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Abstract: Engineered bone substitutes are being extensively explored in response to growing 

demand. However, the angiogenesis that occurs during bone formation is often overlooked in 

scaffold design. In this novel study, we incorporated two small interfering RNAs (siRNAs), 

ie, small interfering RNA targets casein kinase 2 interaction protein 1 (siCkip-1) and small 

interfering RNA targets soluble VEGF receptor 1 (siFlt-1), which can promote osteogenesis and 

angiogenesis, into a chitosan sponge. This scaffold could maintain siRNAs for over 2 weeks in 

neutral phosphate-buffered saline and degraded rapidly in the presence of lysozyme. The chitosan 

sponge with siCkip-1 and siFlt-1 in vitro bioactivity was investigated using mesenchymal stem 

cells. Target genes were significantly suppressed, and osteocalcin, alkaline phosphatase, and 

vascular endothelial growth factor were significantly upregulated. Alizarin Red staining revealed 

that mineralization of the extracellular matrix was markedly enhanced by dual transfection. 

Further analysis by immunofluorescence confirmed that the siRNA-modified scaffold simulta-

neously improved the expression of osteocalcin and von Willebrand factor. In vivo testing in a 

skull critical-size defect model showed marked bone regeneration in rats treated with siCkip-1 

and siFlt-1. In conclusion, chitosan sponge containing osteogenic and angiogenic siRNAs may 

be used as a scaffold for bone regeneration. The dual siRNA concept may also be useful in the 

biofunctionalization of other materials.

Keywords: chitosan sponge, osteogenesis, angiogenesis, small interfering RNA

Introduction
Defective bone can be a challenging problem in a number of settings, including trauma, 

deformity, infection, and cancer.1–3 Although the host may have the ability to recover, 

bone substitutes or grafts are required when the defects are larger than a critical 

size.4 Conventional efforts to improve the osteogenic potency of bone scaffolds have 

focused mainly on immobilizing growth factors to facilitate anabolic metabolism.5,6 

Traditional tissue engineering scaffold-based implant materials focus mainly on effec-

tive and efficient osteogenesis; however, angiogenesis is another mandatory event 

during formation of bone that is often neglected in scaffold design. Angiogenesis and 

osteogenesis both require a blood supply that provides a sustentacular niche for self-

renewing osteoprogenitor cells and cytokines such as hypoxia inducible factor 17 and 

vascular endothelial growth factor (VEGF)8 during bone formation.9 The coupling 

of angiogenesis and osteogenesis is regulated by a specific vessel subtype in bone.10 

Consequently, an active blood vessel network is a prerequisite for bone regeneration. 

Combination therapies that promote both angiogenesis and osteogenesis during scaf-

fold design and manipulation are necessary.11 
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RNA interference technology has provided a promising 

method to attenuate the production of specific target proteins 

by degradation of their mRNA. This powerful tool is being 

extensively studied as a potential treatment for numerous 

diseases, including cancer,12 viral infection,13 and neurode-

generative conditions.14 In recent years, small interfering 

RNA (siRNA)-modified scaffolds have also been widely 

explored for the purpose of engineering tissue regeneration 

by guiding multilineage differentiation of mesenchymal 

stem cells (MSCs) with incorporating siRNAs.15 It is con-

sidered to be a superior therapeutic strategy due to the high 

efficiency and targeting effect. Therefore, we hypothesize 

that incorporation of siRNAs that simultaneously promote 

osteogenesis and angiogenesis into the scaffold may solve 

the problem at the gene expression level during bone regen-

eration. Each type of siRNA has a clear specific target and 

the effect would be more precise and predictable compared 

with degradation of mRNA. Targeted knockdown of casein 

kinase 2 interacting protein 1 (Ckip-1) markedly improves 

the bone phenotype both in vitro and in vivo via the bone 

morphogenetic protein-related signaling pathway.16 Mean-

while, downregulation of soluble VEGF receptor 1 (sFlt-1) 

induces angiogenesis by release of additional free VEGF.17 

Therefore, we delivered these two siRNAs simultaneously 

with the aim of promoting anabolic metabolism in defec-

tive bone.

A chitosan sponge was used as a scaffold to maintain 

and deliver the dual siRNAs. Chitosan sponges have been 

used widely as tissue engineering scaffolds in light of their 

simple fabrication, efficient aqueous absorption, and porous 

structure enabling cell penetration.18,19 These sponges can also 

release growth factors for bone regeneration in a controlled 

manner.20,21 To our knowledge, the present study is the first 

to use a chitosan sponge as a reservoir for two siRNAs. We 

analyzed this novel scaffold for bone regeneration in both in 

vitro and in vivo assays. Our results suggest that this siRNA-

modified chitosan scaffold has marked beneficial effects on 

bone regeneration.

Materials and methods
Chitosan sponge preparation
The chitosan sponge was prepared according to a previous 

report.12 Initially, 100 mg of chitosan (molecular weight 

100–300 kDa, degree of deacetylation 93.37%; MP Bio-

medicals, Shanghai, People’s Republic of China) was dis-

solved overnight in 10 mL of acetic acid (2% v/v) under 

magnetic stirring. The sticky chitosan solution was then 

put into a 24-well tissue culture plate at 1 mL per well. 

The solution was frozen at a temperature below -80°C for 

4 hours, and the plate was then lyophilized for 24 hours. 

The lyophilized samples were neutralized by 1 M sodium 

hydroxide and washed with deionized water until a neutral 

pH was reached. The hydrated samples were relyophilized 

using the same protocol.

Loading of Lipofectamine™ 2000  
siRNA complexes
To facilitate angiogenic differentiation, siRNA tar-

ge t  r a t  sF l t - 1 ( s iF l t - 1 ) 13 was  s e l ec t ed  ( s ense 

5′-GCGGGAGAGACUUAAACUATT-3′; antisense 

5′-UAGUUUAAGUCUCUCCCGCTT-3 ′; Shanghai 

GenePharma). To enhance osteogenic differentiation, 

siRNA target rat Ckip-1(siCkip-1)14 was chosen (sense 

5′-GGACUUGGUAGCAAGGAAAdT*dT-3′; anti-

sense 5 ′-UUCCUUGCUACCAAGUCCdT*dT-3 ′ ; 
Shanghai GenePharma, Shanghai, People’s Republic 

of China). Universal negative control siRNA (sense 

5′-UUCUCCGAACGUGUCACGUTT-3′ and antisense 

5′-ACGUGACACGUUCGGAGAATT-3 ′; Shanghai 

GenePharma) was used as a negative control (siNC). Trans-

fection complexes were made by mixing 10 μL of siFlt-1 

(20 μM) and 10 μL of siCkip-1 (20 μM) with 500 μL of 

α-Minimum Essential Medium (α-MEM; Hyclone, Logan,  

UT, USA) or with 10 μL of Lipofectamine™ 2000 (Invit-

rogen, Carlsbad, CA, USA) and 500 μL of α-MEM. After 

5 minutes, the solutions were combined and added immedi-

ately to each well of the porous chitosan sponge. The siRNA-

loaded sponge was lyophilized again as described in chitosan 

sponge preparation section. The siNC was incorporated in 

a similar fashion.

Degradation profile  
for the siRNA-loaded scaffold
The siRNA-loaded sponge was immersed in either 500 μL 

of phosphate-buffered saline or phosphate-buffered saline 

containing 0.1 g/L lysozyme (Sigma-Aldrich, St Louis, MO, 

USA) for 28 days. At predetermined time points, samples of 

the solution were collected and replaced with fresh medium. 

The calibration curve was determined using standard siRNA, 

and the siRNA released in the collected samples was mea-

sured by RiboGreen (Invitrogen). The degradation rate was 

calculated by manually subtracting the siRNA released from 

the total siRNA loaded into the sponge. In addition, several 

selected sponges were freeze-dried during the degradation 

process and observed by scanning electron microscopy 

(SEM; Hitachi Ltd, Tokyo, Japan).
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Cell culture 
Primary rat bone marrow-derived MSCs were isolated and 

cultured as described elsewhere.15 The animal experiments 

were approved by the animal welfare committee of the Fourth 

Military Medical University, Xi’an, People’s Republic of 

China under the relevant laws and institutional guidelines. 

Briefly, male Sprague Dawley rats were sacrificed and 

sterilized in 75% ethanol for 15 minutes. The femurs were 

separated and bone marrow-derived MSCs were collected by 

douching with α-MEM using a syringe under sterile condi-

tions. Aspirates were centrifuged at 800 rpm for 5 minutes, 

resuspended, and maintained in α-MEM supplemented with 

10% fetal bovine serum containing 100 U/mL penicillin and 

100 μg/mL streptomycin. The medium was changed twice 

a week and passages 3–5 were used for further cell seeding. 

When 80% confluence was reached, the cells were trypsinized 

and centrifuged at 800 rpm for 5 minutes. The pellet was sus-

pended in medium to obtain a concentration of 2×105/mL, and 

1 mL was then added to the scaffold and placed in a 24-well 

plate. The scaffold was incubated for 2 hours to allow for 

adhesion, and another 1 mL of medium was then added.

Cell attachment and proliferation
Cell attachment was observed by SEM 1 day after cell seeding. 

Cells were fixed in 2% glutaraldehyde for 4 hours at 4°C and 

dehydrated using graded concentrations of ethanol. The sample 

was freeze-dried, coated with platinum, and observed. After dif-

ferent incubation times, cell proliferation was measured using 

a Cell Counting Kit (CCK-8; Beyotime Institute of Biotech-

nology, Jiangsu, People’s Republic of China) according to the 

manufacturer’s instructions. In brief, CCK-8 and α-MEM were 

mixed at a ratio of 1:10 and added to each well. After incubation 

for 3 hours, the supernatant was transferred to a 96-well plate 

and absorbance was read by a plate reader at 465 nm.

Colocalization of dual siRNAs and cells 
Cy3-labeled siCkip-1 (siCy3) and carboxyfluorescein-

labeled siFlt-1 (siFAM) were incorporated into the chitosan 

sponge. One day after cell seeding, the sample was fixed 

with 4% paraformaldehyde (Sigma-Aldrich) for 20 minutes 

and cryosectioned by microtome in tissue freezing medium 

(Leica, Nussloch, Germany). The slices were then stained 

with 4,6-diamidino-2-phenyllindile (DAPI, Invitrogen) and 

observed by inverted fluorescence microscope (DMLRB, 

Leica). The cells from the scaffold were then trypsinized 

and centrifuged. The pellet was resuspended and checked 

by flow cytometry. Genome mean of red and green fluo-

rescence intensity was used to represent the internalization 

efficiency.

Real-time quantitative polymerase chain 
reaction
Total RNA was isolated from the scaffold using a TRIzol® 

(Invitrogen)-based protocol. First, 1 µg of total RNA was 

reverse-transcribed to complementary DNA by qScript™ 

complementary DNA (cDNA) SuperMix (Quanta Bio-

sciences, Gaithersburg, MD, USA) according to the 

manufacturer’s instructions. Real-time quantitative poly-

merase chain reaction (RT-qPCR) was performed on an ABI 

7500 system with Platinum® SYBR® Green qPCR SuperMix-

UDG (Invitrogen). Normalized cDNA was amplified and 

the threshold cycle value was recorded by monitoring of 

fluorescence intensity. The relative mRNA level was calcu-

lated by the Ct value and normalized by glyceraldehyde-3-

phosphate dehydrogenase. The primer sequences are listed 

in Table 1.

Immunofluorescence analysis
The scaffold was maintained in normal medium for 3 days 

after seeding to allow for cell proliferation. Osteogenic induc-

tion was performed in an osteogenic medium container for 

14 days. The scaffold was fixed in 4% paraformaldehyde 

for 20 minutes, then cryosectioned. The specimen was 

blocked by serum for 60 minutes and permeabilized with 

Triton™ X-100 (Invitrogen) for 15 minutes. The primary 

antibodies for anti-osteocalcin and anti-von Willebrand 

Table 1 Primers used for real-time quantitative polymerase chain reaction

Gene Forward primer sequence (5′–3′) Reverse primer sequence (5′–3′)

Ckip-1 GAGCTTTCGGGTCGATCTGG GGCTCCCTTGTCTGGTCTTT
sFlt-1 TGACATACCCAAACTCGTG AAAGCCTCTCCTACTGTCC
Alp GGCTCCCTTGTCTGGTCTTT GGACGCCGTGAAGCAGGTGA
VEGF CAGCTATTGCCGTCCAATTGA CCAGGGCTTCATCATTGCA
OCN GGTGCAGACCTAGCAGACACCA AGGTAGCGCCGGAGTCTATTCA
GAPDH CAAGTTCAACGGCACAGTCA CCATTTGATGTTAGCGGGAT

Abbreviations: Ckip-1, casein kinase 2 interaction protein 1; sFlt-1, soluble VEGF receptor 1; Alp, alkaline phosphatase; VEGF, vascular endothelial growth factor; OCN, 
osteocalcin; GADPH, glyceraldehyde-3-phosphate dehydrogenase.
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factor was purchased from Abcam (Cambridge, MA, USA) 

and the specimens were incubated in those two antibodies 

respectively overnight. The specimens were incubated in 

fluorescein isothiocyanate-conjugated secondary antibody in 

the dark at room temperature for 1 hour. After rinsing with 

phosphate-buffered saline, the specimen was observed by 

fluorescence microscopy.

Mineralization of the extracellular matrix 
MSCs were seeded in the scaffold of a six-well plate. 

Osteogenesis-inducing medium containing 10% fetal bovine 

serum, 5 mM L-glycerophosphate, and 100 nM dexametha-

sone (Sigma-Aldrich) and 50 μg/mL ascorbic acid was used 

for 14 days when confluence reached approximately 80%. 

Cells in the scaffold were fixed in 10% formalin and incu-

bated with Alizarin Red S (Sigma-Aldrich, St Louis, MO, 

USA), 40 nM, pH 4.2) solution for 10 minutes. The samples 

were rinsed thoroughly in deionized water and imaged by 

optical microscopy.

Scaffold implantation and micro-
computed tomography evaluation
In vivo bone regeneration was evaluated using a rat calvarial 

bone defect model in which the rat was anesthetized using 

1% pentobarbital, and a critical size defect of 8 mm16 was 

then created in calvarial bone followed by implantation of a 

chitosan-scaffold loaded with the different siRNAs. Three 

months later, the rats were sacrificed and the calvarial bone 

was fixed immediately in 4% paraformaldehyde. The fixed 

samples were remodeled, inserted into the chamber, and 

scanned using an Inveon micro computed tomography (CT) 

system (Siemens AG, Munich, Germany). The region of 

interest was defined as a ring with a 4 mm radius from the 

center point of the defect. The three-dimensional structure 

of the defect and the newly-formed bone was reconstructed. 

The bone volume ratio was calculated by the software pro-

vided by the manufacture and used to represent the ratio of 

new bone mass.

Van Gieson’s stain
The fixed samples were washed in running water, dehydrated 

by gradient ethanol (50%–100%), and embedded in methyl-

methacrylate. Approximately 70 µm thickness sections were 

obtained by hard tissue microtome (SP1600, Leica) paral-

leled to the long axis of the calvarial bone and running water 

cooled, slices approximately 70 µm thick were harvested. 

The slices were polished and stained with 1% acid fuchsin 

and 0.5% saturated picric acid, respectively, for histological 

observation under a light microscope (Lucky Zoom, Olympus 

Corporation, Tokyo, Japan).

Statistical analysis
The statistical analysis was performed using Statistical Pack-

age for the Social Sciences version 17.0 software (SPSS Inc, 

Chicago, IL, USA). Three independent experiments were 

repeated in each section and the results are presented as the 

mean ± standard error of the mean. One-way analysis of 

variance and the Student-Newman-Keuls q test were used 

to compare means. P0.05 was set as the level of statistical 

significance.

Results
Characterization of siRNA-loaded 
sponges
Under SEM, the formulated chitosan sponge was seen to be a 

porous three-dimensional structure with cracks approximately 

100 μm long and 50 μm wide (Figure 1A). After loading with 

Lipofectamine/siNC, numerous Lipofectamine/siNC nano-

particles approximately 80 nm in size (Figure 1D) formed a 

larger aggregate approximately 10 μm in size (Figure 1C) and 

became attached to the sponge (Figure 1B).

The degradation profile of the sponge was determined 

after 28 days. The siRNA was released slowly from the 

sponge during the first 8 days, with over 80% still left in 

the sponge (Figure 2A) at this time, which was released 

rapidly in the following 2 days. Thereafter, the siRNA was 

released at a steady rate until the final day, with about 15% 

remaining (Figure 2A) at that time. However, the siRNA 

was released far more rapidly (within 10 days) when in 

lysozyme solution and this is attributed to digestion of 

chitosan (Figure 2A). Meanwhile, chitosan dissolved in 

phosphate-buffered saline resulted in collapse and destruction 

of the cracks (Figure 2B1–B4). The same phenomenon was 

observed to occur more rapidly in phosphate-buffered saline 

and lysozyme solution (Figure 2B5–B6).

Cell attachment and proliferation
After 4 hours of attachment, the sphere-shaped cells were 

adsorbed loosely onto all of the scaffolds, with secretion 

of a small amount of extracellular matrix (Figure 3A). The 

MSCs proliferated rapidly during the first 3 days, but the rate 

of proliferation slowed thereafter. No significant difference 

in proliferation rate was observed between the sponges con-

taining siCkip-1, siFlt-1, or siNC; however, the proliferation 

rate was significantly slower than on the sponge alone after 

3 days (Figure 3B). 
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Colocalization of dual siRNAs and cells
The sponge was cryosectioned to observe the uptake of 

dual siRNAs one day after cell seeding. It was obvious 

that Cy3-labeled red fluorescence and FAM-labeled green 

fluorescence were colocated with DAPI-stained blue nuclei, 

implying that the dual siRNAs could simultaneously be 

internalized into cells from the scaffold (Figure 4A). The 

internalization efficiency was further confirmed by flow 

cytometry. The sponge loaded with dual siRNAs showed 

at least a 5-fold increase in fluorescence intensity in both 

the red and green channels when compared with controls, 

which was similar to the counter mono siRNA internaliza-

tion (Figure 4B).

RT-qPCR analysis
Relative gene expression was monitored by RT-qPCR. 

Sponges loaded with dual siRNAs could silence the both tar-

get genes (~80%) on day 3, which was almost the same level 

of the corresponding mono siCkip-1 or siFlt-1 transfection 

(Figure 5A). Due to the silencing of Ckip-1, mRNA for alka-

line phosphatase and osteocalcin increased by ~2.5-fold in the 

dual transfection group and by ~2-fold in the mono siCkip-1 

A B

C D

200 µm
200 µmS-4,800 5.0 kV 10.1 mm ×200 SE(M)

S-4,800 5.0 kV 11.2 mm ×10.0 k SE(U)

S-4,800 5.0 kV 10.8 mm ×200 SE(M)

S-4,800 5.0 kV 11.2 mm ×50.0 k SE(U)

200 µm

5.00 µm 1.00 µm

200 µm

5 µm 1 µm

Figure 1 Morphology of chitosan sponge before and after loading with siRNA. (A) Blank chitosan sponge, (B) sponge loaded with siRNA, (C) high magnification of red 
arrow, and (D) high magnification of white arrow. 
Abbreviation: siRNA, small interfering RNA.
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Notes: B1-B4, incubation in PBS for 6, 10, 15 and 28 days respectively; B5 and B6, incubation in PBS+Lys for 6 and 10 days respectively. 
Abbreviations: PBS, phosphate-buffered saline; siRNA, small interfering RNA; Lys, lysozyme.
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group (Figure 5A). Similarly, VEGF increased markedly 

(by ~3.5-fold) in the dual transfection group and by ~2.5-fold 

in the mono siFlt-1 transfection group (Figure 5A). One week 

later, the target genes recovered to ~50% in the sponge con-

taining the dual siRNAs (Figure 5B). Alkaline phosphatase 

and osteocalcin increased by ~5.5-fold in the dual transfection 

group and by ~3.5-fold in the mono siCkip-1 transfection 

group (Figure 5B). Meanwhile, VEGF increased by~5-

fold in the dual transfection group and by ~4.5-fold in the 

mono siFlt-1 transfection group (Figure 5B). Interestingly, 

VEGF in the siCkip-1 mono transfection group increased 

by ~2.5-fold and alkaline phosphatase and osteocalcin  

by ~2.5-fold in the siFlt-1 mono transfection group, suggesting 

that crosstalk may exist (Figure 5B). This silencing effect 

disappeared after incubation for 2 weeks; however, alkaline 

phosphatase, osteocalcin, and VEGF expression was still 

over 3-fold higher in the dual siRNA group while the counter 

mono transfection groups were ~2-fold higher (Figure 5C). 

VEGF, alkaline phosphatase, and osteocalcin were also 

increased in the siCkip-1 and siFlt-1 mono transfection 

groups (Figure 5C).

Mineralization in the extracellular matrix 
The osteoblast phenotype was confirmed by Alizarin Red 

staining for matrix mineralization. Osteogenic differentiation 

of MSCs was enhanced on either siCkip-1 or siFlt-1 loaded 
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sponge compared with siNC or blank sponge (Figure 6). 

However, sponge loaded with both siCkip-1 and siFlt-1 

could further increase the osteogenic differentiation when 

compared with the group loaded with siCkip-1 or siFlt-1 

(Figure 6).

Immunofluorescence assay
The in vitro bone anabolic potency of the scaffold was deter-

mined by immunofluorescence staining. Osteocalcin was 

abundantly expressed on the dual siRNA-loaded scaffold but 

remained at a low level in the other scaffolds (Figure 6). In 

addition, the novel vascularization protein, von Willebrand 

factor, was also markedly enhanced on the dual siRNA-

modified scaffold (Figure 6). As expected, osteocalcin was 

also upregulated in the mono siCkip-1 transfection group, as 

was von Willebrand factor in the mono siFlt-1 transfection 

group (Figure 6).

Bone regeneration in the rat skull 
defect model
New bone formation in the defect area was scanned by 

microCT and the bone volume ratio in the region of interest 

was taken to represent newly generated bone. The sponge 

loaded with dual siRNAs was able to promote significant 

defect restoration when compared with the other groups 

(Figure 7A and C). Mono siCkip-1 transfection could also 

increase new bone formation when compared with the siNC 

or blank sponge. However, mono siCkip-1 transfection 

improved new bone formation much less in comparison 

with dual transfection (Figure 7A and C). The sectioned 

sample was stained according to Van Gieson’s protocol 

after ultrahard slicing. As with microCT scanning, the two-

dimensional new bone area within the defect was largest in 

the dual transfection group; mono siCkip-1 also promoted 

more new bone generation in comparison with the siNC or 

blank sponge (Figure 7B and D).

Discussion
In this study, siCkip-1 and siFlt-1 were coimmobilized into 

chitosan to form a novel scaffold. These two siRNAs could 

be maintained in this scaffold for over 2 weeks and were able 

to colocate around seeded MSCs. In vivo and in vitro tests 

demonstrated that chitosan sponge containing osteogenic 

and angiogenic siRNAs promoted significant regeneration 

of bone. The present study may provide a new treatment 

strategy for bone defect.

Dual delivery of two therapeutic molecules can have 

simultaneous functional effects, with a synergistic outcome. 

Qu et al17 used basic fibroblast growth factor, which has 

activity in both osteogenesis and angiogenesis, to treat bone 
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MSCs by seeding this factor into a nanohydroxyapatite/

polyamide66 (n-HA/PA66) composite scaffold to mimic 

natural osteogenesis.17 B-cell lymphoma-extra large siRNA 

and doxorubicin have been codelivered for a synergistic anti-

cancer effect.18 Cao et al have also synthesized and assembled 

biodegradable nanocarriers for dual delivery of siRNA and 

chemotherapeutic drugs into hepatic cancer cells.19 Moreover, 

siRNAs have been transfected to modulate the T-cell response 

by dual mode.20 Unfortunately, dual delivery of two siRNAs 

in bone tissue engineering is still seldom validated.

In our study, siRNAs promoting osteogenesis and angio-

genesis were codelivered by Lipofectamine derived from 

chitosan sponge. Chitosan is an inexpensive and nontoxic 

polymer which has been extensively used as a drug carrier 

system.21 Chitosan sponge is a porous and plastic material 

compared with solid bone substitutes, so it is favorable for 

both drug loading and irregular bone defects restoration. 

Therefore, it may be more suitable for craniomaxillofa-

cial defects regeneration since most of the bones here are 

curved and complicated.22 In addition, chitosan sponge can 

be synthesized without additional reagents that could have 

unwanted effects. For these reasons, chitosan sponge was 

used as both a drug reservoir and regeneration material in 

our study.

Chitosan sponge has been used as a carrier enabling 

sustained drug release.21 Our results confirmed that two 

siRNAs can have a superimposed action when cotransfected 

into MSCs from the sponge. In the surface characterization 

study, numerous Lipofectamine/siRNA particles aggregated 

together after lyophilization;23 however, the particles behaved 

very differently when compared with those from the direct 

measurement from aqueous solution.23 This aggregation 

might possibly be ascribed to the use of a lyophilization 

process without nonionic lyoprotectants.24 The siRNA release 

from the sponge could persist for a relatively long duration, 

which could probably acquire prolonged gene silence effect. 

In addition, the RT-qPCR data showed that the target genes 

were suppressed for at least 1 week. The growth rates of 

MSCs in the sponge + siCkip-1, siFlt-1, and sponge + siNC 

groups were not significantly different; however, both of 

them significantly lower than the sponge alone, indicating 

that the suppression may have originated from Lipofectamine 

and it was considered as its main drawback.22,25,26 Colocaliza-

tion observed by fluorescence microscope and quantitative 

data with flow cytometer assay showed high transfection 

efficiency in MSCs, which is in agreement with a previous 

report,22 and suggests that Lipofectamine could be used to 

deliver two siRNAs simultaneously. These results indicate 

that the chitosan sponge can be used to deliver dual siRNAs 

in a sustainable manner.

siCkip-1 is a well-documented anabolic molecule in 

bone14 and the increased VEGF caused by siFlt-1 might also 

improve bone formation.27 Similarly, VEGF expression was 

improved after silencing of Ckip-1. Therefore, knockdown of 

Ckip-1 or sFlt-1 alone was able to increase the expression of 

osteogenic genes and new bone regeneration to some degree. 

However, when they were delivered together, osteogenic dif-

ferentiation was markedly improved both in vitro and in vivo, 

indicating that the angiogenic effect of siFlt-1 could further 

enhance the osteogenic effect of siCkip-1. Taken together, 

manipulating osteogenesis and angiogenesis simultaneously 

during bone tissue engineering may provide a more powerful 

efficiency.28

Conclusion
siRNA-modified chitosan sponges could maintain siRNA for 

a longer term without losing its efficacy. Chitosan sponges 

loaded with both siCkip-1 and siFlt-1 had superimposed 

activity, resulting in a high degree of colocalization with 

cells and simultaneous enhancement of both osteogenesis and 

angiogenesis in vitro. Our in vitro and in vivo studies show 

that this scaffold is able to promote new bone regeneration. 

This dual siRNA-modified chitosan scaffold could potentially 

be used for restoration of healthy bone.
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