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Study objective: To prospectively explore the underlying regional homogeneity (ReHo) 

brain-activity deficit in patients with chronic primary insomnia (PCPIs) and its relationship 

with clinical features.

Design: The ReHo method and Statistical Parametric Mapping 8 software were used to evaluate 

whether resting-state localized brain activity was modulated between PCPIs and good sleepers 

(GSs), and correlation analysis between altered regional brain areas and clinical features was 

calculated. 

Patients and participants: Twenty-four PCPIs (17 females, seven males) and 24 (12 females, 

12 males) age-, sex-, and education-matched GSs.

Measurements and results: PCPIs disturbed subjective sleep quality, split positive mood, and 

exacerbated negative moods. Compared with GSs, PCPIs showed higher ReHo in left fusiform 

gyrus, and lower ReHo in bilateral cingulate gyrus and right cerebellum anterior lobe. Compared 

with female GSs, female PCPIs showed higher ReHo in the left fusiform gyrus and right posterior 

cingulate, and lower ReHo in the left cerebellum anterior lobe and left superior frontal gyrus. 

Compared with male GSs, male PCPIs showed higher ReHo in the right temporal lobe and lower 

ReHo in the bilateral frontal lobe. The fusiform gyrus showed strong positive correlations and 

the frontal lobe showed negative correlations with the clinical measurements.

Conclusion: The ReHo analysis is a useful noninvasive imaging tool for the detection of 

cerebral changes and the indexing of clinical features. The abnormal spontaneous activity areas 

provided important information on the neural mechanisms underlying emotion and sleep-quality 

impairment in PCPIs. 

Keywords: insomnia, regional homogeneity, functional magnetic resonance imaging, sex dif-

ference, sleep disorder, blood oxygen level-dependent, mood disorder

Introduction 
Sleep may allow the removal of free radicals accumulated in the brain during 

wakefulness1 and protect the structural stability of neuronal synapses. After sleep, the 

tired nerve cells and the biological characteristics of long-distance signal transmission 

recover normal physiological function. In general, a good sleep may be considered 

as a strong predictor of a good health.2,3 conversely, a disturbed and/or interrupted 

sleep would adversely affect cognitive function, academic performance, and attentive 

ability,4–6 and is associated with poor emotional and physical health,7 conduct problems, 

and substance use,8,9 in both sexes and at all ages.7,10 Chronic primary insomnia (CPI), 

one of the most prevalent health complaints worldwide, is expected to further increase 
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with the aging of society.11 Patients with CPI (PCPIs) who 

underwent chronically disturbed sleep and sleep loss, non-

refreshing sleep, and heightened arousal in bed12 frequently 

experience intrusive thoughts, which have been described as 

worrisome and negatively toned.

To date, limited work has been done to investigate CPI 

within a neuroscientific framework, and only a handful of 

studies have directly addressed the structural bases of CPI 

traits. A previous positron emission tomography study found 

that, compared with good sleepers (GSs), PCPIs displayed a 

relative increase in global cerebral metabolic rate for glucose 

utilization, both during sleep and when awake.13 A single-

photon emission computed tomography study found that 

PCPIs displayed a significant decrease in regional cerebral 

blood flow in frontal, parietal, and occipital cortices and basal 

ganglia during sleep.14 A number of voxel-based morphom-

etry studies have demonstrated several significantly changed 

gray matter concentrations (GMCs) in the frontal lobe, 

temporal lobe, hippocampus, and cerebellum.15,16 Riemann 

et al17 found reduced hippocampal volumes, but none of other 

regions of interest analyzed revealed volume differences 

between PCPIs and GSs. Conversely, other studies found 

no significant between-group differences (eg, hippocampus) 

in any of the investigated brain morphometry variables.18,19 

Although these studies focus on the brain structural changes 

in PCPIs, few resting-state functional magnetic resonance 

imaging (rs-fMRI) studies have been conducted to examine 

neural bases of PCPI brain traits, few studies take mood 

deficits (eg, depression, anxiety) into consideration, and still 

too many areas of dispute have been left unresolved. There-

fore, it is important to explore the potential health effects of 

CPI on patients, especially the microscopic functional and 

emotional change aspects.

Previous studies have demonstrated that the synchronous 

activity of neurons is conducive to the integration and coor-

dination of information processing in the brain,20 but altering 

neuronal synchrony may lead to the deterioration of informa-

tion processing speed and efficiency, resulting in dysfunc-

tion.21 The regional homogeneity (ReHo) method, a widely 

used rs-fMRI measure, assesses the functional consistency 

and similarity for each individual by calculating Kendall’s 

coefficient concordance (KCC) of the time series of a given 

voxel with its nearest neighbors. The ReHo method is based 

on a data-driven approach and thus does not require onset 

time of stimulus and prior knowledge, and it has good test–

retest reliability. It can be used to evaluate resting-state brain 

activities based on the hypothesis that the hemodynamic 

characteristics of each voxel are similar within a functional 

cluster and that there is dynamic synchronization of voxels 

within a given cluster.22–24 Therefore, the simple calculation 

and reliable characterization of the ReHo method makes 

it a potentially useful tool for rs-fMRI data analysis, as a 

measure for investigating intrinsic brain activities during 

the resting-state condition and whether the local synchro-

nization of spontaneous brain activities is associated with 

PCPI traits.

Recently, ReHo has been successfully used to explore 

functional modulations and to characterize pathophysi-

ological changes in patients with sleep problems, such 

as obstructive sleep apnea25 and sleep deprivation,24 

and various neuropsychiatric disorders related to mood/

emotional changes, such as unhappy individuals,26 social 

anxiety disorders,27 panic disorder,28 early life stress29 and 

depression.30 However, it has not yet been used to explore 

pathophysiological changes in PCPIs.

On the basis of the studies reviewed above, we hypoth-

esized that, compared with GSs, PCPIs would exhibit abnor-

mal ReHo activities in at least parts of certain brain areas, 

including the prefrontal lobe, temporal lobe, hippocampus, 

and cerebellum, together with emotional changes. To test 

the hypothesis, the present prospective study is the first to 

characterize and compare ReHo differences between PCPIs 

and GSs using rs-fMRI to understand the underlying effect 

of CPI patients on brain function.

Materials and methods
Subjects
Twenty-four PCPIs (17 females and seven males) who had 

sleep onset and/or maintenance insomnia were recruited from 

the Psychiatry Department of The First Affiliated Hospital of 

Nanchang University. All subjects were evaluated with an 

unstructured clinical interview for history of medical and sleep 

disorders and with a structured interview (the Structured Clini-

cal Interview for Diagnostic and Statistical Manual of Mental 

Disorders, version 4 (DSM-IV) administered by an experienced 

psychiatrist) to document life history of psychiatric disorders.

All PCPIs met the following criteria: 1) conformity to the 

definition of CPI by the International Classification of Sleep 

Disorders-2 (ICSD-2); 2) insomnia lasting 5 months; 3) a 

Pittsburgh Sleep Quality Index (PSQI) score 7; 4) had a 

sleep diary for at least 2 weeks’ duration; 5) right-handedness; 

6) no history of inborn or other acquired diseases such as 

psychiatric disorder, hypertension, diabetes mellitus, coro-

nary artery disease, no addictions such as heroin addiction, 

smoking addiction, or alcohol addiction, and no other sleep 

disorders, including hypersomnia, parasomnia, sleep-related 
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breathing disorder, sleep-related movement disorder, or cir-

cadian rhythm sleep disorder; 7) no foreign implants in the 

body; and 8) moderate body shape and weight.

Twenty-four GSs (12 females and 12 males) who were 

age-, sex-, and education status-matched to PCPIs were 

recruited for this study. All GSs met the following criteria:  

1) good sleeping habits and good sleep onset and/or mainte-

nance; 2) regular dietary habits; 3) no history of swing shift, 

shift work, or sleep complaints; 4) no consumption of stimu-

lants, medications, tea, or coffee for at least 3 months prior 

to the study; 5) PSQI score 5, Hamilton Depression Rating 

Scale (HAMD) and Hamilton Anxiety Rating Scale (HAMA) 

scores 7. All GSs also met criteria 5–8 above for PCPIs. 

Research design and procedures 
All volunteers were asked to wear a Fitbit Flex tracker (http://

help.fitbit.com); PCPIs wore the tracker for 2 consecutive 

nights to evaluate their sleep status, and GSs wore it for 

1 week to exclude poor sleepers. Meanwhile, the total sleep 

time, sleep onset latency, and sleep efficiency were recorded. 

Before the tests, PCPIs who had consumed psychoactive 

medications (eg, benzodiazepine) were asked to stop tak-

ing any medications for 48–96 hours prior to and during 

the study. Another eight patients were first-time visitors 

and had never taken any psychoactive medications before. 

All volunteers were asked to empty their feces and urine, 

and to rest quietly for 30 minutes before the rs-fMRI scans. 

The volunteers were instructed to wear black blinders and 

sponge earplugs, and fix the head, to avoid audiovisual stimu-

lus during the rs-fMRI scans. They were told to relax and 

not to think of anything, and not to fall asleep in particular. 

A simple questionnaire was administered immediately after 

the scan to ask whether the subjects were awake during the 

scan. The data of the subjects who were asleep during the 

scan were excluded. This study was approved by The Human 

Research Ethics Committee of the First Affiliated Hospital of 

Nanchang University. All volunteers participated voluntarily 

and were informed of the purposes, methods, and the poten-

tial risks, and all signed an informed consent form. 

Questionnaires
All volunteers were asked to complete a number of question-

naires, including the PSQI,31 Insomnia Severity Index (ISI),32 

HAMD33 HAMA,34 Self-Rating Scale of Sleep (SRSS) and 

Profile of Mood States (POMS).35,36 The POMS questionnaire 

contains seven indexes in which five (nervousness, wrath, 

fatigue, depression, and confusion) reflect negative emotion 

and two (energy and self-esteem) reflect positive emotion.

fMRI parameters
fMRI scanning was performed on a 3-Tesla magnetic 

resonance scanner (Siemens, Germany). High-resolution 

T1-weighted images were acquired with a three-dimen-

sional spoiled gradient-recalled sequence in an sagittal 

orientation: 176 images (repetition time  =1,900 ms, 

echo time =2.26 ms, thickness =1.0 mm, gap =0.5 mm, 

acquisition matrix  =256×256, field of view  =250  mm 

× 250 mm, flip angle =9°) were obtained. Finally, 

240 functional images (repetition time =2,000 ms, echo 

time =30 ms, thickness =4.0 mm, gap =1.2 mm, acquisition 

matrix =64×64, flip angle =90°, field of view =220 mm 

×220 mm, 29 axial slices with Gradient-Recalled Echo-

Planar Imaging pulse sequence) covering the whole brain 

were obtained.

fMRI data analysis 
Functional data were checked by MRIcro software (www.

MRIcro.com) to exclude defective data. The first ten time 

points of the functional images were discarded due to 

the possible instability of the initial fMRI signal and the 

participants’ adaptation to the scanning environment. On 

the basis of MATLAB2010a (Mathworks, Natick, MA, 

USA), the rest of the data preprocessing was performed by 

DPARSFA (http://rfmri.org/DPARSF) software, includ-

ing Digital Imaging and Communications in Medicine 

(DICOM) standards for form transformation, slice timing, 

head motion correction, and spatial normalization. Motion 

time courses were obtained by estimating the values for 

translation (millmeters) and rotation (degrees) for each sub-

ject. The participants who had more than 1.5 mm maximum 

displacement in x, y, or z and 1.5° of angular motion during 

the whole fMRI scans would be rejected. After head-motion 

correction, the fMRI images were spatially normalized to 

the Montreal Neurological Institute (MNI) space using 

the standard Echo-Planar Imaging template in Statistical 

Parametric Mapping 8 (SPM8, http://www.fil.ion.ucl.ac.uk/

spm) software and resampling the images at a resolution of 

3 mm ×3 mm ×3 mm. After preprocessing, the time series 

for each voxel were temporally bandpass filtered (0.01–0.08 

Hz) and linearly detrended to reduce low-frequency drift 

and physiological high-frequency respiratory and cardiac 

noise and time series linear detrending. The Friston six head 

motion parameters obtained by rigid body correction were 

used to regress out head motion effects based on recent work 

showing that higher-order models were more effective in 

removing head-motion effects.37,38 Linear regression was 

also applied to remove other sources of spurious covariates 
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along with their temporal derivatives, including the signal 

from a ventricular region of interest, and the signal from a 

region centered in the white matter.39 Of note, the global 

signal was not regressed out in the present data, as in Guo 

et al40 for the reason that it is still controversial to remove the 

global signal in the preprocessing of resting-state data.39,41 

Individual ReHo maps were generated for each data-

set by calculating the KCC of the time series of a given 

voxel with those of its nearest neighbors (26 voxels) in a 

voxel-wise analysis, as in our previous study.24 To reduce 

the influence of individual variations in the KCC value, 

normalization of ReHo maps was done by dividing the 

KCC among each voxel by the averaged KCC of the whole 

brain. The resulting fMRI data were then spatially smoothed 

with a Gaussian kernel of 6×6×6 mm3 full-width at half-

maximum (FWHM). 

Statistical analysis
For behavior performance, two-sample Student’s t-test was 

used for continuous data, and chi-square test was used for 

categorical data. All the results are quoted as two-tailed 

P-values. P0.05 was considered statistically significant. 

All the statistical analyses were performed using IBM SPSS 

version 21.0 statistical software. 

For fMRI data, two-sample Student’s t-tests were used to 

assess the differences between two groups, with age, years of 

education, and/or sex as nuisance covariates of no interest. A 

corrected significance level of individual voxel P0.01 and 

V1,080 mm3, using an AlphaSim corrected cluster threshold 

of P0.05, was used to determine the statistical significance. 

Brain–behavior correlation analysis
Based on ReHo findings, the brain regions that demonstrated 

significant differences between groups were identified. These 

regions were classified as regions of interest and saved as 

masks with REST software. For each region of interest, the 

mean ReHo value was extracted by averaging ReHo values 

over all voxels for each PCPI. Finally, the mean ReHo values 

were entered into IBM SPSS 21.0 software to calculate their 

correlations with the behavioral performances.

Results
Behavioral results
Compared with GSs, PCPIs demonstrated worse subjective 

sleep estimates, respectively, as measured by PSQI (PSQI score: 

15.6±2.1 versus 2.3±0.8, P=0.001; time in bed: 8.4±1.2 hours  

versus 8.6±0.5 hours, P=0.591; total sleep time: 3.7± 
1.1 hours versus 7.6±0.6 hours, P0.001; sleep efficiency: 

44.7%±15.7% versus 89.1%±59.0%, P0.001) and Self-

Rating Scale of Sleep (SRSS) (35.3±4.7 versus 15.3±2.0, 

P0.001), and disturbed mood state as measured by HAMD 

(10.5±5.3 versus 1.9±1.2, P0.001), HAMA (8.8±3.1 

versus 1.5±1.2, P0.001), and POMS (POMS total score: 

115.2±26.3 versus 84.7±4.5, P0.001; nervousness: 8.0±5.5 

versus 1.9±0.9, P0.001; wrath: 6.1±5.1 versus 1.9±0.9, 

P0.001; fatigue: 6.2±4.7 versus 1.9±0.9, P0.001; depres-

sion: 5.0±4.6 versus 0.6±0.7, P0.001; confusion: 6.6±3.3 

versus 3.1±1.5, P0.001; energy: 9.4±4.9 versus 15.0±1.2, 

P0.001; self-esteem: 7.3±3.6 versus 9.8±2.4, P=0.012). 

The details are presented in Tables 1 and 2. 

Female PCPIs (PCPI-Fs) compared with female GSs 

(GS-Fs), as well as male PCPIs (PCPI-Ms) compared with 

male GSs (GS-Ms), showed significantly disturbed subjec-

tive sleep estimates as measured by PSQI (P0.05) and 

SRSS (P0.05), and disturbed mood state as measured by 

HAMD (P0.05), HAMA (P0.05), and POMS (P0.05). 

Compared with PCPI-Ms, PCPI-Fs only showed significantly 

longer total sleep time (3.3±1.1 hours versus 4.4±0.9 hours, 

P=0.032) and higher sleep efficiency (39.0%±13.1% versus 

58.6%±13.1%, P=0.003). The ISI score was 19.3±2.7 for 

PCPIs, 19.1±2.9 for PCPI-Fs, and 19.9±2.1 for PCPI-Ms. 

The details are presented in Tables 1 and 2.

Behavioral correlations 
Duration of insomnia showed positive correlations with 

total PSQI score (r=0.539, P=0.007), POMS nervousness 

(r=0.440, P=0.032), wrath (r=0.414, P=0.045), depression 

(r=0.458, P=0.024), confusion (r=0.575, P=0.003), total 

score of five negative indexes (r=0.512, P=0.011), and 

POMS total score (r=0.454, P=0.026). PSQI displayed posi-

tive correlations with HAMD (r=0.620, P=0.001), HAMA 

(r=0.412, P=0.045), POMS confusion (r=0.0.410, P=0.047), 

and POMS total score (r=0.407, P=0.048), and negative 

correlations with POMS energy (r=-0.466, P=0.022), 

self-esteem (r=-0.427, P=0.037) and total score of two 

positive indexes (r=-0.470, P=0.021). HAMD and HAMA 

each showed positive correlation with POMS nervousness, 

wrath, depression, confusion, total score of five negative 

indexes, and POMS total score, and negative correlation with 

POMS energy, self-esteem, and total score of two positive 

indexes. ISI score showed positive correlation with SRSS 

score (r=0.511, P=0.011). Total POMS score of five nega-

tive indexes showed positive correlation with each of the 

five negative indexes, and negative correlation with energy, 

self-esteem, total score of two positive indexes and POMS 

score. Total POMS score of two positive indexes showed 
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positive correlations with energy and self-esteem, and nega-

tive correlations with the five POMS negative indexes and 

their total score.

ReHo and brain–behavior correlation
All PCPIs compared with all GSs
Compared with GSs, PCPIs showed significantly higher 

ReHo in the left fusiform gyrus of the temporal lobe 

(Brodmann area [BA]37), and lower ReHo in the bilat-

eral cingulate gyrus (BA23, BA24) and right cerebellum 

anterior lobe (lingual, culmen). In PCPIs, the observed 

bilateral cingulate gyrus showed significant negative cor-

relation with HAMA (r=-0.436, P=0.033), but the right 

cerebellum anterior lobe did not show any correlations with 

behavioral performance. The left fusiform gyrus showed 

significant positive correlations with duration of insomnia 

(r=0.443, P=0.03), PSQI score (r=0.410, P=0.047), SRSS 

score (r=0.477, P=0.018), POMS nervousness (r=0.405, 

P=0.05), fatigue (r=0.486, P=0.016), depression (r=0.711, 

P0.001), confusion (r=0.666, P0.001), total score of five 

negative indexes (r=0.603, P=0.002) and POMS total score 

(r=0.576, P=0.003), and negative correlation with POMS 

energy (r=-0.416, P=0.043). The details are presented in 

Table 3 and Figure 1.

PCPI-Fs compared with GS-Fs
Compared with GS-Fs, PCPI-Fs showed higher ReHo in 

the left fusiform gyrus of the temporal lobe (BA37) and 

right cluster of the posterior cingulate gyrus, occipital 

lobe, and parahippocampal gyrus (BA17, BA18, BA27, 

BA30), and lower ReHo in the left cerebellum anterior lobe 

(culmen, declive, nodule) and left superior frontal gyrus 

(BA10, BA11). The details are presented in Table 3 and 

Figure 2A.

In PCPI-Fs, only the higher ReHo in the left fusiform gyrus 

showed significant positive correlation with HAMA score 

(r=0.504, P=0.039). The details are presented in Figure 2B.

PCPI-Ms compared with GS-Ms
Compared with GS-Ms, PCPI-Ms showed significantly 

higher ReHo in the right temporal lobe (middle temporal 

gyrus, inferior temporal gyrus; BA20, BA21), and lower 

ReHo in the left frontal lobe (superior frontal gyrus, middle 

frontal gyrus; BA6) and bilateral medial frontal gyrus (BA6). 

The details are presented in Table 3 and Figure 3A.

In PCPI-Ms, the left frontal lobe showed significant 

negative correlations with duration of insomnia (r=-0.771, 

P=0.042) and PSQI score (r=-0.848, P=0.016); the bilateral T
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middle frontal gyrus showed significant negative correlation 

with PSQI score (r=-0.762, P=0.046). However, the temporal 

lobe did not display significant correlations with any behav-

ioral performance. The details are presented in Figure 3B.

PCPI-Fs compared with PCPI-Ms
Compared with PCPI-Ms, PCPI-Fs showed significantly 

higher ReHo in right superior temporal gyrus (BA21, BA22), 

and lower ReHo in the cluster of bilateral medial frontal 

gyrus, subcallosal gyrus and anterior cingulate (BA11, BA25, 

BA32). The details are presented in Table 3 and Figure 3C.  

The mean blood oxygenation level dependent (BOLD) 

signal value of the altered ReHo areas, as well as the dif-

ferent areas between other groups, as presented above, was 

extracted. The details of the BOLD signal value are presented 

in Figure 4A–D. But the altered ReHo areas didn’t display 

any significant correlations with PSQI total sleep time and 

sleep efficiency in PCPI-Fs and PCPI-Ms.

Discussion 
To our knowledge, this study is the first to evaluate whether 

resting-state local functional homogeneity was modulated 

by CPI utilizing an ReHo analysis and rs-fMRI approach. In 

our study, PSQI showed significant positive correlations with 

negative indexes and duration of insomnia and negative cor-

relation with positive moods, suggesting that PSQI could be 

useful for indexing the duration of insomnia and mood state. 

Significant group differences in ReHo were observed within 

distributed brain regions over the temporal lobe, frontal 

lobe, cerebellum, and cingulate gyrus, along with disturbed 

subjective sleep estimates as measured by PSQI and SRSS, 

and disturbed mood state estimates as measured by HAMD, 

HAMA, and POMS, suggesting multiple clinical symptoms 

and brain dysfunctions were involved in PCPIs. In addition, 

we focused on the correlations between the ReHo differences 

and a number of questionnaires in CPI groups. 

Temporal cortex deficits 
PCPIs are hypervigilant and ruminative according to neu-

rocognitive models, and have shown an excessive hyper-

arousal of the central nervous system (CNS) throughout 

the night in electrophysiological studies.42–44 In support of 

these findings, we found that the higher ReHo in temporal 

lobes showed excessive hyperarousal and development of 

synchronization with negative moods, duration of insomnia, 

and subjective sleep quality deficits, and negative correlation 

with positive moods in all PCPIs, PCPI-Ms, and PCPI-Fs 

compared with GSs. The fusiform gyrus is responsible for T
ab

le
 3

 T
w

o-
sa

m
pl

e 
t-

te
st

 d
iff

er
en

ce
s 

w
ith

 R
eH

o 
m

et
ho

d 
be

tw
ee

n 
PC

PI
 g

ro
up

s 
an

d 
GS

s

C
on

di
ti

on
s

B
ra

in
 r

eg
io

ns
 o

f p
ea

k 
co

or
di

na
te

s
L/

R
B

A
V

 (
m

m
3 )

t-
sc

or
e 

of
  

pe
ak

 v
ox

el
M

N
I c

oo
rd

in
at

es
  

of
 p

ea
k 

vo
xe

l

A
ll 

P
C

P
Is

 c
om

pa
re

d 
to

 a
ll 

G
Ss

PC
PI

s 


 GS
s

T
em

po
ra

l l
ob

e 
(fu

si
fo

rm
 g

yr
us

)
L

37
1,

26
9

3.
92

-4
2 

-3
9 

-9
PC

PI
s 


 GS

s
C

er
eb

el
lu

m
 a

nt
er

io
r 

lo
be

 (
lin

gu
al

, c
ul

m
en

)
R

N
A

1,
35

0
-3

.8
1

15
 -

42
 -

30
PC

PI
s 


 GS

s
C

in
gu

la
te

 g
yr

us
L,

 R
23

, 2
4

1,
75

5
-5

.2
3

9 
-9

 3
6

P
C

P
I-

Fs
 c

om
pa

re
d 

to
 G

S-
Fs

PC
PI

-F
s 


 GS

-
Fs

T
em

po
ra

l l
ob

e 
(fu

si
fo

rm
 g

yr
us

)
L

37
1,

13
4

4.
55

-3
6 

-4
2 

-1
5

PC
PI

-F
s 


 GS

-
Fs

Po
st

er
io

r 
ci

ng
ul

at
e,

 o
cc

ip
ita

l l
ob

e,
 p

ar
ah

ip
po

ca
m

pa
l g

yr
us

R
17

, 1
8,

 2
7,

 3
0

1,
94

4
5.

29
12

 -
57

 9
PC

PI
-F

s 


 GS
-

Fs
C

er
eb

el
lu

m
 a

nt
er

io
r 

lo
be

 (
cu

lm
en

, d
ec

liv
e,

 n
od

ul
e)

 
L

N
A

1,
53

9
-4

.0
8

-9
 -

57
 -

21
PC

PI
-F

s 


 GS
-

Fs
Su

pe
ri

or
 fr

on
ta

l g
yr

us
L

10
, 1

1
1,

43
1

-4
.0

4
-2

4 
69

 0
P

C
P

I-
M

s 
co

m
pa

re
d 

w
it

h 
G

S-
M

s 
PC

PI
-M

s 


 GS
-

M
s

M
id

dl
e 

te
m

po
ra

l g
yr

us
, i

nf
er

io
r 

te
m

po
ra

l g
yr

us
R

20
, 2

1
2,

10
6

5.
32

51
 -

15
 -

33
PC

PI
-M

s 


 GS
-

M
s

Su
pe

ri
or

 fr
on

ta
l g

yr
us

, m
id

dl
e 

fr
on

ta
l g

yr
us

L
6

2,
37

6
-5

.0
7

-2
7 

-9
 6

9
PC

PI
-M

s 


 GS
-

M
s

M
ed

ia
l f

ro
nt

al
 g

yr
us

L,
 R

6
1,

62
0

-3
.8

2
6 

-1
5 

66
P

C
P

I-
Fs

 c
om

pa
re

d 
w

it
h 

P
C

P
I-

M
s

PC
PI

-F
s 


 P

C
PI

-M
s

Su
pe

ri
or

 t
em

po
ra

l g
yr

us
R

21
, 2

2
1,

35
0

4.
55

60
 -

51
 1

2
PC

PI
-F

s 


 P
C

PI
-M

s
M

ed
ia

l f
ro

nt
al

 g
yr

us
, s

ub
ca

llo
sa

l g
yr

us
, a

nt
er

io
r 

ci
ng

ul
at

e
L,

 R
11

, 2
5,

 3
2

2,
05

2
-3

.7
5

0 
33

 -
12

N
ot

es
: T

he
 b

et
w

ee
n-

co
nd

iti
on

 s
ta

tis
tic

al
 t

hr
es

ho
ld

 w
as

 s
et

 a
t 

vo
xe

l w
ith

 P


0.
01

 (
|t|


4.

43
7)

, c
lu

st
er

 s
iz

e 
w

ith
 P


0.

05
 a

nd
 V


1,

08
0 

m
m

3 , 
co

rr
ec

te
d 

by
 A

lp
ha

Si
m

. 
A

bb
re

vi
at

io
ns

: B
A

, B
ro

dm
an

n 
ar

ea
; L

/R
, l

ef
t/

ri
gh

t; 
M

N
I, 

M
on

tr
ea

l N
eu

ro
lo

gi
ca

l I
ns

tit
ut

e;
 N

A
, n

ot
 a

pp
lic

ab
le

; GS
,

 g
oo

d 
sl

ee
pe

r;
 GS

-
F,

 g
oo

d 
fe

m
al

e 
sl

ee
pe

r;
 GS

-
M

, g
oo

d 
m

al
e 

sl
ee

pe
r;

 P
C

PI
, p

at
ie

nt
 w

ith
 c

hr
on

ic
 p

ri
m

ar
y 

in
so

m
ni

a;
 P

C
PI

-F
, 

fe
m

al
e 

pa
tie

nt
 w

ith
 c

hr
on

ic
 p

ri
m

ar
y 

in
so

m
ni

a;
 P

C
PI

-M
, m

al
e 

pa
tie

nt
 w

ith
 c

hr
on

ic
 p

ri
m

ar
y 

in
so

m
ni

a;
 R

eH
o,

 r
eg

io
na

l h
om

og
en

ei
ty

; V
, v

ol
um

e.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Neuropsychiatric Disease and Treatment 2014:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2170

Dai et al

multimodal combined and face identification, because of 

which the fusiform gyrus may play a regulative role and be 

involved in mood. Our findings suggest that the temporal 

lobe (mainly in the fusiform gyrus) could be useful for 

indexing the extent of insomnia traits and mood state, and 

the hyperarousal reactivity of CPI may contribute to changes 

in increased activity in the temporal cortex. 

Prefrontal cortex deficits
Altena et al45 found that PCPIs had a smaller volume of 

gray matter (GMV) in the left orbitofrontal cortex, strongly 

correlating with the subjective severity of insomnia. 

Joo et al15 found that PCPIs showed significant reduction 

of GMC in left or right dorsolateral prefrontal cortices 

(right superior frontal gyrus, left middle frontal gyrus, 

and bilateral inferior frontal gyrus), and decreased GMV 

in medial frontal gyrus compared with GSs. Noh et al46 

found that PCPIs had significantly lower scores on tests 

of attention and frontal-lobe function relative to GSs. In 

support of these findings, in the present study we found 

that the lower ReHo in the frontal gyrus was found both 

in PCPI-Ms compared with GS-Ms and in PCPI-Fs com-

pared with GS-Fs. Furthermore, the PCPI-Fs showed more 

significant damage than PCPI-Ms.
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Figure 1 Various correlations for patients with chronic primary insomnia.
Notes: Compared with GSs, PCPIs show higher ReHo in the left fusiform gyrus of the temporal lobe, and lower ReHo in the cingulate gyrus and right cerebellum anterior lobe. 
The cingulate gyrus shows significant correlation with the HAMA. The fusiform gyrus shows significant correlations with PSQI score, SRSS score, duration of insomnia, POMS 
total score, total score of five negative indexes, and POMS energy. But the right cerebellum anterior lobe didn’t find any correlations with the behavioral performance.
Abbreviations: HAMA, Hamilton Anxiety Rating Scale; GS, good sleep; PCPI, patient with chronic primary insomnia; POMS, Profile of Mood States; PSQI, Pittsburgh Sleep 
Quality Index; ReHo, regional homogeneity; SRSS, Self-Rating Scale of Sleep.
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Figure 2 Altered ReHo areas between PCPI-Fs and GSs and its correlations with behavioral performances.
Notes: (A) Compared with GS-Fs, PCPI-Fs showed higher ReHo in the left fusiform gyrus and right posterior cingulate, and lower ReHo in the left cerebellum anterior lobe 
and left superior frontal gyrus. (B) Only the fusiform gyrus showed significant correlation with the HAMA. *P,0.05.
Abbreviations: HAMA, Hamilton Anxiety Rating Scale; GS-F, female good sleeper; PCPI-F, female patient with chronic primary insomnia; ReHo, regional homogeneity.
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Notes: (A) Compared with GS-Ms, PCPI-Ms show higher ReHo in the right temporal lobe, and lower ReHo in the left superior frontal gyrus and bilateral medial frontal 
gyrus. (B) The medial frontal gyrus shows significant correlations with PSQI score, and the superior frontal gyrus shows significant correlations with duration of insomnia and 
PSQI score. (C) Compared with PCPI-Ms, PCPI-Fs show altered ReHo areas, including the right superior temporal gyrus and bilateral medial frontal gyrus. 
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Converging evidence from lesion, neuroimaging, and 

electrophysiological data supports the view that the frontal 

cortex is a key component of the circuitry that implements 

both positive and negative affect.47 The middle frontal gyrus 

has been recognized as one key region associated with mood 

regulation48 and may be an important factor for the develop-

ment of depressive symptoms in Parkinson’s disease.49,50 In 

PCPI-Ms, the lower ReHo area in left superior frontal gyrus 

showed negative correlations with duration of insomnia and 

PSQI score, and the bilateral middle frontal gyrus showed 
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negative correlation with PSQI score. In addition, duration 

of insomnia and PSQI score showed positive correlations 

with negative mood indexes and negative correlations with 

positive mood indexes. That is to say, the dysfunction of the 

frontal gyrus in PCPI-Ms, together with mood disorder, had a 

trend to accentuate gradually with the growth of the decline 

in subjective sleep quality and the duration of insomnia. 

Thus, we presume that the effects of CPI, together with the 

structural damage reviewed above, result in abnormally syn-

chronized neural activities in the frontal gyrus. This abnormal 

activity causes abnormal ReHo values and, consequently, 

results in cognitive and emotional dysfunction. In conclusion, 
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Figure 4 Mean ReHo signal values of altered regional brain areas.
Notes: (A) Compared with GSs, PCPIs showed altered ReHo in the cingulate gyrus (-0.38±0.18 versus -0.06±0.20), temporal lobe (-0.29±0.28 versus -0.63±0.21), and 
cerebellum anterior lobe (-0.56±0.28 versus -0.19±0.38). (B) Compared with GS-Fs, PCPI-Fs showed altered ReHo in the fusiform gyrus (-0.18±0.28 versus -0.63±0.17), 
posterior cingulate (0.96±0.36 versus 0.44±0.26), cerebellum anterior lobe (-0.46±0.15 versus -0.10±0.22), and superior frontal gyrus (0.08±0.60 versus 0.72±0.43). 
(C) Compared with GS-Ms, PCPI-Ms showed altered ReHo in the temporal lobe (0.17±0.26 versus -0.30±0.11), superior frontal gyrus/middle frontal gyrus (-0.72±0.18 
versus -0.07±0.25), and medial frontal gyrus (-0.60±0.19 versus 0.02±0.27). (D) Compared with PCPI-Ms, PCPI-Fs showed altered ReHo in the frontal lobe (-0.08±0.53 
versus 0.86±0.67) and superior temporal gyrus (0.85±0.40 versus 0.09±0.26).
Abbreviations: GS, good sleeper; GS-F, good female sleeper; GS-M, good male sleeper; PCPI, patient with chronic primary insomnia; PCPI-F, female patient with chronic 
primary insomnia; PCPI-M, male patient with chronic primary insomnia; PSQI, Pittsburgh Sleep Quality Index; ReHo, regional homogeneity.
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lobe, and parahippocampal gyrus in PCPI-Fs compared 

with GS-Fs. 

Previous physiological, neuroimaging, and neurocogni-

tive models demonstrated ruminative, hypervigilant, and/or 

excessive hyperarousal in CPI, which may relate to an imbal-

ance of excitatory and inhibitory CNS influences.13,42,44 These 

studies provide supported evidence that the hyperarousal 

model was regarded as a core predisposing or perpetuat-

ing factor of CPI.61 This excess arousal is proposed to be 

manifested as exaggerated cortical, somatic, and cognitive 

activation, which leads to increased sensory and information 

processing, ultimately hampering the ability to initiate or 

maintain sleep.62,63 In support of these findings, the higher 

ReHo in small volumes of the posterior cingulate, occipital 

lobe, and parahippocampal gyrus was consistent with the 

excessive hyperarousal reactivity of CPI.

Cerebellum deficits
This is a crucial implication in light of mounting evidence 

for cerebellar involvement in various neurologic and psychi-

atric conditions, including autism,64 depression,65 and mood 

disorders.66 The cerebellum, to form a feedforward loop 

through the thalamus and to form a feedback loop through 

the pons, interconnects a network with extensive cortical 

and subcortical areas. These anatomic connections of exten-

sive cortical and subcortical areas support the role of the 

cerebellum in cognitive and emotional processing. A large 

body of empirical research in patients with cerebellar dam-

age has demonstrated that the region is related to emotional 

regulation.67,68 The cerebellum anterior lobe, which receives 

the nociceptive afferent fibers of spinal cord, is unconspicuous 

in cognitive and behavioral impairment once it is damaged.69 

In our study, lower ReHo in the cerebellum anterior lobe was 

found both in PCPIs compared with GSs and in PCPI-Fs 

compared with GS-Fs. This finding suggests that disturbed 

nocturnal sleep may have a harmful effect on the cerebellar 

area and may imply the potential relationship between cerebel-

lum and disturbed negative mood state in PCPIs. 

Conclusion
In summary, our study demonstrated that the ReHo analysis, 

a useful noninvasive imaging tool for the detection of cerebral 

ReHo changes in PCPIs, could be useful for indexing the 

extent of insomnia, duration of insomnia, and mood state, 

and may be an early biomarker for detecting the altered 

brain activity in PCPIs. Multiple brain-region dysfunctions 

were involved in PCPIs, and significantly disturbed subjec-

tive sleep estimates as measured by PSQI and SRSS, and 

ReHo analysis may be an early biomarker for detecting the 

altered brain activity in PCPIs and could be useful for index-

ing the clinical features.

Cingulate cortex deficits
Terroni et al51 have shown that cingulate cortex dysfunction 

may be a key reason for poststroke depression and working-

memory damage in stroke patients. The cingulate cortex, with 

greater metabolism relative to the whole brain activity, plays 

an important role in emotion processing52 and self-control,53 

and is regarded as the structural backbone of the brain network 

and involved in sleep.54,55 Sleep deprivation increased the 

reaction times and lapses rate, which has been attributed to 

less-efficient communication between brain areas56,57 and to 

changes in activity in the cingulate cortex,58,59 and which 

impaired the directed information flow of cingulate connec-

tivity, proportional to its deleterious effect on vigilance.60 In 

support of these findings, in our study we found that compared 

with GSs, PCPIs showed lower ReHo in the bilateral cingulate 

cortex with significant negative correlation with HAMA. Our 

findings suggest that disturbed nocturnal sleep may have a 

harmful effect on the cingulate cortex, which is involved in 

sleep and negative depression mood, and may be a key reason 

for post-insomnia negative mood.

Lack of hippocampal cortex deficits
Previous studies did not find any significant GMC, GMV, 

and white matter volume differences between PCPIs and 

GSs.15,18,19 Noh et al46 found that PCPIs displayed less abso-

lute hippocampal volume (HV) and intracranial volume 

than GSs, but the differences between groups were not 

significant. They found that, in PCPIs, right and left HVs 

were negatively correlated with the duration of insomnia 

and the arousal index, and positively correlated with the 

recognition of visual memory. In addition, free recall in 

verbal memory was positively correlated with left HV in 

PCPIs. They thought that a long duration of insomnia and 

poor sleep quality contributed to a bilateral reduction in HV. 

However, Riemann et al17 found that PCPIs demonstrated 

significantly reduced HV bilaterally compared with GSs. 

Notably, still left unclear is whether HV changed in PCPIs. 

In support of these findings, in the present study we further 

confirmed whether there are underlying ReHo brain-activity 

deficits in the parahippocampal gyrus. In our study, we 

did not find reduced ReHo areas in the hippocampus in all 

PCPIs compared with all GSs, and in PCPI-Ms compared 

with GS-Ms. However, few HVs were found in the higher 

ReHo in the right cluster of the posterior cingulate, occipital 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Neuropsychiatric Disease and Treatment 2014:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2174

Dai et al

disturbed negative mood state as measured by the HAMD, 

HAMA, and POMS were found. The abnormal spontaneous 

neuronal activity in those areas provides information on the 

neural mechanisms underlying emotional and sleep-quality 

impairment in PCPIs. 
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