
© 2014 Wolk et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0)  
License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further 

permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on 
how to request permission may be found at: http://www.dovepress.com/permissions.php

Drug Design, Development and Therapy 2014:8 1563–1575

Drug Design, Development and Therapy Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
1563

O r i g i n a l  R e s e a r c h

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/DDDT.S68909

Provisional in-silico biopharmaceutics 
classification (BCS) to guide oral drug product 
development

Correspondence: Arik Dahan 
Department of Clinical Pharmacology, 
School of Pharmacy, Faculty of Health 
Sciences, Ben-Gurion University of the 
Negev, PO Box 653, Beer-Sheva 84105 
Israel
Tel +972 8 647 9483
Fax +972 8 647 9303
Email arikd@bgu.ac.il

Omri Wolk
Riad Agbaria
Arik Dahan
Department of Clinical Pharmacology, 
School of Pharmacy, Faculty of Health 
Sciences, Ben-Gurion University 
of the Negev, Beer-Sheva, Israel

Abstract: The main objective of this work was to investigate in-silico predictions of physico-

chemical properties, in order to guide oral drug development by provisional biopharmaceutics 

classification system (BCS). Four in-silico methods were used to estimate LogP: group contribu-

tion (CLogP) using two different software programs, atom contribution (ALogP), and element 

contribution (KLogP). The correlations (r 2) of CLogP, ALogP and KLogP versus measured 

LogP data were 0.97, 0.82, and 0.71, respectively. The classification of drugs with reported 

intestinal permeability in humans was correct for 64.3%–72.4% of the 29 drugs on the dataset, 

and for 81.82%–90.91% of the 22 drugs that are passively absorbed using the different in-silico 

algorithms. Similar permeability classification was obtained with the various in-silico methods. 

The in-silico calculations, along with experimental melting points, were then incorporated into a 

thermodynamic equation for solubility estimations that largely matched the reference solubility 

values. It was revealed that the effect of melting point on the solubility is minor compared to 

the partition coefficient, and an average melting point (162.7°C) could replace the experimental 

values, with similar results. The in-silico methods classified 20.76% (±3.07%) as Class 1, 41.51% 

(±3.32%) as Class 2, 30.49% (±4.47%) as Class 3, and 6.27% (±4.39%) as Class 4. In conclusion, 

in-silico methods can be used for BCS classification of drugs in early development, from merely 

their molecular formula and without foreknowledge of their chemical structure, which will allow 

for the improved selection, engineering, and developability of candidates. These in-silico methods 

could enhance success rates, reduce costs, and accelerate oral drug products development. 

Keywords: biopharmaceutics classification system, in-silico, intestinal permeability, partition 

coefficient, solubility

Introduction
Oral administration is the most comfortable and widespread route of drug intake. 

Indeed, the majority of drug products worldwide are oral dosage forms.1,2 This makes 

gastrointestinal (GI) absorption a determining factor in the successful development 

of candidate bioactive molecules into marketable drug products. In 1995, Amidon 

et al introduced the Biopharmaceutics Classification System (BCS) as a scientific 

paradigm for drug absorption analyses.3 In principle, the BCS identified the solubil-

ity of the drug in the GI milieu, and its permeability across the intestinal epithelium, 

as the two key parameters in the intestinal absorption process.4–7 The BCS is often 

referred to in the context of drug regulation, as it was adopted by the US Food and 

Drug Administration (FDA) and European Medicines Association (EMA) as the basis 

for granting oral drug product manufacturers waivers from in-vivo bioequivalence 

studies.8,9 While the importance of biowaivers for cost reduction of drug products is 

undisputed, it is arguable that the BCS can be of even greater use in the development 
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of new molecular entities (NMEs) into marketable drug 

products.10–12 Early BCS classification would allow selec-

tion and engineering of candidate molecules with favorable 

biopharmaceutical properties from the general pool, and 

selection of suitable polymorphic forms and salts. It may 

also indicate the strategy that should be adopted in formula-

tion development, in order to improve the absorption of a 

candidate drug.2,11,13,14 

BCS classification requires knowledge of a candidate’s 

solubility and permeability. Solubility can be estimated 

using established in-vitro methods such as the shake flask 

method.15–18 Permeability is ideally estimated by perfusion 

of intestinal segments in humans.19–21 However, these experi-

ments are complicated, costly, and require the exposure of 

healthy human volunteers to drugs. Alternatively, perme-

ability may be estimated using validated cell culture methods 

or animal intestinal perfusion studies.22–25 Both solubility and 

permeability estimations require synthesis and formulation 

of the drug, which are not available at early development 

phases, and are costly and time-consuming processes. It 

was therefore suggested that drugs can be provisionally 

classified by the BCS according to physicochemical estima-

tions rather than by experiments.5,12,26–28 The main objective 

of this work was to study the utility of in-silico predictions 

of physicochemical properties, in order to guide the estima-

tions of permeability, solubility and early BCS classification 

of drugs. The BCS classification was also compared to the 

Biopharmaceutics Drug Disposition Classification System 

(BDDCS).29 Our results demonstrate that in-silico calcula-

tions of physicochemical properties are useful for the early 

classification of drugs according to the BCS, thus may be 

extremely useful in the research and development (R&D) 

process of oral drug products.

Methods
Drug dataset
The World Health Organization (WHO) Model List of Essen-

tial Medicines, as well as lists of the most-sold drugs in Great 

Britain (GB), Israel (IL), Japan (JP), South Korea (KR), Spain 

(ES) and the United States (US) were used as sources for the 

drug database in our study. From these national lists, drugs 

were chosen for the compiled database in the study if they 

met the following two criteria: 1) immediate release solid 

oral dosage form; and 2) highest dose strength on the lists. 

Drug selection was from databases available at the follow-

ing Internet web sites: www.fda.gov, www.medicines.org.uk, 

www.health.gov.il, www.portalfarma.com, jpora452.rsjp.net,  

www.kimsonline.co.kr, ezdrug.mfds.go.kr, and www.who.int.

Octanol/water partition coefficients
The partition coefficients between n-octanol and water for 

the unionized form of the drugs (LogP) were estimated 

based on several approaches. The BioLoom 5.0 soft-

ware (BioByte, Claremont, CA, USA) provides a large 

database of empirical measurements of LogP (MLogP) 

from which relevant values for our drug dataset were 

obtained. This software, along with ChemDraw Ultra 8.0 

software (CambridgeSoft, Cambridge, MA, USA) was 

also utilized for theoretical calculations of LogP, using 

algorithms based on the contributions of functional groups 

(CLogP) as developed and described by Hansch and 

Leo.30,31 Drug chemical structures were taken from the 

Merck Index.32 Moreover, LogP values were calculated 

using the Molecular Operating Environment (MOE) Ver-

sion 2004.03 (Chemical Computing Group, Montreal, 

Quebec, Canada) developed by Crippen and Wildman, 

which is based on atomic contribution to hydrophobicity 

(ALogP).33,34 Finally, a simplified algorithm which relies 

on element contribution (KLogP) was derived merely 

from the drug’s molecular formula, while disregarding its 

chemical structure. The number of repetitions of each of 

the elements (eg, C, H, N, O, F, P, S, Cl, and Br) that are 

commonly present in organic compounds was calculated 

for the drugs on the compiled dataset, then fitted against 

the experimental MLogP by linear regression using the 

Microsoft Office Excel 2010 “LINEST” function, resulting 

in the equation:

KLogP = �(nH × H) + (nC × C) + (nN × N) + (nO × O)  

+ (nF × F) + (nP × P) + (nS × S) + (nCl × Cl)  

+ (nBr × Br)

where n
i
 = number of type i atoms, and i is the partial contri-

bution of the element: H =-0.0060, C =0.2463, N =-0.3163,  

O =-0.4515, F =-0.1033, P =-0.7753, S =0.0450, Cl =0.6534, 

and Br =-0.2781.

Correlation of partition coefficients 
with human jejunal permeability
The classification of the permeability was validated based 

on correlations between human intestinal permeability for 

29 reference drugs 19–21,28,35 and the above-mentioned parti-

tion coefficients (CLogP, AlogP, or KLogP). Metoprolol 

was selected as the marker compound for permeability, 

since fraction dose absorbed of 95% was previously 

demonstrated.36–38 Hence, drugs that were similarly cat-

egorized by both partition coefficients values and human 
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intestinal permeability (high/high or low/low respectively, 

with regards to metoprolol) are considered to be correctly 

classified, while drugs that were categorized as low/high 

and high/low by the two methods are termed false negatives 

and false positives, respectively.

Solubility
Literature solubility
Drug solubility data (mg/mL) were taken from the Merck 

Index,32 the United States Pharmacopeia (USP),39 the KFDA 

ezDrug Information, and the Japanese prescription information 

(available at the above-mentioned websites). Whenever signifi-

cant dissimilarities were found between the above sources, the 

lowest value was selected for the calculations of dose number. 

For many drugs, the above-mentioned sources provide only 

a literal description rather than a specific value of solubility. 

In such cases, we adopted the USP solubility categorization 

(Table 1) and estimated the solubility to be the lower limit 

of the relevant solubility range. Drugs listed as practically 

insoluble (pi) were assigned using a more conservative value 

of 0.01 mg/mL rather than the USP definition of 0.1 mg/mL.

In-silico solubility of the drugs
The lipophilicity of a drug is inversely correlated to its aque-

ous solubility. This well-known fact was instrumental to the 

development of the thermodynamic equation for solubility 

of non-electrolytes in water by Amidon and Williams:40

	 Log C
s
 = 1.05 – 0.0099MP – PC

where C
s
 is the molar aqueous solubility of the drug at 25°C, 

MP is the melting point (in °C) for the uncharged form of 

the drug molecule, and PC is the partition coefficient. 

By placing in-silico partition coefficient estimations 

(CLogP, AlogP, or KLogP) in the equation, we were able to 

calculate the solubility for a total of 185 drugs on the dataset 

for which melting points were measured.

Calculations of dose number
The dimensionless dose-normalized solubility, dose number 

(D
0
), was calculated using the equation

	
D

0

0 0=
M V

C
s

( )

where M
0
 is the maximum dose strength (mg), C

s
 is either 

the reference or in-silico estimated solubility (mg/mL), and 

V
0
 =250 mL, based on the FDA recommendation to take solid 

oral drug forms with a full glass of water.

 Drugs with D
0
 1 were classified as high-solubility, 

and vice versa.

Results
Correlation between experimental  
and in-silico partition coefficients
The measured (MLogP) and calculated partition coefficients 

for 154 drugs are listed in Table S1 (available from: http://

www.dovepress.com/cr_data/supplementary_file_68909_1.

pdf). Excellent correlations were obtained between either 

BioLoom 5.0 (BioByte, Claremont, CA, USA) or ChemDraw 

8.0 (Perkin–Elmer, Cambridge, MA, USA) CLogP estima-

tions and the measured values (r 2=0.97). Good correlation 

with measured partition coefficients were also obtained with 

in-silico ALogP (r 2=0.82). Lower yet acceptable correlation 

was obtained also with KLogP, which is based exclusively 

on molecular formula without information of the chemical 

structure (r 2=0.71). 

Human permeability and partition 
coefficient correlation
The experimentally-measured human jejunal permeability 

data for 29 drugs, and the in-silico partition coefficient values, 

appear in Table S2 (available from: http://www.dovepress.

com/cr_data/supplementary_file_68909_2.pdf) and are 

depicted in Figure 1. Classification using the various methods 

Table 1 Solubility definitions

Descriptive term  
(solubility definition)

Parts of solvent required  
for one part of solute

Solubility  
range (mg/mL)

Solubility  
assigned (mg/mL)

Very soluble (vs) 1 1,000 1,000

Freely soluble (fs) From 1 to 10 100–1,000 100

Soluble (s) From 10 to 30 33–100 33

Sparingly soluble (sps) From 30 to 100 10–33 10

Slightly soluble (ss) From 100 to 1,000 1–10 1

Very slightly soluble (vss) From 1,000 to 10,000 0.1–1 0.1
Practically insoluble (pi) 10,000 ,0.1 0.01
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was similar and correct for 19–21 drugs (64.3%–72.4%). The 

data show that the classification of passively-absorbed drugs 

was generally correct. However, the permeability of polar 

drugs that are known to be absorbed via carrier-mediated 

mechanisms, such as cephalexin,41,42 enalapril,43 levodopa,44 

L-leucine,44,45 phenylalanine,46,47 and valacyclovir48,49 tended 

to be underestimated using partition coefficient. On the other 

hand, false high-permeability classification was obtained for 

losartan50,51 which is a substrate for efflux transporters (false 

positives). Figure 2 presents the permeability classification 

using the different in-silico methods versus human jejunal 

permeability when the seven drugs that are known substrates 

for transporters were omitted from the analysis. It can be 

seen that the accuracy of the predictions was improved to 

81.8%–90.9%.

Permeability, solubility, and provisional 
BCS classification
Permeability classification
Figure 3 illustrates the permeability classification of 363 drugs by 

comparing their CLogP, ALogP or KlogP values (1.49, 1.61, 

and 1.87, respectively) to those of metoprolol. The various 

Figure 1 Correlation of permeability classification using the different in-silico partition coefficients versus human jejunal permeability for 29 drugs.
Abbreviation: MOE, Molecular Operating Environment.

Figure 2 Correlation of permeability classification using the different in-silico partition coefficients versus human jejunal permeability for 22 drugs, following exclusion of 
drugs with known involvement of active influx/efflux transport processes in their intestinal absorption.
Abbreviation: MOE, Molecular Operating Environment.
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in-silico partition coefficients produced similar permeability clas-

sifications; 57.02%–62.53% and 36.36%–39.94% of the drugs 

were classified as high- and low-permeability, respectively.

Solubility classification
The in-silico partition coefficient calculations and melting point 

data were used to estimate the solubility of 185 drugs. The 

maximum dose strengths, melting points, reference solubility, 

CLogP (BioLoom 5.0), KLogP, and the in-silico dose number 

(D
0
) calculated with both methods are listed in Table S3 (avail-

able from: http://www.dovepress.com/cr_data/supplementary_

file_68909_3.pdf). The solubility categorization (Table 1) based 

on the various in-silico estimations versus literature solubility 

data are shown in Figure 4. In general, solubility estimations 

with the various partition coefficients matched the reference 

solubility values. However, solubility estimations based on 

KLogP significantly underestimated the number of practically 

insoluble drugs, and overestimated the number of very slightly 

soluble drugs (~19% difference). It is noteworthy that in-silico 

solubility estimations with the average melting point (162.7°C) 

versus experimental melting points produced similar results, 

with a maximal difference of ~6%. Figure 5 depicts a theoreti-

cal plot of the dependency of solubility on partition coefficient 

and melting point. It is evident from the figure that the effect 

of melting point on the solubility is very small compared to 

the effect of LogP. This theoretical plot explains the similar 

solubility categorization obtained with experimental versus 

average melting point, shown in Figure 4, indicating that the 

use of average melting point value in solubility estimations 

may not lead to significant loss of accuracy. 

Solubility BCS classification was assigned for a given 

drug according to its dose number (D
0
), which was calculated 

using the maximal dose. This puts a theoretical limitation on 

the early assignment of the BCS solubility class, as the dos-

age range of any drug can only be assessed later on. Figure 6 

plots the dependency of the dose number on solubility and 

the maximal dose. This plot reveals that in the maximal dose 

range commonly found for drugs and drug-like molecules 

(0.005–1,000 mg) any solubility value above 10 mg/mL 

would indicate a dose number 1, and hence a BCS high-

solubility classification. Hence for solubility categories 

very soluble, freely soluble, soluble, and slightly soluble 

drugs (Table 1), a BCS high-solubility classification can be 

assigned. For drugs with lower solubility values, a theoreti-

cal dosage range can be used for the provisional solubility 

classification, as was previously shown.12,52

Provisional BCS classification
Provisional BCS classifications with the different in-silico 

methods are listed in Table S4 (available from: http://www.

Figure 3 Permeability classification of 363 drugs using the different in-silico partition coefficients.
Abbreviation: MOE, Molecular Operating Environment.
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dovepress.com/cr_data/supplementary_file_68909_4.pdf) 

and shown in Figure 7. The distribution of LogP, melting 

point, and maximal dose was analyzed for drugs classified 

by the CLogP (BioLoom  5.0) and KLogP methods, and 

illustrated in Figure 8. The classification and distribu-

tion of drug properties in each BCS class as defined by 

Amidon et al3 are presented in Figure  9. It can be seen 

that the classification using the different approaches pro-

duced comparable results: on average, 20.76% (±3.07%) 

of drugs were classified as Class 1, 41.51% (±3.32%) as 

Class 2, 30.49% (±4.47%) as Class 3, and 6.27% (±4.39%) 

as Class 4. LogP values of drugs from Class 1–2 were 

higher than Class 3–4, and the distribution of values was 

narrower in Class 1 and Class 4 compared to Class 2 and 3 

(Figure 8A). Melting point values had quite similar distri-

butions in Class 1, Class 2, and Class 3, between the first 

and third quartiles (~107°C–208°C). The melting point 

values of Class 4 drugs were distributed in a significantly 

higher range, ~170°C–270°C (Figure 8B). Maximal dose 

range between the first and third quartiles was the lowest 

for Class 1 drugs (~1–10 mg), medium for Classes 2 and 3 

(~25–250 mg), and highest for Class 4 drugs, with values  
~300–600 mg (Figure 8C).

BDDCS and in-silico partition coefficient
We examined the correlation between our in-silico BCS clas-

sification and the BDDCS-based classification for 140 drugs29 

and the results are shown in Figure 10. The BDDCS clas-

sified more drugs as Class 1 and fewer drugs as Class 3 in 

comparison to the provisional in-silico BCS classification 

(∼10% difference). This observation may be attributed to 

the lower cutoff point (70%) used by Benet for metabolism, 

Figure 4 Solubility estimations of 185 drugs using the different in-silico partition coefficients and experimental melting points or average melting point.
Abbreviation: MOE, Molecular Operating Environment.

Figure 5 Theoretical plot of the dependency of solubility on LogP and melting point.
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compared to the overly conservative permeability standard 

(metoprolol).38,53

Discussion
Permeability classification
It has been shown before that the permeability of drugs can 

be predicted in-silico using calculable physicochemical drug 

properties. Kasim et al estimated the permeability of 123 

immediate release oral drug products listed in the WHO List 

of Essential Drugs using octanol/water partition coefficient 

calculations.54 This work was later extended by Takagi et al 

to include the most popular oral immediate release drug prod-

ucts in the United States, Great Britain, Spain and Japan.55 

The CLogP is a well-established and accurate method to 

assess the octanol/water partition coefficient (LogP). How-

ever, this algorithm demands foreknowledge of several intra-

molecular factors, including hydrogen bonding interactions 

and electronic and steric effects. In this work, In addition to 

Figure 7 Provisional BCS classification of 185 drugs based on the different in-silico partition coefficients and experimental melting points or average melting points.
Abbreviation: MOE, Molecular Operating Environment; BCS, Biopharmaceutics Classification System.

Figure 6 Theoretical plot of the dependency of dose number (D0) on the solubility and the maximal dose.
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CLogP, we used a simpler atomic LogP method, ALogP, that 

allowed some intramolecular factors to be neglected. More 

importantly, we examined the simplified KLogP method to 

calculate LogP, that is based solely on the molecular formula 

of the drug, while disregarding its chemical structure.

Provisional permeability classification using all four dif-

ferent in-silico approaches had comparable accuracy versus 

human jejunal permeability of 29 drugs (64.3%–72.4% 

correct classifications) as illustrated in Figure 1. In general, 

drugs that permeate the intestinal wall chiefly via passive 

transcellular diffusion were assigned the correct permeability 

classification by the different in-silico partition coefficients. 

In contrast, in-silico approaches failed to classify the per-

meability of drugs that were recorded as having significant 

involvement of active transport processes (either influx or 

efflux) in their absorption. Indeed, when such drugs were 

excluded from the analysis, accuracy was significantly 

improved (81.82%–90.91%, Figure 2). It is evident from 

these results that while passive permeability can be accurately 

predicted with in-silico LogP calculations, a separate module 

should be included in future intestinal permeation models in 

order to account for carrier-mediated processes.

Similar permeability classifications were obtained with 

the various algorithms for the 363 drugs on the database, with 

a maximal difference of ~5% (Figure 3). The results suggest 

that the simplified KLogP estimations are as reliable as the 

more sophisticated methods for provisional permeability 

classification. 

The simplified approach chosen in this work was not 

without its limitations. First, in-silico approaches gener-

ally failed to classify the permeability of drugs that are 

actively absorbed via transporters (Figure 1). This was to be 

expected, as carrier-mediated processes depend on specific 

drug–protein interactions rather than lipophilicity. Moreover, 

our model did not account for other factors that may affect 

absorption, such as segmental-dependent permeability. 

Evidently, future models will have to be able to capture the 

full complexity of the intestinal tract in order to minimize 

the risk of false negative and false positive predictions, both 

of which may result in inappropriate development strategies 

and allocation of resources.

Solubility classification
Solubility can be experimentally determined more readily 

than permeability by using established in-vitro studies such as 

the shake flask method. However, such methods still require 

synthesis of the compound, which is often complicated, time 

consuming, costly, and may be futile if the molecule proves 

Figure 8 Distributions of drug properties in each BCS class (provisional classification 
with CLogP [BioLoom 5.0] or KLogP): (A) LogP; (B) melting point; and (C) maximal 
dose.
Abbreviation: BCS, Biopharmaceutics Classification System.
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to be inadequate for further development. Therefore, we 

estimated the solubility of the drugs in our dataset using the 

inverse correlation between the lipophilicity of a drug and its 

molar solubility as described by Amidon and Williams.40 We 

chose this simplified approach over more complex models 

in order to demonstrate that reliable early BCS classification 

of drugs can be achieved even with minimal input data. The 

solubility estimations of 185 drugs with the various partition 

coefficients generally matched the reference solubility values. 

However, solubility estimations based on KlogP significantly 

underestimated the number of practically insoluble drugs and 

overestimated the number of very slightly soluble drugs (~19% 

difference, as shown in Figure 4). These results indicate that 

more sophisticated approaches for the estimation of LogP, and 

possibly additional physicochemical properties, are required 

for more refined estimations of borderline solubility.

In addition to the partition coefficient, solubility in-silico 

estimations require foreknowledge of the melting point. This 

Figure 9 The BCS as defined by Amidon et al3 and the classification and distribution of drug properties in each BCS class.
Abbreviation: BCS, Biopharmaceutics Classification System.

Figure 10 Provisional BCS classification with in-silico methods (average) of 140 drugs versus their BDDCS classification.
Abbreviations: BCS, Biopharmaceutics Classification System; BDDCS, Biopharmaceutics Drug Disposition Classification System.
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puts a theoretical limitation on early solubility estimation, as 

currently, the melting point must be empirically measured. 

However, our theoretical plot of the dependency of solubility 

on partition coefficient and melting point (Figure 5) revealed 

that the effect of the melting point is minor in comparison to 

the partition coefficient, suggesting that the average melting 

point may be used as a substitute for the measured melting 

point in solubility estimations without significant loss of 

accuracy. Indeed, solubility estimations using the average 

melting point value (162.7°C) versus experimental melting 

points produced similar results, with a maximal difference  

of ~6% (Figure 4). Recent works suggest that melting point 

values can also be calculated in-silico. While current methods 

for melting point calculations are still limited, such algorithms 

may be incorporated to solubility models in the future, further 

refining them and allowing for accurate solubility predictions 

even in cases of extreme melting point values.56–58 

An additional constraint for early solubility classification 

is the maximal allowed dose, as it can only be assessed in later 

R&D stages. A plot of the dependency of the dose number on 

solubility and the maximal dose (Figure 6) revealed that in 

the common dose range found for drugs (0.005–1,000 mg), 

any solubility value above 10 mg/mL would indicate a dose 

number 1. Hence drugs that were estimated as very soluble, 

freely soluble, soluble or slightly soluble can be provisionally 

assigned as high-solubility compounds. For drugs with lower 

solubility estimations, a theoretical dosage range can be used 

for solubility classification, as was previously shown.12,52

Provisional BCS classification
The provisional BCS classifications with the different in-sil-

ico approaches for 185 drugs produced comparable results; on 

average, 20.76% (±3.07%) of drugs were classified as Class 

1, 41.51% (±3.32%) as Class 2, 30.49% (±4.47%) as Class 

3, and 6.27% (±4.39%) as Class 4 (Figure 7). The variability 

between the different methods in assigning drugs to Class 4 

was markedly higher than in the other classes (% coefficient 

of variation [CV] of 70% versus 7%–15%, respectively). The 

relatively small sample of Class 4 drugs in our dataset pre-

vents us from conclusively determining the reason. However, 

our analysis of the distribution of physicochemical proper-

ties (Figure 8) may provide some insights: Class 4 drugs 

had a low and narrow range of partition coefficient values 

(Figure 8A) with significantly higher ranges of melting points 

(Figure 8B) and maximal doses (Figure 8C) compared to the 

other drug classes. These results indicate that BCS Class 4 

assignments are the product of several unfavorable traits: a 

medium–low octanol/water partition ratio, a high melting 

point, and a high maximal dose. The difficulty to accurately 

estimate those traits in the earlier R&D stages may account 

for the poor prediction of Class 4 drugs.

It should be noted that the dataset was compiled exclu-

sively from marketed drugs, and hence does not include 

compounds at different R&D stages. This could cause an 

overrepresentation of Class 1, which has favorable develop-

ability potential, while the more challenging classes of drugs 

may be underrepresented, potentially increasing the risk of 

false positive predictions. 

BCS and BDDCS
In 2005 Wu and Benet developed the BDDCS as a comple-

mentary system to the BCS.59 The BDDCS classifies drugs 

according to their fraction dose metabolized rather than 

their intestinal permeability. It was suggested that these two 

classification systems are closely linked: the permeation of 

drugs across cellular membranes makes them readily avail-

able for biotransformation by metabolic enzymes; therefore, 

extensively-metabolized drugs are considered to be highly 

permeable, and drugs that are mainly excreted unchanged 

in the urine are low permeability compounds. While the 

BCS low/high permeability benchmark was set by the FDA 

as the permeability value of metoprolol, the poor/extensive 

metabolism benchmark varied from 50% to 70% or 90% 

over the years.52,60 

In a recent publication, Benet noted that passive trans

cellular permeability is the main predictor of the fraction 

of drug metabolized.61 Therefore, provisional BCS clas-

sifications that are based on LogP calculations are expected 

to be well-correlated with BDDCS-based classifications. 

Takagi et al revealed an excellent correlation between their 

BCS classification of 168 drugs and the respective BDDCS 

classification for Classes 2 and 4, but lower correlation for 

Classes 1 and 3.55 Our work is in corroboration with this 

trend; the provisional in-silico BCS classification under

estimated the number of Class 1 drugs while overestimating 

the number of Class 3 drugs on the database when compared 

to BDDCS. This trend may be attributed to the lower cutoff 

point used by Benet for metabolism (70%) compared to the 

overly conservative permeability marker used in our work 

(metoprolol).1,38,53 Indeed, when other, lower permeability 

cutoff standards were selected by Takagi et al the correlation 

between BDDCS and BCS was significantly enhanced.55

In development of NMEs, the BDDCS has important 

implications within such areas as brain distribution, enzyme/

transporter interplay, and drug–drug interactions.60,61 While 

metabolism-based classification may misclassify drugs that 
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are excreted unchanged into urine and bile but are highly 

absorbed (eg, amoxicillin, chloroquine, lomefloxacin, 

sotalol, trimethoprim, and zalcitabine), classification based 

merely on LogP calculations may be unable to predict drug 

transport when active influx/efflux processes are involved. 

For this reason, the BCS and BDDCS should be regarded as 

complementary rather than competing approaches.

Conclusion
This work demonstrates that in-silico calculations of physi-

cochemical properties can be used in reliable estimations 

of solubility and permeability, and in early BCS classifica-

tion. This classification can be derived from the most basic 

molecular data; the types of elements and their repetitions in 

the molecule; the average melting point; and estimations of 

the dosage range. Thus, drug candidates can be provisionally 

classified at the very earliest stages of development.

Purely in-silico-based BCS classification may be 

extremely useful throughout the R&D process: at the earli-

est stages of drug development, BCS classification would 

allow selection or engineering of candidate molecules 

with favorable biopharmaceutical properties for further 

development.2,11–14 Once a candidate molecule is selected 

and provisionally classified, appropriate polymorph and salt 

form can be selected, especially for a low solubility drug.16,62 

Formulators can then use the provisional BCS classification 

to plan a strategy to improve its intestinal absorption; if the 

candidate molecule is classified as low solubility, it may 

benefit from formulation methods using nanoparticles,63,64 

co-solvents,17,65,66 lipid-based formulations,67–70 cyclodextrin 

complexes,18,71–73 and other techniques. Low permeability 

of candidate molecules may be overcome by absorption 

enhancers.11,25,74,75 However, their unspecific nature may 

increase the absorption of toxins and other undesirable 

molecules, thus this approach is often ruled out for safety 

reasons.2,76 Targeting low permeability molecules to 

active influx transporters such as Pept 1 may be a more 

effective strategy for improving their absorption, as was 

demonstrated for several antiviral prodrugs.47,77,78 Class 4 

compounds are extremely challenging to develop, and 

would require both solubility and permeability improve-

ment approaches.

Lastly, BCS classification could be helpful in assessing 

the relevance of food–drug interactions. Taking the drug 

postprandial may delay the absorption of Class 1 drugs, 

since the rate-limiting step of intestinal absorption for 

these drugs is gastric emptying. Food intake promotes bile 

and pancreatic secretions that enable the solubilization and 

dissolution of low solubility (Class 2 and 4) compounds, 

and the enhanced viscosity of the gut content may prolong 

the dissolution and disintegration time of Class 3 drug 

products.79 Food intake also increases gastric pH, resulting 

in enhanced or decreased dissolution of acidic or basic drugs, 

respectively.2,11,80

In conclusion, simplified in-silico estimations of LogP, 

together with an average melting point and estimated dosage 

range, can be used for early provisional BCS classification of 

drugs from their molecular formula. This will allow selection/

engineering of candidate molecules with favorable proper-

ties; selection of their appropriate polymorphic forms and 

salts; definition/optimization of their formulation needs; and 

detection of potential food–drug interactions. The expected 

overall effect of early BCS classification is enhanced success 

rates, reduced costs, and accelerated development process of 

oral drug products. 
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