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Diagnostic and therapeutic utility of neuroimaging 
in depression: an overview

Abstract: A growing number of studies have used neuroimaging to further our understanding 

of how brain structure and function are altered in major depression. More recently, these tech-

niques have begun to show promise for the diagnosis and treatment of depression, both as aids 

to conventional methods and as methods in their own right. In this review, we describe recent 

neuroimaging findings in the field that might aid diagnosis and improve treatment accuracy. 

Overall, major depression is associated with numerous structural and functional differences 

in neural systems involved in emotion processing and mood regulation. Furthermore, several 

studies have shown that the structure and function of these systems is changed by pharmaco-

logical and psychological treatments of the condition and that these changes in candidate brain 

regions might predict clinical response. More recently, “machine learning” methods have used 

neuroimaging data to categorize individual patients according to their diagnostic status and 

predict treatment response. Despite being mostly limited to group-level comparisons at pres-

ent, with the introduction of new methods and more naturalistic studies, neuroimaging has the 

potential to become part of the clinical armamentarium and may improve diagnostic accuracy 

and inform treatment choice at the patient level. 

Keywords: depression, mood disorder, neuroimaging, diagnosis, treatment

Introduction
Major depressive disorder (MDD) is a common condition with a significant effect 

on quality of life,1 and considerable interest has been devoted to understanding the 

biological underpinnings of mood dysregulation as a way of improving syndromic 

detection and treatment outcomes. In affective disorders, the intrinsic complexity of 

brain neuroanatomy and its functional connectivity is further complicated by the con-

siderable heterogeneity of these conditions and the effects of treatment on the brain, 

which makes advancement of knowledge particularly challenging. The introduction of 

magnetic resonance imaging (MRI) in both its structural and functional capacity has 

proved to be a crucial turning point, providing the necessary tools for investigating 

affective disorders. The number of structural and functional studies has exponentially 

increased since the introduction of MRI-based techniques, and these studies have pro-

vided a growing body of evidence supporting brain abnormalities in MDD. It has also 

become evident that, different from gross brain pathology, abnormalities in affective 

disorders are likely to be of a much smaller magnitude and markedly influenced by study 

design characteristics and a range of clinical and demographic factors. Nevertheless, 

sufficient knowledge about MDD has accumulated in the last few decades that it is 

now possible to postulate neurobiological circuits of mood dysregulation, which might 

guide the diagnosis of MDD and target candidate biomarker brain regions for clinical 

response. This is an increasingly important research area because of growing concern 
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about progress in the development of novel treatments,2 

which has led to intensified efforts to understand how to 

maximize the efficacy of existing interventions.3 In this 

selective review, we focus on recent structural and functional 

neuroimaging findings in MDD. We aim to provide a concise 

overview of recent advances in the development of models 

of the circuitry of mood dysregulation in depression, with 

an emphasis on MRI-based techniques developed as an aid 

to improve diagnosis and guide clinical response. 

Methods
Relevant articles were identified from searches in Pubmed, 

Embase, and Scopus. Search terms included the following: 

“depress*,” “neuroimaging,” “PET,” “MRI,” “magnetic 

resonance,” “fMRI,” “DTI,” “diffusion tensor,” and “neu-

rofeedback,” both in isolation and in combination. Articles’ 

citation lists were also cross-referenced for inclusiveness. We 

identified studies that examined differences in brain structure 

and function between individuals with MDD and healthy 

controls. We also aimed to identify articles that investigated 

the relationship between these measures and response to 

treatment. Studies that tested the efficacy of MRI-based 

treatments were also identified. This work reports a selective 

narrative description of the identified studies.

Structural MRI
Many studies have used structural MRI to look for differences 

in brain volume and shape between patients with MDD and 

healthy controls (HCs) with both a region-of-interest approach 

and at the whole-brain level, using voxel-based morphometry 

(VBM). According to structural MRI and in contrast with 

bipolar disorder (BD), MDD is believed not to be character-

ized by global brain volumetric reduction.4,5 A summary of 

the main findings from these studies are shown in Table 1. 

However, hundreds of case control studies to date have 

identified morphometric reductions in candidate regions in 

the medial systems of the prefrontal cortex (eg, orbitofrontal 

cortex, ventromedial prefrontal cortex, and anterior cingulate 

cortex),6–10 as well as lateral prefrontal systems (eg, ventrolat-

eral prefrontal cortex and dorsolateral prefrontal cortex).7,8,11,12 

Although recent meta-analyses have supported the view that 

frontal gray matter differences in these regions are important 

in MDD,13,14 it should be noted that there is some inconsistency 

in results, with several null findings in these areas.15–18

Volumetric reductions have also been identified 

in subcortical systems implicated in affective regula-

tion. These regions include the striatum (caudate and 

putamen),16,18 the hippocampus,19–22 and in some studies, 

the amygdala,23,24 largely reflecting aberrant neurocircuitry 

shown in postmortem studies.25,26 Volumetric reduction in the 

hippocampus remains, to date, the most replicated finding in 

MDD, as highlighted by several meta-analyses,5,27,28 and is 

complemented by findings of altered shape,29 whereas there 

are inconsistencies in reports of volumetric differences in 

the amygdala (the second most researched area).5 Incongru-

ences in the results can be explained in the light of significant 

heterogeneity in the patients included in these studies and 

the methods applied to measure differences.5,27 Bora et al for 

instance, found evidence of amygdala morphometric reduc-

tion in MDD when comorbid anxiety was present.13 Although 

prefrontal volumetric reduction has also been described in 

BD,4 a recent meta-analysis calculated cumulative effect sizes 

of studies comparing bipolar and depressed patients versus 

healthy controls and found greater hippocampal reduction 

in MDD.27 However, hippocampal volume reduction has 

been found in healthy individuals with a family history of 

depression,30 indicating this may not be specific to current 

depression and may instead reflect underlying genetic risk.

In longitudinal studies investigating candidate brain 

regions as putative biomarkers for treatment response, the 

hippocampus has been shown to be reduced in depression 

and sensitive to volumetric increase after pharmacologic 

treatment and clinical improvement.31 Thus, Arnone et al32 in 

a VBM study, demonstrated bilateral volumetric gain in the 

hippocampus after a course of the antidepressant citalopram. 

This is in agreement with Frodl et al’s23 finding that greater 

hippocampal volume in depressed patients at baseline is 

associated with better clinical response at follow-up, sug-

gesting that baseline hippocampal volumes might predict 

treatment response in MDD. Consistent with this finding, 

Vakili et al33 demonstrated greater hippocampal volumes in 

responders in comparison with nonresponders, and in another 

study, lower hippocampal volumes at first presentation iden-

tified participants who became treatment nonresponders.34 

Table 1 Summary of differences in brain function and volume 
between individuals with major depressive disorder and healthy 
controls

Brain area Functional activity Volume
Medial prefrontal cortex ↑ ↓
Lateral prefrontal cortex ↓ ↓
Striatum ↓ ↓
Amygdala ↑ –

Hippocampus ↑ ↓
Notes: Functional activity represents results from functional magnetic resonance 
imaging studies using tasks involving emotion processing. Up arrows indicate an 
increase, down arrows indicate a decrease, and a hyphen represents no change.
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Similarly, Sämann et al35 in a VBM study that investigated 

a large sample of 140 patients, identified a number of brain 

areas whose pretreatment volumes correlated with response 

to antidepressant treatment. These regions included the left 

hippocampal complex, the superior temporal gyrus, and the 

middle temporal gyrus. 

However, these findings are not always consistent across 

studies. For example, another VBM study36 found that the 

volumes of a number of areas were associated with treatment 

response to fluoxetine, but these were largely distinct from 

those identified by Sämann et al and notably did not include 

the hippocampus. Another recent study did not find any sig-

nificant association between gray matter volume and treatment 

response,37 although given the small size of this study, this 

null finding may be a result of inadequate statistical power. In 

addition, Lai and Hsu found no effect of 6 weeks’ treatment 

with duloxetine on gray matter density in the hippocampus in a 

sample of depressed patients with comorbid panic disorder.38 

Functional magnetic resonance 
imaging
In addition to structural findings, neuroimaging has provided 

invaluable insights into the functional pathophysiology of 

MDD through functional MRI (fMRI). A summary of the 

main findings in this area is provided in Table 1. As with 

structural findings, both medial and lateral prefrontal systems 

have been implicated. During negative affective processing 

tasks such as viewing sad or fearful faces, dorsolateral pre-

frontal areas reliably show reduced activation compared with 

controls,39–41 whereas the anterior cingulate cortex (ACC) 

shows increased activation.42–45 Functional alterations while 

processing negative stimuli have also been demonstrated 

in limbic regions, most notably in the amygdala, where 

exaggerated responses to negative stimuli are seen,40,43,46–49 

whereas processing of positive stimuli such as monetary 

gains is associated with reduced activity in areas associated 

with reward processing such as the striatum.50–52 

There is some evidence this pattern of activation in 

response to emotional stimuli may be specific to MDD. Recent 

studies comparing BD patients with those with MDD have 

shown that BD is associated with elevated amygdala responses 

to positive stimuli, in comparison with increased responses to 

negative stimuli in MDD.53,54 In addition, elevated amygdala 

responses to sad faces appear to be specific to a depressed 

state,5 indicating this might differentiate between currently 

depressed individuals and those with a history of MDD.

These functional abnormalities have also been associated 

with treatment response. In particular, heightened reactivity 

to negative stimuli is normalized after treatment with 

antidepressant medication in the amygdala,43,46,55 whereas 

reduced lateral prefrontal activity increases;56,57 findings in 

keeping with theories positing that the effects of these drugs 

depend on the amelioration of excessive negative informa-

tion processing.58,59 It has also been shown that amygdala 

reactivity to positive emotions increases after treatment with 

antidepressant medication,49 although this is not as consis-

tently demonstrated.46,60,61 Similarly, psychological therapies 

have been shown to normalize heighted amygdala responses 

to negative emotional stimuli,62,63 and also to increase striatal 

responses to rewards,64 suggesting psychological treatments 

might share similar mechanisms of action.

Fewer studies have looked at the prognostic value of 

functional measures, but some have shown that baseline ACC 

activity predicts response to pharmacological treatment. For 

example, Roy et al65 used an emotional image-viewing task 

in a sample of MDD patients before 8 weeks’ treatment with 

citalopram and found a positive correlation between ACC 

response to emotional pictures and response to treatment. 

This echoes findings from an earlier study that found that 

higher anterior cingulate activity while viewing negative 

pictures was associated with a larger treatment response 

after 8 weeks of treatment with venlafaxine,66 as well as a 

more recent study that found that higher anterior cingulate 

and caudate activity while viewing sad faces was associ-

ated with greater improvement in symptoms with fluoxetine 

treatment.36 Similar results have been found in other tasks; 

for example, tasks involving working memory67 and response 

inhibition,68 suggesting ACC activity may predict treatment 

response regardless of context.

However, some studies have failed to find associations 

between ACC activity and treatment response,69–71 despite 

showing activity in other areas that correlated with treatment 

response. Furthermore, one recent study found that patients 

with higher baseline activity in the ACC while viewing 

emotional words was associated with poorer response to 

treatment,72 contradicting findings from previous studies. 

Although there are some inconsistencies in findings, these 

are likely a result of confounding factors such as differences 

in sample characteristics and the type of intervention used. 

There are also numerous confounds that are problems in 

much of this research, reviewed in the “Discussion”, but 

overall, ACC activity does appear to be a relatively reliable 

predictor of response to antidepressant treatment.

With regard to prediction of response to cognitive behav-

ioral therapy, a number of studies of the anterior cingulate 

have found the opposite pattern from studies looking at 
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antidepressant response, with higher activity in response 

to sad faces at baseline associated with poorer treatment 

response.62,73,74 Notably, using logistic regression, Fu et al62 

were able to individually classify patients as either responders 

or nonresponders on the basis of their baseline anterior cin-

gulate activity while viewing sad faces with 87.5% accuracy, 

providing evidence that functional alterations in emotion 

processing systems can differentiate between patients and 

controls at an individual level. In addition, the contrast with 

findings in studies using antidepressants suggests that if this 

could be shown to be generalizable to real-world patient 

populations, it could be used to personalize patients’ care such 

that they receive the most beneficial form of treatment from 

the outset, thus optimizing the overall treatment response.

Studies have also identified alterations in resting state 

activity in MDD, mostly showing increases in connec-

tivity within the “default mode network,”75,76 which has 

been suggested to reflect the excessive rumination seen in 

MDD.77 Findings in other networks such as the “affective 

network” have been less consistent, with both increased76 

and decreased78,79 connectivity reported. Taken together, 

these findings suggest dysfunction in networks involved 

in self-directed thought and emotion processing, which is 

consistent with the dysfunctional emotion processing shown 

in task-based MRI studies.

More recently, research has begun to build on these find-

ings by using resting-state measures to differentiate between 

MDD patients and healthy controls at an individual level. 

One recent study80 suggested that “regional homogeneity,” 

a measure of correlations between nearby voxels, could be 

used to distinguish between groups with relatively high 

accuracy. However, circular analysis and failure to correct 

for multiple comparisons limits the conclusions that can be 

drawn from this study. Nevertheless, on the basis of the con-

sistency of resting-state differences between MDD patients 

and healthy controls, this is a subject deserving of further 

research, perhaps using more reliable measures.

Antidepressant treatment has also been found to have 

effects on resting-state abnormalities in MDD. Li et al81 found 

that after 12 weeks of antidepressant treatment, connectivity 

in the dorsal component of the default mode network was 

normalized, whereas increased connectivity in the anterior 

subnetwork persisted. In addition, studies have shown that 

treatment is associated with increased connectivity between 

cortical and subcortical areas involved in affect generation 

and regulation.82

Resting-state fMRI has also been used to predict treat-

ment response in MDD. Lui et al83 scanned patients who were 

subsequently prescribed a range of antidepressant medica-

tions and found that patients who responded to treatment 

showed decreased connectivity among the left amygdala, 

ACC, right insula, and precuneus relative to nonresponders. 

Many of these areas are part of the “affective network,” in 

which abnormalities have been reported,76,78,79 suggesting 

that dysfunction in this network at rest may be important in 

treatment response, as well having predictive power. To date, 

no studies have examined whether “default mode network” 

activity predicts treatment response, but given the number of 

studies reporting baseline dysfunction as well as changes with 

treatment, this may be a fruitful avenue for future research.

Positron emission tomography 
Much like research using fMRI, studies of brain function 

before and after treatment by measuring blood flow and glu-

cose metabolism using positron emission tomography have 

demonstrated that brain function changes after treatment. 

These studies have found similar results to fMRI studies, 

identifying hyperactivity in the medial prefrontal cortex in 

the presence of depressive symptoms. Antidepressant and 

psychotherapy intervention studies indicate that increased 

metabolism in prefrontal areas before treatment decreases 

after treatment and “normalizes” to levels of activity measured 

in healthy controls. In some other studies, however, metabolic 

rate after treatment decreased below normal levels.84–87 Con-

versely, metabolic hyperactivity persists where there has been 

a lack of response to treatment.84,87–89 Changes have also been 

measured in limbic and paralimbic areas, including posterior 

cingulate cortex, insula, hippocampus, and amygdala, with 

conflicting findings of decreased or increased metabolism or 

neural activity, depending on the study.43,61,84–87,90 

Taken together, these findings add to the evidence for a 

functional deficit in mood regulation systems in MDD, which 

is related to treatment response. More recently, a study by 

McGrath et  al91 showed that insula hypometabolism was 

associated with remission to cognitive behavior therapy and 

poor response to escitalopram, whereas insula hypermetabo-

lism was associated with remission to escitalopram and poor 

response to cognitive behavior therapy. Although this finding 

requires replication in future studies, it does suggest the insula 

might be a biomarker to predict a preferential response to 

different modes of treatment.

Furthermore, positron emission tomography has been 

used to measure serotonin 1A (5-HT1A) receptor binding, 

with the aim of understanding the nature of neurochemical 

changes in MDD and how these relate to treatment response. 

However, findings from these studies are contradictory, with 
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both increases and decreases in 5-HT1A receptor binding 

reported in MDD.92,93 As noted by a recent review,94 the 

inconsistency in findings is likely to be a result of method-

ological differences, and the field would benefit from gaining 

a better understanding of how different analysis methods can 

produce such contrasting results. The most important differ-

ence between studies is the choice of reference tissue, which 

is used to normalize radioligand binding in the region of 

interest. Results can vary greatly, depending on the choice of 

reference, and there is no agreement on which is the optimal 

method (see Shrestha et al94 for a detailed review of this and 

further issues in these studies). 

Similarly, there are inconsistencies in studies looking 

at changes in 5-HT1A receptor binding after antidepressant 

treatment95,96 and in studies exploring the ability of pretreat-

ment binding potential to predict response.92,96 In sum, there 

is far too much variability in finding for this method to 

provide any useful information in relation to the diagnosis 

and treatment of MDD at present. However, further research 

focusing on the methodological differences responsible for 

these inconsistencies may help in this regard.

Diffusion tensor imaging 
A more recent development in MRI is diffusion tensor imag-

ing (DTI), which has allowed differences in white matter 

microstructure to be characterized in MDD. Many studies 

have reported reduced fractional anisotropy (FA), a measure 

of white matter integrity, in a number of pathways, includ-

ing the superior longitudinal fasciculus97,98 and genu of the 

corpus callosum.99,100 However, findings are inconsistent, 

likely because of differences in sample characteristics and 

methods of analysis, and a number of studies have found no 

significant differences between patients and controls.101–103 

Given the evidence for frontolimbic dysfunction provided by 

functional and structural studies, it is surprising that only a 

few studies104,105 have reported decreased FA in the uncinate 

fasciculus, a white matter pathway connecting these regions. 

Nevertheless, taken together, and despite the inconsisten-

cies, these studies indicate that white matter microstructural 

abnormalities are present in MDD. 

To date, only one study has examined the effect of psy-

chological therapy on white matter integrity.106 It found that 

after 4 weeks of guided imagery therapy, FA was increased 

in the supplementary motor area and decreased in the angular 

gyrus. Similarly, few studies have looked at the ability of DTI 

to predict response with pharmacological treatments in MDD. 

Alexopoulos et al107 found that high pretreatment FA in an 

area close to the ACC was associated with remission when 

treated with antidepressants in a sample of 13 patients with 

late-life depression. However, a more recent study in older 

adults found the opposite pattern of results,108 with higher 

values in patients who did not respond to treatment. Only two 

studies looking at pretreatment DTI measures of response 

to pharmacological treatment have been reported in younger 

adults.109,110 In contrast to the finding in late-life depression, 

no difference in FA was found between treatment-responsive 

and treatment-nonresponsive patients in the anterior cingu-

late in either study. However Zhou et al109 found decreased 

FA in the hippocampus of patients refractory to treatment, 

whereas Delorenzo et al110 found that those who did not remit 

had lower FA in tracts connecting the raphe nuclei with the 

amygdala than those who remitted. 

Further studies in adults have compared FA measure-

ments in relation to treatment refractoriness after a course 

of antidepressant treatment in MDD. One recent study found 

reduced FA in the ventromedial prefrontal cortex of patients 

with chronic treatment-resistant depression compared with 

those with recurrent but remitted and first-episode depres-

sion and healthy controls.111 Similarly, another study found 

reduced FA in the ventromedial prefrontal cortex of indi-

viduals with treatment-resistant depression versus healthy 

controls,112 along with reduced values in the uncus and 

cerebellum. Findings from these studies are limited by dif-

ferences in illness duration, treatment responsiveness, and 

other clinical differences; thus, generalization of findings 

might be difficult in relation to response prediction. Despite 

these limitations, the evidence supports the presence of 

differences in white matter integrity between patients who 

respond to antidepressant treatment and those who do not, 

although the exact nature of these differences needs further 

clarification. Further pretreatment DTI studies, particularly 

in younger samples, would be highly beneficial. 

Machine learning and structural 
magnetic resonance imaging
Neuroimaging studies focused on individual-level analysis 

of data are necessary to be clinically useful for diagnosis 

and treatment prediction. Recent work has implemented 

“machine learning” techniques to explore the potential 

for neuroimaging to confirm clinical diagnosis based on 

neurobiological abnormalities (diagnostic biomarkers) and 

to assign individuals to diagnostic or therapeutic response 

categories at an individual level. Key to these techniques is a 

multivariate approach that allows identification of distributed 

patterns of activity in the brain and takes advantage of the 

large amount of data available in neuroimaging datasets.
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Combining machine learning techniques with structural 

data has provided promising results in both diagnosis and 

prediction of treatment response. Recent studies using “sup-

port vector machine” (SVM) and “relevance vector machine” 

methods have been able to successfully discriminate between 

patients and controls with accuracies ranging from 67.3% 

to 90.3%.113–115 In these studies, the areas with the highest 

contributions to classification are mostly medial and lateral 

frontal structures and limbic structures such as the hippocam-

pus, replicating findings from other structural MRI studies 

showing structural differences between MDD patients and 

HCs. However, it should be noted that some of these patients 

had been taking antidepressant medications either before or 

at the time of scanning, which are known to affect gray and 

white matter volumes116,117 and would need to be accounted 

for in the findings. In addition, sensitivity reached 93.3% in 

one study115 but was around 70% in the other two studies, 

indicating a high risk of false-positives. 

Studies have also used machine learning classification tech-

niques to predict response to antidepressant treatment.113,114,118 

In these studies, participants were split into responders and non-

responders after treatment, and machine learning techniques 

were used to allocate patients to either category according to 

their pretreatment structural images. Gong et al114 achieved a 

classification accuracy of 69.5% using gray matter images, 

whereas Costafreda et al113 were able to classify patients with 

88.9% accuracy. Using “transductive conformal predictors,” a 

method that produces confidence measures for classification, 

Nouretdinov et al118 were able to predict response to antide-

pressant treatment with 83.3% accuracy while also providing 

confidence measures for these predictions. Interestingly, 

unlike other treatment prediction studies, none of these found 

that differences in hippocampal gray matter contributed to 

classification. However, two studies found that the anterior 

cingulate contributed significantly,113,118 echoing findings from 

fMRI studies of treatment response prediction.

These methods have also been applied to the prediction 

of response to psychological therapies, with mixed results. 

Costafreda et  al113 were unable to distinguish between 

those who did and those who did not respond to cognitive 

behavioral therapy, whereas another study119 was able to 

successfully categorize patients according to their response 

to psychological treatment, albeit with a relatively low sen-

sitivity of 71%. 

Machine learning and fMRI
Machine learning classification methods have also been 

applied to data from task-based fMRI experiments, and 

results suggest this also has some potential as a diagnostic 

biomarker for MDD. Building on previous studies using 

univariate analysis, Fu et  al120 used SVM classifiers to 

attempt to distinguish between MDD and HC participants 

on the basis of blood oxygen level dependent activity while 

viewing sad faces. Although this method was successful in 

discriminating patients from controls, using whole-brain 

activation maps, this was achieved with a low rate of accu-

racy (68%) in comparison with “resting state” data121 and 

structural data.115

Some research suggests a superior diagnostic accuracy 

might be obtained by combining multiple classifiers. Hahn 

et al122 trained Gaussian process classifiers on activity dur-

ing three separate tasks involving emotional and reward 

processing and integrated their predictions using a decision 

tree algorithm. This method resulted in a classification 

accuracy of 83% by combining all of the classifiers together. 

This indicates that optimal classification might be achieved 

through the integration of several neuroimaging measures, 

which could be a point of interest for future research. More-

over, even greater accuracy might be produced by methods 

combining both functional and structural data.

Importantly, these methods have also begun to be used 

to address the problem of symptomatic overlap between 

depression and other conditions. A major challenge in the 

diagnosis of depression is differentiating it from BD, a 

condition characterized by periods of depression but with 

the addition of manic or hypomanic episodes, and any 

neuroimaging-based diagnostic biomarker for MDD would 

need to discriminate between these two conditions. Recent 

studies have used machine learning classification methods 

to analyze data from facial emotion processing tasks in 

MDD and BD patients54,123 and found that the two disorders 

can be accurately distinguished from one another with 

80%–90% accuracy. Although there are some limitations in 

this research, such as the differences in medication between 

groups, that could contribute to the classification success, 

findings suggest that machine learning-based diagnostic 

classification could successfully distinguish individuals with 

MDD from those with other conditions.

There are also indications that machine learning analy-

sis of task-based fMRI data may be useful in predicting 

response to treatment. Costafreda et  al119 applied SVM 

analysis to data from an emotional face processing task and 

found that participants could be classified as responders or 

nonresponders to cognitive behavioral therapy, based on 

baseline scans with a sensitivity of 71% and specificity of 

86%, although the study used a relatively small sample of 
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16 participants. Studies applying these methods to predict 

response to medication have found less-promising results, 

with one study using the same face-processing task finding 

nonsignificant classification results.120 Nonetheless, this is 

still a relatively unexplored area that may still provide some 

interesting insights, especially given the success seen in 

diagnostic classification studies.

Some studies have also used SVM classifiers with resting 

state functional connectivity data and have shown that med-

ication-free patients and controls can be distinguished with 

around 95% accuracy.121,124 The most highly discriminative 

regions were the amygdala and frontal regions, including the 

ACC, complementing findings from other structural and func-

tional studies in MDD. Furthermore, using an unsupervised 

classifier, which attempts to categorize cases purely on their 

intrinsic characteristics, rather than fitting cases into catego-

ries defined by the experimenter, Zeng et al125 showed that the 

resting state connectivity of the ACC allowed individuals to be 

grouped with 92.5% consistency with their diagnostic labels, 

providing further evidence there are distinct patterns of func-

tionality at rest that characterize MDD. Indeed, it is possible 

that in the future, these techniques might form the basis for 

the division of MDD into neurobiologically distinct subtypes 

that could further improve diagnosis and treatment.

Machine learning and diffusion 
tensor imaging
Machine learning techniques have also begun to be used 

in conjunction with DTI to identify patterns of white mat-

ter deficits that can distinguish between patients and HCs. 

Korgaonkar et al126 applied linear discriminant analysis to 

multiple DTI measures from medication-free MDD patients 

and controls and were able to classify individuals with an 

accuracy of 96%. Similarly, Fang et al127 used machine learn-

ing in combination with whole-brain structural connectivity 

maps derived from DTI to classify individuals as either 

patients or controls, according to the strength of connectiv-

ity between different brain regions. This method achieved 

an accuracy of 91.7%, indicating that machine learning 

techniques combined with DTI data can correctly distinguish 

patients from controls with a high degree of accuracy and 

providing further evidence for white matter microstructural 

differences in MDD.

Neurofeedback and neuroimaging-
based treatments
Recent developments in fMRI have enabled research-

ers to explore its potential for use as a treatment itself, 

rather than simply aiding treatment with psychological 

or pharmacological therapies. A number of recent studies 

have shown that when provided with real-time feedback of 

blood oxygen level – dependent signals while in the scanner, 

healthy participants are able to regulate the activity and con-

nectivity of brain structures involved in emotion processing, 

many of which have been implicated in MDD.128–131 Building 

on this, it has been proposed that neurofeedback may be able 

to correct functional abnormalities seen in these networks in 

MDD132 by allowing patients to learn how to regulate activ-

ity, thereby correcting the impaired regulation present in the 

disorder. One recent small-scale pilot study of this therapy 

has shown promising results.133 Patients were instructed to 

increase activity in areas involved in positive affect by recall-

ing positive memories, and after four sessions, a significant 

reduction in depressive symptoms was seen in comparison 

with members of a control group, who performed a similar 

positive memory recall task without neurofeedback. How-

ever, it is important to note the significant limitations of this 

study, such as the out-of-scanner control task, which may 

have led to an overestimation of the effect of the treatment, 

and the inclusion of an entirely male sample, which limits 

generalizability. 

Another recent study used a similar procedure but 

included an active control condition in which participants 

were given feedback from an area not thought to be involved 

in emotion processing, the intraparietal sulcus.134 Regulation 

of the left amygdala while remembering positive memories 

resulted in an increase of self-reported happiness immediately 

after the session, but the longer-term effects of this procedure 

were not assessed.

Evidence for the efficacy of neurofeedback is very 

limited at present and larger-scale, blinded, randomized-

controlled trials will be required to evaluate its potential for 

clinical use. Furthermore, it will be important to determine 

an optimal control intervention for these trials and the most 

effective aspect of brain function to target. Nevertheless, 

these early studies indicate it may be a promising candidate 

for a neuroimaging-based treatment for MDD.

Conclusion
Integrative pathways of mood regulation 
as diagnostic biomarkers
Neuroimaging research suggests that abnormalities in depres-

sion occur in a number of functionally interactive cortical 

and subcortical brain regions (please see Phillips et al135,136 

for a comprehensive review). Subcortical areas that include 

thalamus and ventral striatum are implicated in the processing 
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of novel emotional and nonemotional information, whereas 

limbic regions such as the amygdala and the hippocampus 

complex play an important role in mood monitoring.137,138 

These two regions functionally interact, and neuroimaging 

studies have demonstrated that amygdala activation correlates 

with emotional memory.139,140 Moreover, the hippocampus 

has been shown to be susceptible to emotional experiences 

and to contribute to emotional recognition.141,142 For example,  

enhanced neural responses to emotionally valenced stimuli 

have been found in the amygdala and hippocampus.143,144 

Prefrontal regions, and particularly medial cortical areas, 

exercise active cognitive control and conscious appraisal of 

emotional state.145 The prefrontal cortex is particularly important 

in top-down emotional control over limbic regions, especially 

when stimulus-outcome contingencies are important146 and the 

medial part of the prefrontal cortex, which includes orbitofrontal 

cortex (OFC), dorsomedial prefrontal cortex, and the ACC, is 

pivotal in controlling emotional behaviors via extensive sub-

cortical connections.136,147 The lateral prefrontal cortical areas, 

which include the dorsolateral and ventrolateral prefrontal corti-

ces, are known to coordinate higher cortical functions involved 

in top-down voluntary modulation of positive and negative 

emotions.136,148,149 Feedback neuronal connections coordinate 

communication between the lateral prefrontal areas and the 

ventromedial prefrontal cortex136,147 and between the dorsolat-

eral prefrontal cortex and cortical associative areas, OFC, and 

subcortical structures involved in emotion regulation, such as 

the thalamus, hippocampus, and dorsal striatum.136,150 

In depression, abnormalities in these functional networks 

have been demonstrated relatively consistently across studies, 

as shown by several recent meta-analyses,151–153 and have been 

interpreted as reflecting dysfunctional regulation of subcorti-

cal activity by frontal areas during emotion processing, lead-

ing to suboptimal maintenance of affective states.154 This view 

is further supported by fMRI studies showing impaired con-

nectivity between frontal and limbic regions,155–157 although 

DTI studies do not provide strong evidence of impaired 

structural connectivity between these areas. 

These functional and structural changes in mood regu-

lation systems have the potential for use as diagnostic bio-

markers for MDD, as well as for future neurobiology-based 

classification and diagnostic systems. The growing amount of 

evidence reviewed here shows that machine learning methods 

can allow individual-level discrimination of MDD patients 

from healthy controls, according to structural and functional 

differences in regions involved in mood regulation, and may 

also be able to distinguish MDD from similar conditions such 

as BD. To date, there have been no attempts to diagnose 

MDD on the basis of combined data from multiple imaging 

modalities. This may be an area of interest for future research, 

as combining information from multiple sources may provide 

greater accuracy than data from any one source alone.

Neuroimaging and candidate biomarkers 
of response to treatment
A morphometric reduction in the hippocampus is to date 

the most replicated structural finding linked to prediction of 

treatment response and to greater volumetric loss in the hip-

pocampus associated with poorer treatment response.34,158 With 

regard to functional findings, hyperactivity in the ACC has 

been associated with response to treatment, normalizing after a 

course of treatment. Persistence of hyperactivity in this region 

has been shown to help identify poor treatment responders. 

Amygdala hyperactivity in response to negative emotions has 

been demonstrated to be characteristic of a depressed state and 

is sensitive to clinical improvement after a course of antide-

pressant treatment.46 these findings suggest that structural and 

functional neuroimaging could contribute to the prediction of 

treatment response, and recent studies using machine learning 

methods indicate it is possible to predict treatment response at 

an individual level with a high degree of accuracy.

Another intriguing development is the possibility of 

determining differential treatment effectiveness for a given 

individual, based on neuroimaging measures. The results of 

McGrath et al91 are revealing in this respect by suggesting 

the baseline metabolism in the insula may help determine 

whether a patient is likely to respond preferentially to phar-

macological or psychological interventions. fMRI studies 

also suggest that ACC activity differentially predicts response 

to pharmacological and psychological treatment, although 

this needs further validation in future studies prospectively 

evaluating clinical benefits on larger naturalistic samples. 

Limitations
The role of neuroimaging is likely to expand in the future 

to improve diagnostic specificity and help predict treatment 

response. At present, neuroimaging is unlikely to benefit 

patients at an individual level, to predict transition to a full 

syndrome in an “at-risk” mental state, or to help clarifying diag-

nostic uncertainty. With reference to cross-diagnostic validity, 

this is one of the greatest challenges faced by biological models 

of psychiatric disorders at present,159–161 with a paucity of studies 

allowing cross-diagnostic comparisons. As a result, there are no 

neuroimaging-based biomarkers that can aid in the differential 

diagnosis of MDD, and this is a major challenge that will need 

to be overcome if they are to ever be clinically useful.

By far the main limitation is the relatively limited replica-

bility of most findings, which questions the generalizability 
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of neurobiological models and limits their diagnostic use. 

Discrepancies can result from heterogeneity of depressive 

disorders, inclusion/exclusion of comorbidity, sample size, 

methodological differences, clinical differences in the patients 

included (eg, number of episodes, length of illness, degree of 

treatment resistance, presence and length of pharmacological 

treatment), and analysis techniques. In the case of fMRI, it 

is also possible that different interventions modulate brain 

circuitry differently, depending on which component they 

act on in the context of the hypothesis tested and in relation 

to task requirement. Some of these issues could be amelio-

rated by the use of larger samples, encompassing a range of 

MDD presentations, or by comparing subtypes of MDD and 

different treatments to understand the factors underlying the 

observed heterogeneity in results. Moreover, the field would 

greatly benefit from a degree of standardization of techniques 

across research groups and collaborative alliances, resulting in 

much larger numbers of participants available for analysis. 

Of particular interest, participants in these studies tend to 

be highly selected individuals who differ from patients seen 

in the clinic with potentially milder severity of illness and 

absence of comorbidities, and therefore are not necessarily 

fully representative of the condition. In this context, and from 

a pragmatic perspective, naturalistic studies in larger samples 

might be better suited to identifying biomarkers that reflect 

conventional clinical populations.

Furthermore, there is little research using neuroimag-

ing in people at high risk for depression. Some findings 

suggest that some of the structural and functional differ-

ences seen in MDD patients may also be present in healthy 

individuals at genetic risk of developing the condition.30 

This is an important issue, as it is likely that diagnostic 

biomarkers based on these differences could mistakenly 

diagnose these individuals as patients, despite being 

healthy. Conversely, individuals with MDD who do not 

have particular genetic variants associated with altered 

brain function and structure may be incorrectly diagnosed 

as healthy because of their reliance on trait, rather than 

state markers of MDD.

Although machine learning methods have been able 

to produce results at the level of individual patients, the 

accuracy of these methods is currently not high enough to 

permit their use in practice. In particular, most diagnostic 

studies do not achieve specificities close to 100%. Given the 

relatively low proportion of the population that has MDD, 

this would result in a large number of false-positives (see 

Lalkhen and McCluskey162 for further discussion on this 

issue). This is less of a concern with regard to prognosis 

because of the relatively high number of patients who will 

respond to a given intervention. In addition, even a test 

with high but not perfect sensitivity and specificity would 

arguably be an improvement on the current system of pre-

scription or choice of therapeutic modality based solely on 

clinicians’ judgment.

Finally, an important issue in the development of any 

biomarker for the prediction of treatment response is whether 

it predicts response to treatment specifically or is predictive 

of prognosis, independent of the treatment being tested. 

In depression, factors such as spontaneous remission may 

account for a large proportion of improvement seen with 

treatment,163 and it is impossible to tell whether predictive 

biomarkers are, in fact, predicting improvement because 

of treatment. This problem could potentially be avoided by 

including placebo treatment groups, although this is often 

not possible because of ethical considerations. Alternatively, 

this could be addressed, as shown by a recent study,164 by 

integrating neuroimaging protocols into future clinical trials. 

Comparisons of predictive biomarkers for multiple treat-

ments also might allow markers that are specific to individual 

treatments to be distinguished from those that are predictive 

of general improvement. 
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