MAPK inhibitors affected the IκBα degradation 

(Figure 10Aa). Whereas the NaF-induced p65 phosphoryla-

tion was partially reduced by the p38 inhibitor, SB202190, 

the ERK inhibitor, PD98059, and JNK inhibitor, SP600125, 
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did not exert any effects (Figure 10Ba). In contrast, the 

NaF-induced p65 translocation was partially reduced by 

all the MAPK inhibitors (Figure 10Ca). With respect to 

TPA exposure, the inhibitors of MAPK appeared to be 

without effects on NF-κB signaling (Figure 10Ab, 10Bb, 

and 10Cb).

Discussion
The present study compared the CXCL8 response to NaF with 

the phorbol ester, TPA – two compounds that show no structural 

similarity, but exhibit different activation patterns of intracel-

lular signaling (slow/rapid; persistent/transient; weak/strong). 

Previously, we have reported on the differential activation of 
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PKC by NaF and TPA in A549 cells,9 whereas the present study 

shows the patterns of MAPK and NF-κB activation in relation 

to CXCL8 induction after exposure to these stimulants.

NaF exposure elicited a moderate but sustained 

phosphorylation of p38, ERK1/2, and the p65 subunit of 

NF-κB, as well as a strong but transient phosphorylation 

of JNK. This was accompanied by a gradual, but sustained 

increase in CXCL8 mRNA levels and a low-to-moderate 

increase in CXCL8 release from A549 cells. Consistent with 

this gradual, sustained activation of intracellular signaling 

pathways and CXCL8 expression, our experiments – with the 

removal of NaF by washing and shift of medium – indicated 

that a long-term/persistent response was required for trig-

gering the NaF-induced CXCL8 response. Furthermore, 

all the three MAPK pathways and NF-κB signaling seem 

involved in CXCL8 regulation in NaF-exposed A549 cells. 

This corroborates and extends previous results showing that 

a combined inhibition of different MAPKs was necessary 

to completely abrogate CXCL8 responses in NaF-exposed 

A549 cells.8

In contrast to NaF, TPA exposure resulted in a rapid, 

strong, but relatively transient increase in phosphorylation of 

ERK1/2, with only marginal effects on p38 and JNK, as com-

pared to NaF. Moreover, TPA also elicited a more transient 

phosphorylation of p65, although p65 nuclear translocation 

appeared to persist longer than in NaF-exposed cells. In 

line with the effects on ERK and p65 phosphorylation, TPA 

also resulted in a rapid, transient increase in CXCL8 mRNA 

levels, accompanied by a strong increase in CXCL8 protein 

release. Contrary to the effects observed in NaF-exposed 

cells, the effects of TPA seemed to be predominately medi-

ated through ERK1/2 and NF-κB signaling, as inhibitors 

of p38 and JNK1/2 had little impact on the TPA-induced 

CXCL8 response. This also contradicts earlier suggestions 

that JNK1/2 signaling is indispensable for inducible CXCL8 

regulation.15 Furthermore, the wash-out experiment showed 

that a short-term exposure to TPA was sufficient to trigger a 

CXCL8 response, suggesting that these early transient sig-

naling events appear to be central and perhaps sufficient to 

elicit the full TPA response. Notably, the wash-out experiment 
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Figure 10 Relationship between MAPK and NF-κB activity after fluoride and TPA exposure.
Notes: Effect of MAPK inhibitors on (A) IκBα degradation, (B) p65 phosphorylation, and (C) p65 translocation. A549 cells were pretreated for 1 hour with the p38 inhibitor 
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also indicated that CXCL8 responses were reduced upon 

prolonged TPA exposure, as compared to shorter/more acute 

exposure times. The mechanism for this remains obscure, 

but it may be related to time-dependent downregulation/

desensitization of cellular signaling by TPA. In support of 

this, we have previously observed that pretreatment with 

TPA markedly lowered the CXCL8 response to repeated 

TPA exposures.9

The general concept of CXCL8 regulation is that com-

bined activation of all the MAPKs, in addition to NF-κB, 

is required to achieve a maximal activation of the CXCL8 

response.15 Interestingly, the present study shows that TPA, 
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via a rapid and strong activation of ERK in combination with 

NF-κB, induces a strong upregulation of CXCL8 production 

at 20 hours, by far surpassing the CXCL8 response induced 

by the combined, moderate, and sustained activation of the 

different MAPKs in NaF-exposed A549 cells. Although it 

cannot be excluded that activation of additional MAPKs 

(p38 and JNK) would have enhanced the TPA-induced 

CXCL8 response even further, our results show that strong 

activation of ERK1/2 alone, in combination with NF-κB 

signaling, may be sufficient for a marked CXCL8 response. 

Of note, inhibition of ERK1/2 by PD98059 resulted in a 

partial and almost identical reduction of CXCL8 induction 

after both NaF and TPA exposure, while p65 knockdown 

by siRNA omitted a slightly stronger relative suppression 

of NaF-induced CXCL8 release. Thus, the greater CXCL8 

release induced by TPA compared to NaF may not solely be 

due to its stronger effects on ERK1/2- and NF-κB-dependent 

mechanisms. An interesting observation is that even though 

TPA induced a considerably stronger CXCL8 release than 

did NaF when analyzed at 20 hours, the cumulative CXCL8 

mRNA responses in the period up to 10 hours appeared to be 

relatively similar. The reason for this apparent discrepancy 

is unclear, but it may possibly be related to effects at the 

translational level.

Although TPA induced a strong increase in CXCL8 

release (20-fold) compared to NaF (6-fold), it should also be 

noted that the level of CXCL8 induction by TPA is consider-

ably lower than the more than 100-fold increase in CXCL8 

synthesis, which has been reported after exposure with 

cytokines such as IL-1 and TNF-α.15 Such massive increases 

in CXCL8 are believed to require additional mRNA stabiliza-

tion by p38.15 In our present study, p38 was only marginally 

affected by TPA exposure, and in line with the notion that 

p38 activity is required to stabilize CXCL8 mRNA, TPA-

induced CXCL8 mRNA levels dropped rapidly after 2 hours’ 

exposure, which is also when TPA-induced phosphorylation 

of ERK1/2 and p65 returned to basal levels. In contrast, the 

sustained increase in CXCL8 mRNA levels in NaF-exposed 

A549 cells appeared to be accompanied by comparably sus-

tained increases in p38 and NF-κB phosphorylation levels, 

lasting at least up to 4 hours after exposure.

NF-κB is considered to play an important role in CXCL8 

regulation.15 Thus, regulation of the CXCL8 promoter activity 

has been shown to involve a strong cooperation between a 

high-affinity NF-κB site and an activating protein-1 (AP-1) 

recognition sequence.15,48 The AP-1 recognition sequence 

binds proteins like c-jun and c-fos that are activated by 

MAPKs. In accordance with this, the attenuation of NF-κB 

signaling by use of curcumin or siRNA transfection against 

p65 suppressed CXCL8 responses induced by both NaF 

and TPA. However, despite that, silencing of p65 by siRNA 

resulted in an almost complete downregulation of p65 protein 

levels; this only led to a partial (50%) reduction of NaF-

induced CXCL8 and a 40% (and not statistically significant) 

reduction of TPA-induced CXL8 responses in the A549 cells. 

This contrasts the common assumption that NF-κB signaling 

is a prerequisite for inducible CXCL8 regulation.15 Curcumin 

treatment, on the other hand, nearly completely abrogated the 

CXCL8 responses induced by both TPA and NaF. Notably, 

curcumin, which inhibited IκBα degradation, p65 phospho-

rylation, and translocation in our present study, is also known 

to suppress AP-1 and other signaling pathways.44–46 Thus, the 

inhibitory effects of curcumin on NaF- and TPA-induced 

CXCL8 responses are likely not restricted to NF-κB inhibi-

tion, but they may involve suppression of additional signaling 

pathways such as AP-1. Somewhat surprisingly, a range of 

chemical inhibitors of IκBα degradation commonly used to 

assess NF-κB signaling (MG132, BAY11-7082, and PDTC) 

mostly failed to reduce the CXCL8 responses to TPA or NaF 

treatment, though nonsignificant reductions in the response 

to NaF were observed. Although we did not verify that these 

inhibitors actually prevented IκB degradation, it seems 

unlikely that they all simultaneously failed to function prop-

erly at every concentration tested. A more likely explanation 

is that the lack of convincing inhibitory effects is related to 

unspecific properties of the inhibitors. Almost all of these 

inhibitors have been reported to possess AP-1-stimulating 

activity, which may counteract the effects of reduced NF-κB 

signaling and mask the expected inhibition of the CXCL8 

responses.43,47 Thus, these classical inhibitors of IκBα deg-

radation seem less suited for studies on the role of NF-κB 

in cytokine regulation.

In addition to activating the AP-1 site of the CXCL8 

promoter, MAPKs may also be localized upstream to NF-κB. 

Thus, different MAPK inhibitors have been reported to inter-

fere with the activation of NF-κB upon exposure to different 

agents. Both ERK1/2 and JNK1/2 have been reported as 

upstream activators of NF-κB in IL-1- and TNF-α-exposed 

lung epithelial cells, including A549 cells.12,16,17 ERK1/2 

has previously been reported to regulate NF-κB activation 

in TPA-exposed A549 and U937 cells.18,19 In contrast to 

this, our current findings did not reveal any effects of either 

ERK1/2, p38, or JNK1/2 inhibition on TPA-induced NF-κB 

signaling in the A549 cells. The reason for this discrepancy 

from previous studies remains unclear. However, in NaF-

exposed A549 cells, inhibition of all the three MAPKs 
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partially reduced NF-κB translocation. Moreover, p38 

inhibition also reduced p65 phosphorylation at serine 536 in 

NaF-exposed cells, which is important to CXCL8 expression 

as it promotes coupling of p65 to the basal transcriptional 

machinery.49–51 This observation is consistent with reports of 

p38 regulating p65 Ser536-phosphorylation at the CXCL8 

promoter in pneumococci-stimulated human bronchial epi-

thelial cells.50 Notably, p38 has often been associated with 

post-transcriptional effects on mRNA stabilization, but it may 

also function as an early responder to different toxicants, and 

to be an upstream regulator of the TACE (TGF-α converting 

enzyme)/transforming growth factor-α/epidermal growth 

factor receptor pathway, which has been proposed as a central, 

convergent pathway in innate immunity.52,53

This study is restricted to molecular mechanisms regu-

lating CXCL8 responses to NaF and TPA in A549 cells. 

Fluoride-induced IL-6 release appears to follow similar time 

course and concentration–response relationships as CXCL8, 

suggesting that comparable mechanisms may be involved in the 

regulation of these cytokines.26 Although we have not assessed 

the regulatory mechanism for fluoride- and TPA-induced IL-6, 

we have previously found that the p38 inhibitor, SB202190, 

elicited the identical inhibition of IL-6 and CXCL8, while 

the ERK1/2 inhibitor, PD98059, was somewhat less efficient 

in inhibiting IL-6 than CXCL8, from stone particle-exposed 

A549 cells.54 Despite that, the A549 cell line is one of the best 

described lung cell models and is commonly used for toxicity 

testing and pharmacological studies, the generalization of the 

results obtained from immortalized cell lines should be done 

with great caution. Thus, one cannot exclude the possibility 

that NaF and TPA may exert their effects on CXCL8 through 

different mechanisms in normal lung cells. However, we have 

previously shown by use of other exposure agents (crystalline 

silica) that the role of MAPKs in the regulation of CXCL8 

release from A549 cells resembles their role in the regulation 

of MIP-2 release from primary rat type 2 cells.55

Overall, the potential of different toxicants and other 

activators to induce CXCL8 responses seems to depend upon 

the respective signals elicited and the magnitude and duration 

of the signaling. Our results suggest that the stronger release 

of CXCL8 to TPA than to NaF after 20 hours’ exposure in 

lung epithelial cells (A549 cells) seems ascribed to the early 

and strong upregulation of the ERK1/2 and NF-κB activation 

induced by TPA. For NaF, both the magnitude and persistency 

of the signaling seem important, involving the combined 

activation of ERK1/2, p38, JNK, and NF-κB pathways. Our 

findings also underscore that a strong, rapid, and relatively 

transient activation of ERK1/2 in combination with NF-kB 

may be sufficient to induce a strong induction of CXCL8, 

which may exceed the effects of a more moderate ERK1/2 

activation in combination with the activation of p38, JNK, 

and NF-κB.
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