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Abstract: Traumatic brain injury (TBI) leads to many undesired problems and complications, 

including immediate and long-term seizures/epilepsy, changes in mood, behavioral, and 

personality problems, cognitive and motor deficits, movement disorders, and sleep problems. 

Clinicians involved in the treatment of patients with acute TBI need to be aware of a number 

of issues, including the incidence and prevalence of early seizures and post-traumatic epilepsy 

(PTE), comorbidities associated with seizures and anticonvulsant therapies, and factors that can 

contribute to their emergence. While strong scientific evidence for early seizure prevention in 

TBI is available for phenytoin (PHT), other antiepileptic medications, eg, levetiracetam (LEV), 

are also being utilized in clinical settings. The use of PHT has its drawbacks, including cogni-

tive side effects and effects on function recovery. Rates of recovery after TBI are expected to 

plateau after a certain period of time. Nevertheless, some patients continue to improve while 

others deteriorate without any clear contributing factors. Thus, one must ask, ‘Are there any 

actions that can be taken to decrease the chance of post-traumatic seizures and epilepsy while 

minimizing potential short- and long-term effects of anticonvulsants?’ While the answer is 

‘probably,’ more evidence is needed to replace PHT with LEV on a permanent basis. Some 

have proposed studies to address this issue, while others look toward different options, including 

other anticonvulsants (eg, perampanel or other AMPA antagonists), or less established treat-

ments (eg, ketamine). In this review, we focus on a comparison of the use of PHT versus LEV 

in the acute TBI setting and summarize the clinical aspects of seizure prevention in humans 

with appropriate, but general, references to the animal literature.

Keywords: traumatic brain injury, TBI, seizures, epilepsy, seizure prevention, cognition,  

EEG, antiepileptic drugs

Introduction
In about 6% of patients with epilepsy, seizures are thought to be the result of previous 

head trauma; frequently, seizures in these patients are difficult to control with standard 

antiepileptic drugs (AEDs).1 The presence of early and late seizures has significant 

effect on subsequent outcomes, including medication use, quality of life, employment, 

and psychosocial adjustment. In these patients, the original insult is frequently identi-

fied from the history, but the severity of the injury may be difficult to judge. Based on 

studies conducted over the last several decades, patients who have suffered moder-

ate or severe traumatic brain injury (TBI) are typically placed on an AED right after 

the initial trauma, usually phenytoin (PHT), but more recently also on levetiracetam 

(LEV), in order to alter the progression of epileptogenesis to late seizures and epilepsy. 

If seizures are not present in the first 7 days after trauma, the AED is weaned, with an 

expectation that seizures will not occur in the future. Since the concept of seizure and 

epilepsy prevention after TBI is well established, it is incumbent upon us to determine 
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not only which factors, when present or absent in the latent 

period (time between trauma and late seizures), are impor-

tant for initiating and completing the cascade of events that 

eventually lead to seizure occurrence, but also how we can 

modulate or abort this process so that seizures never occur. It 

is imperative to develop strategies that change the process of 

epileptogenesis while concurrently decreasing the chance of 

the development of unwanted comorbidities (eg, worsening 

of cognitive deficits related to TBI and AEDs). Finally, it is 

important to be mindful of the financial implications – PHT 

was found to be more cost effective than LEV in a setting 

of seizure prevention after TBI, but this gap may be disap-

pearing with the costs becoming similar in the recent years, 

and this calculation did not take into account the effects of 

these treatments on long-term costs.2 

In this review focusing on the comparison between PHT 

and LEV, we summarize the clinical aspects of seizure pre-

vention in humans, with appropriate but general references 

to animal literature, and provide brief discussion of potential 

new developments.

Epidemiology of early vs 
late post-traumatic epilepsy
The epidemiology of post-traumatic epilepsy (PTE) is well 

established. Early seizures are defined as seizures occurring 

in the first 7 days of trauma, while PTE is defined as seizures 

occurring after this period.3 The incidence of early seizures 

after TBI is reported to be between 2.6% and 16.3%, with 

the differences being dependent mainly on study design.3,4 

At least in univariate analysis, the presence of early seizures 

predisposes the development of late PTE; overall early sei-

zures are thought of as an epiphenomenon and a result of an 

acute injury, with their presence not necessarily equating with 

the development of late PTE.3,4 In fact, the pathophysiologic 

mechanisms leading to early post-traumatic seizures are not 

clearly understood, and multiple factors are thought to play a 

role, including interruption of the blood–brain barrier, pres-

ence of hemorrhage, and injury-related excitotoxicity.5–8

The reported incidence of late PTE is dependent, in 

part, on the study design. In a population-based cohort of 

2,747 patients with TBI, the risk of PTE after a severe TBI 

was 7.1% at 1 year and 11.5% at 5 years. After moderate 

brain injury, the risk of PTE was 0.7% at 1 year and 1.6% at 

5 years. The risk of PTE was not increased after mild head 

injury defined as head injury without skull fracture with either 

loss of consciousness or posttraumatic amnesia lasting less 

than 30 minutes.9 In the trial of PHT versus placebo for seizure 

prevention after TBI, 86% of patients who developed seizures 

did so within 2 years of the incident trauma.10,11 Finally, in a 

large population-based study, the risk of PTE was relatively 

small and non-significantly elevated after mild injury (1.5 after 

adjusting for all other factors) and increased after moderate 

(2.9 times) and severe (17.0 times) TBI.3 Salazar et al12 reported 

the overall occurrence of PTE in 53% of Vietnam veterans 

who had suffered from various penetrating head wounds and 

who required neurosurgical intervention. More than 90% of 

PTE presented within the first 10 years of trauma; occurrence 

of PTE significantly correlated with multiple risk factors, 

including brain volume loss, the presence of metal fragment, 

hematoma, and residual neurological deficits.12 These authors 

estimated the risk of developing epilepsy within the first year 

of penetrating head trauma to be 580 times higher than in a 

population not at risk. Finally, a recent cross-sectional study 

investigated PTE in a cohort of the veterans of the Afghanistan 

and Iraq conflicts to show age-adjusted prevalence of 6.1 per 

1,000, with odds of developing epilepsy related to previous 

TBI of 18.77 (95% confidence interval [CI] 9.21–38.23) when 

compared with veterans who did not suffer TBI.13 Thus, the 

picture painted by these epidemiological studies is that the 

more severe the injury the more likely the person with TBI 

is to develop PTE; that more than 80% of PTE starts within 

2 years of TBI; that presence of skull fracture, penetrating 

injury, and neurological deficits predispose to the development 

of PTE; and that age at the time of injury may be a factor in 

the development of PTE.

Seizure and epilepsy prevention 
after TBI
The idea behind the use of AEDs in the immediate post-injury 

period is based on the desire to prevent the development of 

late PTE as a long-term, and at times debilitating, comorbid-

ity, ie, finding a time window for an intervention that will 

stop the process of epileptogenesis.7 However, it needs to be 

recognized that besides seizures and PTE, TBI is frequently 

followed by various immediate and long-term deficits.7,14,15 

These include, among others, focal neurological deficits, cog-

nitive problems, changes in mood (eg, depression), movement 

disorders, sleep disorders, and behavioral problems. Some 

of these deficits may improve or resolve relatively quickly 

after the injury while some of them may worsen after initial 

improvement.16,17 Further, information on how treatment with 

AEDs in the acute phase influences long-term outcomes, 

including the development of PTE, is relatively sparse. Pro-

phylaxis against seizures is a part of standard therapy in the 

acute phase of moderate or severe TBI. As per guidelines 

from multiple organizations, including the Brain Trauma 
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Foundation and the American Academy of Neurology, the 

most commonly used prophylactic agent is PHT, which is 

typically administered for the first 7 days after TBI.18,19 But, 

while prophylaxis with PHT decreases the incidence of early 

posttraumatic seizures from 14.2% to 3.6% when compared 

with placebo, this treatment has not been shown to decrease 

the risk of late posttraumatic seizures and epilepsy.1,11

PHT has numerous side effects and drug interactions and 

exhibits complex nonlinear pharmacokinetics that necessitate 

therapeutic drug monitoring; its steady state concentrations 

are often not achievable within the first 7 days of therapy. 

Further, maintaining therapeutic levels of PHT is challenging 

in patients with TBI because the levels are affected by mul-

tiple factors frequently present in TBI patients, including 

decreased protein binding, variable gastrointestinal absorp-

tion, and increased drug clearance.20 Further, while PHT 

reduces seizures, concerns have been raised that it may also 

adversely affect cognitive recovery, at least in some forms 

of brain injury. A recent study investigated the outcomes 

of patients treated with PHT for seizure prophylaxis after 

TBI compared with matched patients who, based on clini-

cal judgment, had not received PHT prophylaxis.20 While 

no differences were observed in the incidence of seizures 

between groups, patients treated with PHT showed worse 

outcomes, including Glasgow Outcomes Scale and modified 

Ranking Scale (both P0.05). Multiple caveats to this study 

need to be considered, including small sample size, lack of 

randomization, and the choice of treatment versus no treat-

ment based on personal preferences of the providers rather 

than predetermined schemes.20

An alternative to PHT may be LEV, an agent recently 

added to the seizure-prevention armamentarium.21–25 The 

availability of this AED is especially relevant for critically 

ill patients with TBI because of the ease of administration, 

low rate of adverse events, and potential for improved 

outcomes.19,20,24 A recently reported small-scale, single-

blinded randomized trial suggests the use of LEV rather than 

PHT in acute TBI may be associated with better 6-month 

cognitive outcomes.24,26 While promising, these preliminary 

single-blinded data are not sufficient to warrant a change 

in clinical practice. More studies are needed to determine 

its long-term impact after injury. To date, no prospective, 

double-blind randomized controlled trials (RCTs) have 

been conducted to compare the effects of LEV versus PHT 

on neurocognitive and seizure outcomes among individuals 

with moderate or severe TBI.27,28

Several ‘older’ AEDs have been evaluated for the treat-

ment of early post-traumatic seizures with a goal of targeting 

the development of late PTE. These include PHT, valproate 

(VPA), and carbamazepine (CBZ).18,24 The available data 

on PHT, VPA, and CBZ were reviewed in a recent ‘practice 

parameter’ and are discussed here only briefly.18 For PHT, 

evidence from pooled studies indicates a significantly lower 

risk of early post-traumatic seizures in patients who receive 

PHT for seizure prophylaxis when compared with placebo 

(relative risk 0.37) and no reduction in late post-traumatic sei-

zures (relative risk 1.05). Oral (via feeding tube) CBZ, given 

immediately after TBI and continued for 18–24 months, was 

used for seizure prophylaxis in one quasi-randomized study 

in which outcomes were compared with a placebo group.29 

Patients treated with CBZ showed a significantly lower 

probability of early and late post-traumatic seizures, but the 

results of this study are confounded by the fact that patients 

were treated initially with intravenous PHT until they were 

able to receive oral CBZ. Finally, one study evaluated VPA 

for seizure prevention after TBI to show similar incidences of 

seizures in patients randomized to 1 week of PHT, 1 month 

of VPA, or 6 months of VPA (P=0.19) and a trend toward 

higher mortality with VPA (P=0.07); the effects of both 

AEDs on neuropsychological health were similar.30,31 Based 

on these results the use of VPA for seizure prevention cannot 

be recommended. Overall, this is surprising because VPA 

has been shown to be neuroprotective in several models of 

acute central nervous system injury (for review, see Chen 

et al32). Thus, the available studies provide level 1 evidence 

for the short-term use of PHT for seizure prevention in the 

setting of acute brain injury, while the use of VPA and CBZ 

in this setting is questionable. Currently, there is no class I 

evidence that the ‘older’ AEDs should be used for long-term 

prevention of PTE.18

The results of the previous studies put into perspective the 

proposed use of LEV in the setting of acute TBI. In animal 

studies, LEV has been shown to have several mechanisms 

of action, including modulation of neuropeptide Y receptors 

and neuronal Ca++ channels, threshold elevation for L-type 

Ca++ channel neuronal currents, modulation of neurotrans-

mitter release via binding to the synaptic vesicle protein 

2A (inhibition of Ca++ release from intracellular stores), 

and opposition of the negative modulation of gamma-

aminobutyric acid (GABA)- and glycine-gated currents.21,33 

These mechanisms of action could explain the unique 

antiepileptogenic activity of LEV, including neuroprotec-

tion, seizure prevention, and improved cognitive outcomes 

of LEV use in animal models of brain injury, and support 

its use for seizure prevention in moderate and severe TBI. 

To offer more detail, LEV has recently been shown to be 
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neuroprotective in a rodent model of controlled cortical 

impact (CCI) and subarachnoid hemorrhage (effect that has 

not been observed with PHT); administration of LEV but 

not PHT improved functional outcomes.34 Another rodent 

study showed that 20 days of LEV treatment following CCI, 

when compared with placebo, promoted neuronal sparing, 

decreased the volume of injury, and reduced release of pro-

inflammatory interleukin (IL)-1β.35 Finally, LEV alone or in 

combination with diazepam decreased seizure-related hip-

pocampal neurodegeneration.36 Next is the issue of seizure 

prevention – the process of epileptogenesis (transformation 

of normal brain tissue into one capable of spontaneously 

generating seizures) can be prevented or aborted by LEV.37 

While it is recognized that LEV is not antiepileptogenic 

in all animal models, recent studies have shown that LEV 

aborts hyperexcitability in hippocampal neurons after status 

epilepticus,38 and that it exerts antiepileptogenic effects in 

spontaneously epileptic rats.39,40 Relevant to the discussion is 

the effect of LEV on cognition – rodents administered LEV 

beginning 1 day after CCI for 20 days showed improved 

motor and cognitive functions, including balance (beam 

walking), spatial learning and memory (maze navigation), 

and exploration.35

In the setting of TBI, some of the issues related to the use 

of AEDs revolve around the potential effects of these medica-

tions on EEG. This is because a growing body of evidence 

supports the notion that interictal epileptiform discharges 

(IEDs) and/or seizures result in long-term cognitive deficits. 

In fact, IEDs have been shown not only to affect cognitive 

performance, including alertness and speed of processing, 

at the moment of their occurrence41,42 but also to contribute 

to negative long-term cognitive outcomes such as decreased 

educational achievement.41–43 The negative effect of IEDs on 

cognition may be comparable to the effects of brief seizures.42 

There is also evidence that AEDs such as LEV may positively 

affect the EEG by suppressing IEDs44,45 and by improving the 

overall background of the EEG; these effects are not observed 

with PHT.46 In addition to IEDs, the other common EEG 

abnormalities observed in TBI are seizures.12,47,48 Because 

of the abundance of EEG abnormalities, it can be difficult to 

separate the short- and long-term effects of the injury alone 

from the associated seizures. Animal studies indicate that 

brain trauma causes global, in addition to focal, abnormali-

ties, and that these abnormalities are most pronounced in the 

most vulnerable areas – ie, hippocampus.49 Further, animal 

model research has documented the relationship between TBI 

and seizures50–52 and the positive impact of seizure medica-

tion treatments on improving neurobehavioral outcomes in 

TBI.35,53 Recently, human studies have shown that seizures in 

patients with TBI disproportionately contribute to hippocam-

pal atrophy,54 that seizures cause increases in intracranial 

pressure and increased lactate/pyruvate ratio, both of which 

have deleterious effects on post-TBI recovery,55,56 and that 

patients with seizures related to any type of brain injury, 

when compared with matched patients without injury, have 

poorer outcomes and higher mortality.57–60 Thus, there is little 

doubt that seizures and/or IEDs have a negative influence on 

recovery after TBI.

The next issue that requires consideration is cognitive per-

formance. It is well recognized that most AEDs have negative 

effects on cognition. The archetypical AED for these effects 

is topiramate, which has been shown to negatively affect 

cognitive performance in healthy subjects61–64 and in patients 

with epilepsy.65–68 The effects of PHT and LEV on cogni-

tion are not as pronounced and are likely different.24,25,69–74 

PHT has been noted to have significant long-term effects 

on cognition,69 including negative effects on concentration, 

memory, visuo-motor functions and mental speed; these 

effects may be dose related.75–77 Some studies have shown 

detrimental effects of PHT on cognitive performance when 

compared with other AEDs (eg, carbamazepine75,77,78), with 

these negative effects improving after PHT discontinuation.79 

On the other hand, LEV as a member of the pyrrolidine class 

of drugs, may improve cognition via enhancing higher inte-

grative mechanisms of the brain.80,81 In fact, LEV has been 

shown to improve a range of cognitive abilities, including 

visual short-term memory,82 working memory,83 motor 

functions,83 psychomotor speed and concentration,72,84 and 

fluid intelligence.85 Comparative data are scarce – while one 

small comparative study showed no difference in cognitive 

outcomes in patients with epilepsy treated with LEV versus 

PHT, the authors recognized the lack of power to detect 

such a difference (n=10; participants taking concurrently 

various AEDs including PHT, CBZ, and/or VPA).86 To 

date, systematic direct comparisons in patients with epilepsy 

have not been performed, but some studies have indicated 

improvements in cognition when patients were either tran-

sitioned to or treated with LEV monotherapy.44,46 Similar 

improvements in cognitive performance of patients with 

epilepsy while treated with PHT have not been observed or 

reported. Finally, individuals with existing cognitive weak-

nesses (as in TBI) may benefit most from LEV and, in fact, 

a blinded study showed that recent memory improved most 

in patients with poor baseline scores.87 In contrast to the rela-

tive paucity of epilepsy data, a recent study of patients with 

brain tumors after resection showed that the neurocognitive 
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performance of patients treated with LEV was equal to or 

better than that of matched patients not treated with any AEDs 

and better than the performance of patients treated with PHT 

or VPA; in contrast to treatment with PHT, treatments with 

LEV or VPA were not associated with additional cognitive 

deficits.88 Another study in an animal model of Alzheimer’s 

disease showed that treatment with LEV improved cogni-

tive performance via reduction of epileptiform discharges 

and reversal of hippocampal remodeling, behavioral abnor-

malities, synaptic dysfunction, and deficits in learning and 

memory.89 In addition to the effects described above, nega-

tive effects on EEG and cognitive performance have been 

observed in patients treated with PHT, especially at high 

doses and levels.90,91

Based on a single RCT, PHT has been shown to have a 

negative effect on cognitive outcomes in patients with TBI.69 

A recent study in subarachnoid hemorrhage showed that these 

effects may be dependent on the dose and treatment duration 

with PHT.73 These findings have led some to question the 

use of PHT in the setting of TBI.92 Newer AEDs, specifically 

LEV, may be better tolerated and have less adverse impact on 

the plasticity of recovery. Studies have shown that patients 

with various etiologies of brain injury, including TBI, expe-

rience better outcomes on a variety of measures (adverse 

effects, Modified Rankin Scale, Glasgow Outcomes Scale) 

when treated with LEV compared with PHT.24,25,93,94 To that 

end, one small retrospective non-randomized study in TBI 

evaluated cognitive performance and showed a trend toward 

improved outcomes among patients treated with LEV versus 

PHT (P=0.08).25 Finally, a single-blinded RCT has shown 

better Glasgow Outcome Scale and modified Rankin Scale 

outcomes in patients with moderate or severe TBI who were 

treated with LEV versus PHT.24

Evidence for seizures after brain 
injury and the effects of PHT vs LEV 
The likelihood of early seizures is related to the severity 

of brain injury.14 Further, as indicated above, there is some 

evidence that early seizures may translate into the devel-

opment of long-term epilepsy,95,96 though the data from 

population-based studies are not entirely in support of this 

notion.3,9 The factors that lead to the establishment of the 

long-term epileptic state are not fully understood, but there 

is considerable evidence to suggest that seizures in the acute 

period may drive changes that will result in the development 

of PTE. Early use of AEDs may prevent these changes from 

occurring, reverse the process of early epileptogenesis related 

to injury, and prevent chronic epilepsy.38,97,98

As mentioned previously, because of the short-term risk 

of seizures and long-term risks of epilepsy, patients with TBI 

are typically treated with AEDs for 7 days.99–101 The most fre-

quently used AED in this setting is PHT.1,11,18 However, PHT 

was also found to be associated with substantial liver toxicity, 

hypotension, hematologic abnormalities, drug interactions, 

and sedation, all of which are problematic in critically ill 

patients.24,94 Finally, as indicated above, studies suggest 

that the use of PHT in this setting is associated with adverse 

cognitive effects, negative effects on post-TBI recovery,24,25,69 

and even negative effects on brain anatomy.102

The incidence of acute post-TBI seizures depends on 

whether seizures are reported based on clinical (~2%) or 

continuous EEG (cEEG) (~22%) criteria.24,26,59,60,103 Recently, 

cEEG monitoring has been used to determine the incidence 

of early seizures in critically ill patients. In TBI studies that 

included cEEG, the incidence of early seizures was found to 

range from 16% to 22%, with the vast majority of seizures 

being non-convulsive (52%–100%); approximately 95% of 

the identified seizures occurred within 72 hours of trauma. 

Further, it has been shown that the use of cEEG leads to 

treatment changes in more than 50% of the monitored 

patients.104 These findings support the empiric use of AEDs 

and of the cEEG in the critical care setting.60,105–107 Finally, 

data from a recent randomized and blinded study support 

the notion that cEEG performed in the first 72 hours after 

TBI contributes to outcome prediction,26 with alpha vari-

ability being the most important predictive factor.108 Thus, 

suppressing or eliminating IEDs and seizures should result 

in improved cognitive performance, while knowledge of the 

cEEG characteristics can contribute to the overall long-term 

prediction of outcomes.

Patients with moderate or severe TBI admitted to 

neuroscience intensive care units are at increased risk for 

seizures due to their underlying neurological injury.3,9 

Early-onset seizures in patients with TBI greatly increase 

the incidence of subsequent seizures/epilepsy and the 

chance of secondary harm, including increased intracranial 

pressure, hypoxia, physical injury, and mortality.58,96,99 Any 

of these complications may adversely affect the cognitive 

and neurological status of patients with TBI, and worsen 

their clinical outcomes. Further, the presence of seizures 

or status epilepticus in patients with TBI, similar to other 

acute neurological insults such as stroke, is associated with 

increased mortality.58,60 Thus, seizure prevention is critical 

for the long-term outcomes of patients with brain injury, and 

cEEG may be a valuable biomarker of initial epileptogenicity 

and for long-term outcomes.
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Thus, to summarize, while there is no level 1 evidence 

that LEV may be equivalent to or better than PHT when 

used for seizure prevention in patients with TBI, there is 

a substantial body of evidence that the use of LEV should 

be considered in this setting, and further investigations 

are needed. Finally, prophylaxis of late PTE is neither 

indicated nor recommended. The data from observational 

studies and RCTs provide no evidence to support such 

use of AEDs.

Future directions
Clinical post-TBI recovery occurs over periods of months 

and years, and so does the process of epileptogenesis. 

In fact, epileptogenesis may progress in spite of clinical 

improvements and in parallel with them. So, the goal of 

seizure prevention (clinical and research) should be to abort 

the process of epileptogenesis in addition to short-term sei-

zure prevention, while not negatively affecting the process 

of post-TBI recovery. Multiple possible avenues need to be 

further investigated. 

At least theoretical grounds exist for the use of several 

existing and potential AEDs for seizure and PTE prevention 

in TBI. The possibilities include the use of anticonvulsants 

that exert activity against AMPA receptors, including lam-

otrigine and topiramate.109–112 In fact, in models of acute brain 

injury other than TBI, topiramate in the setting of therapeutic 

hypothermia has already been shown to be neuroprotective.113 

Further, talampanel and perampanel, two novel AEDs that 

are known AMPA antagonists, have also been shown to 

be antiepileptogenic; talampanel is also known to be neu-

roprotective.112 Since another AMPA-receptor antagonist, 

NS1209, with a mechanism of action similar to that of per-

ampanel (also a selective AMPA-receptor antagonist that 

decreases hyperexcitability by targeting glutamate activity 

at post-synaptic AMPA receptors110) has already been shown 

to be neuroprotective and effective in various animal models 

of epilepsy, including status epilepticus, we can probably 

assume all AEDs with this mechanism of action have simi-

lar properties.112 Other potential developments may include 

lacosamide because of its relative ease of use and the avail-

ability of intravenous and oral forms that are easily exchange-

able, and the fact that this AED has been shown to be 

potentially anti-epileptogenic in animal models of kindling.114 

Finally, ketamine, a N-methyl D-aspartate (NMDA) recep-

tor antagonist, has recently gained attention as a possible 

treatment of refractory status epilepticus; this drug is known 

to decrease or prevent NMDA-receptor up-regulation 

and thus decrease the possibility of neurotoxicity via 

glutamate cascade.115 This is especially important in view 

of a recent study that used CCI as a model of TBI to show 

that cortical excitability and glutamatergic signaling were 

altered following injury.5 The results of this study suggest 

that specific cortical neuronal microcircuits may initiate 

and facilitate the spread of epileptiform activity following 

TBI and increased glutamatergic signaling due to loss of 

GABAergic control, which may provide a mechanism by 

which TBI can give rise to PTE.

Disclosure
The authors report no conflicts of interest in this work.

References
	 1.	 Temkin NR. Preventing and treating posttraumatic seizures: the human 

experience. Epilepsia. 2009;50 Suppl 2:10–13.
	 2.	 Cotton BA, Kao LS, Kozar R, Holcomb JB. Cost-utility analysis of 

levetiracetam and phenytoin for posttraumatic seizure prophylaxis. 
J Trauma. 2011;71(2):375–379.

	 3.	 Annegers JF, Hauser WA, Coan SP, Rocca WA. A population-
based study of seizures after traumatic brain injuries. N Engl J Med. 
1998;338(1):20–24.

	 4.	 Asikainen I, Kaste M, Sarna S. Early and late posttraumatic seizures 
in traumatic brain injury rehabilitation patients: brain injury factors 
causing late seizures and influence of seizures on long-term outcome. 
Epilepsia. 1999;40(5):584–589.

	 5.	 Cantu D, Walker K, Andresen L, et al. Traumatic brain injury increases 
cortical glutamate network activity by compromising GABAergic 
control. Cereb Cortex. Epub 2014 Mar 7.

	 6.	 Herman ST. Epilepsy after brain insult: targeting epileptogenesis. 
Neurology. 2002;59(9 Suppl 5):S21–S26.

	 7.	 Pitkänen A, Kemppainen S, Ndode-Ekane XE, et al. Posttraumatic 
epilepsy – disease or comorbidity? Epilepsy Behav. Epub 2014 Feb 11.

	 8.	 Silverstein FS, Barks JD, Hagan P, Liu XH, Ivacko J, Szaflarski J. Cytokines 
and perinatal brain injury. Neurochem Int. 1997;30(4–5):375–383.

	 9.	 Annegers JF, Grabow JD, Groover RV, Laws ER Jr, Elveback LR, 
Kurland LT. Seizures after head trauma: a population study. Neurology. 
1980;30(7 Pt 1):683–689.

10.	 Haltiner AM, Temkin NR, Dikmen SS. Risk of seizure recurrence 
after the first late posttraumatic seizure. Arch Phys Med Rehabil. 
1997;78(8):835–840.

11.	 Temkin NR, Dikmen SS, Wilensky AJ, Keihm J, Chabal S, Winn HR. 
A randomized, double-blind study of phenytoin for the prevention of 
post-traumatic seizures. N Engl J Med. 1990;323(8):497–502.

12.	 Salazar AM, Jabbari B, Vance SC, Grafman J, Amin D, Dillon JD.  
Epilepsy after penetrating head injury. I. Clinical correlates: a 
report of the Vietnam Head Injury Study. Neurology. 1985;35(10): 
1406–1414.

13.	 Pugh MJ, Orman JA, Jaramillo CA, et al. The prevalence of epilepsy and 
association with traumatic brain injury in veterans of the Afghanistan 
and Iraq wars. J Head Trauma Rehabil. Epub 2014 Apr 1.

14.	 Lowenstein DH. Epilepsy after head injury: an overview. Epilepsia. 
2009;50 Suppl 2:4–9.

15.	 Wang HC, Chang WN, Chang HW, et al. Factors predictive of outcome 
in posttraumatic seizures. J Trauma. 2008;64(4):883–888.

16.	 Katz DI, Alexander MP, Klein RB. Recovery of arm function in patients 
with paresis after traumatic brain injury. Arch Phys Med Rehabil. 
1998;79(5):488–493.

17.	 Till C, Colella B, Verwegen J, Green RE. Postrecovery cognitive 
decline in adults with traumatic brain injury. Arch Phys Med Rehabil. 
2008;89(12 Suppl):S25–S34.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Neuropsychiatric Disease and Treatment 2014:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1475

TBI, AEDs, and epilepsy

18.	 Chang BS, Lowenstein DH; Quality Standards Subcommittee of the 
American Academy of Neurology. Practice parameter: antiepileptic 
drug prophylaxis in severe traumatic brain injury: report of the Qual-
ity Standards Subcommittee of the American Academy of Neurology. 
Neurology. 2003;60(1):10–16.

19.	 Rowe AS, Goodwin H, Brophy GM, et al; Neurocritical Care Soci-
ety Pharmacy Section. Seizure prophylaxis in neurocritical care: a 
review of evidence-based support. Pharmacotherapy. 2014;34(4): 
396–409.

20.	 Bhullar IS, Johnson D, Paul JP, Kerwin AJ, Tepas JJ 3rd, Frykberg ER.  
More harm than good: antiseizure prophylaxis after traumatic brain 
injury does not decrease seizure rates but may inhibit functional 
recovery. J Trauma Acute Care Surg. 2014;76(1):54–60; discussion 
60–61.

21.	 Dewolfe JL, Szaflarski JP. Levetiracetam use in the critical care setting. 
Front Neurol. 2013;4:121.

22.	 Jones KE, Puccio AM, Harshman KJ, et al. Levetiracetam versus 
phenytoin for seizure prophylaxis in severe traumatic brain injury. 
Neurosurg Focus. 2008;25(4):E3.

23.	 Milligan TA, Hurwitz S, Bromfield EB. Efficacy and tolerability of 
levetiracetam versus phenytoin after supratentorial neurosurgery. 
Neurology. 2008;71(9):665–669.

24.	 Szaflarski JP, Sangha KS, Lindsell CJ, Shutter LA. Prospective, 
randomized, single-blinded comparative trial of intravenous leveti-
racetam versus phenytoin for seizure prophylaxis. Neurocrit Care. 
2010;12(2):165–172.

25.	 Taylor S, Heinrichs RJ, Janzen JM, Ehtisham A. Levetiracetam is asso-
ciated with improved cognitive outcome for patients with intracranial 
hemorrhage. Neurocrit Care. 2011;15(1):80–84.

26.	 Steinbaugh LA, Lindsell CJ, Shutter LA, Szaflarski JP. Initial EEG 
predicts outcomes in a trial of levetiracetam vs fosphenytoin for seizure 
prevention. Epilepsy Behav. 2012;23(3):280–284.

27.	 Benge JF, Phenis RA, Bernett A, Cruz-Laureano D, Kirmani BF. Neu-
robehavioral effects of levetiracetam in patients with traumatic brain 
injury. Front Neurol. 2013;4:195.

28.	 Kirmani BF, Mungall D, Ling G. Role of intravenous levetiracetam 
in seizure prophylaxis of severe traumatic brain injury patients. Front 
Neurol. 2013;4:170.

29.	 Glötzner FL, Haubitz I, Miltner F, Kapp G, Pflughaupt KW. [Seizure 
prevention using carbamazepine following severe brain injuries]. 
Neurochirurgia (Stuttg). 1983;26(3):66–79. German [with English 
abstract].

30.	 Dikmen SS, Machamer JE, Winn HR, Anderson GD, Temkin NR. 
Neuropsychological effects of valproate in traumatic brain injury: a 
randomized trial. Neurology. 2000;54(4):895–902.

31.	 Temkin NR, Dikmen SS, Anderson GD, et al. Valproate therapy for 
prevention of posttraumatic seizures: a randomized trial. J Neurosurg. 
1999;91(4):593–600.

32.	 Chen S, Wu H, Klebe D, Hong Y, Zhang J. Valproic acid: a new can-
didate of therapeutic application for the acute central nervous system 
injuries. Neurochem Res. Epub 2014 Jan 31.

33.	 Shetty AK. Prospects of levetiracetam as a neuroprotective drug against 
status epilepticus, traumatic brain injury, and stroke. Front Neurol. 
2013;4:172.

34.	 Wang H, Gao J, Lassiter TF, et al. Levetiracetam is neuroprotective in 
murine models of closed head injury and subarachnoid hemorrhage. 
Neurocrit Care. 2006;5(1):71–78.

35.	 Zou H, Brayer SW, Hurwitz M, Niyonkuru C, Fowler LE, Wagner AK. 
Neuroprotective, neuroplastic, and neurobehavioral effects of daily 
treatment with levetiracetam in experimental traumatic brain injury. 
Neurorehabil Neural Repair. 2013;27(9):878–888.

36.	 Lee DS, Ryu HJ, Kim JE, et al. The effect of levetiracetam on status 
epilepticus-induced neuronal death in the rat hippocampus. Seizure. 
2013;22(5):368–377.

37.	 Löscher W, Brandt C. Prevention or modification of epileptogenesis 
after brain insults: experimental approaches and translational research. 
Pharmacol Rev. 2010;62(4):668–700.

38.	 Margineanu DG, Matagne A, Kaminski RM, Klitgaard H. Effects of 
chronic treatment with levetiracetam on hippocampal field responses 
after pilocarpine-induced status epilepticus in rats. Brain Res Bull. 
2008;77(5):282–285.

39.	 Russo E, Citraro R, Scicchitano F, et al. Comparison of the antiepilep-
togenic effects of an early long-term treatment with ethosuximide or 
levetiracetam in a genetic animal model of absence epilepsy. Epilepsia. 
2010;51(8):1560–1569.

40.	 Yan HD, Ji-qun C, Ishihara K, Nagayama T, Serikawa T, Sasa M. 
Separation of antiepileptogenic and antiseizure effects of levetirac-
etam in the spontaneously epileptic rat (SER). Epilepsia. 2005;46(8): 
1170–1177.

41.	 Aldenkamp A, Arends J. The relative influence of epileptic EEG dis-
charges, short nonconvulsive seizures, and type of epilepsy on cognitive 
function. Epilepsia. 2004;45(1):54–63.

42.	 Nicolai J, Ebus S, Biemans DP, et al. The cognitive effects of interictal 
epileptiform EEG discharges and short nonconvulsive epileptic seizures. 
Epilepsia. 2012;53(6):1051–1059.

43.	 Aldenkamp A. Effects of epileptiform EEG discharges on cognitive 
function. In: Zeman A, Kapur N, Jones-Gotman M, editors. Epilepsy 
and Memory. Oxford: Oxford University Press; 2012:160–176.

44.	 Kossoff EH, Los JG, Boatman DF. A pilot study transitioning 
children onto levetiracetam monotherapy to improve language dys-
function associated with benign rolandic epilepsy. Epilepsy Behav. 
2007;11(4):514–517.

45.	 Stodieck S, Steinhoff BJ, Kolmsee S, van Rijckevorsel K. Effect of 
levetiracetam in patients with epilepsy and interictal epileptiform 
discharges. Seizure. 2001;10(8):583–587.

46.	 Cho JR, Koo DL, Joo EY, et al. Effect of levetiracetam monotherapy on 
background EEG activity and cognition in drug-naïve epilepsy patients. 
Clin Neurophysiol. 2012;123(5):883–891.

47.	 Bushnik T, Englander J, Wright J, Kolakowsky-Hayner SA. Traumatic 
brain injury with and without late posttraumatic seizures: what are the 
impacts in the post-acute phase: a NIDRR Traumatic Brain Injury Model 
Systems study. J Head Trauma Rehabil. 2012;27(6):E36–E44.

48.	 Kolakowsky-Hayner SA, Wright J, Englander J, Duong T, Ladley-
O’Brien S. Impact of late post-traumatic seizures on physical health 
and functioning for individuals with brain injury within the community. 
Brain Inj. 2013;27(5):578–586.

49.	 Hamm RJ, Dixon CE, Gbadebo DM, et al. Cognitive deficits follow-
ing traumatic brain injury produced by controlled cortical impact. 
J Neurotrauma. 1992;9(1):11–20.

50.	 Coulter DA, Rafiq A, Shumate M, Gong QZ, DeLorenzo RJ, Lyeth BG. 
Brain injury-induced enhanced limbic epileptogenesis: anatomical and 
physiological parallels to an animal model of temporal lobe epilepsy. 
Epilepsy Res. 1996;26(1):81–91.

51.	 Niskanen JP, Airaksinen AM, Sierra A, et al. Monitoring functional 
impairment and recovery after traumatic brain injury in rats by FMRI. 
J Neurotrauma. 2013;30(7):546–556.

52.	 Pitkänen A, Immonen RJ, Gröhn OH, Kharatishvili I. From traumatic 
brain injury to posttraumatic epilepsy: what animal models tell us 
about the process and treatment options. Epilepsia. 2009;50 Suppl 2: 
21–29.

53.	 Hoover RC, Motta M, Davis J, et al. Differential effects of the 
anticonvulsant topiramate on neurobehavioral and histological 
outcomes following traumatic brain injury in rats. J Neurotrauma. 
2004;21(5):501–512.

54.	 Vespa PM, McArthur DL, Xu Y, et al. Nonconvulsive seizures after 
traumatic brain injury are associated with hippocampal atrophy. Neurol-
ogy. 2010;75(9):792–798.

55.	 Timofeev I, Carpenter KL, Nortje J, et al. Cerebral extracellular chem-
istry and outcome following traumatic brain injury: a microdialysis 
study of 223 patients. Brain. 2011;134(Pt 2):484–494.

56.	 Vespa PM, Miller C, McArthur D, et al. Nonconvulsive electrographic 
seizures after traumatic brain injury result in a delayed, prolonged 
increase in intracranial pressure and metabolic crisis. Crit Care Med. 
2007;35(12):2830–2836.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Neuropsychiatric Disease and Treatment 2014:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1476

Szaflarski et al

57.	 Mani R, Schmitt SE, Mazer M, Putt ME, Gaieski DF. The frequency and 
timing of epileptiform activity on continuous electroencephalogram in 
comatose post-cardiac arrest syndrome patients treated with therapeutic 
hypothermia. Resuscitation. 2012;83(7):840–847.

58.	 Szaflarski JP, Rackley AY, Kleindorfer DO, et al. Incidence of seizures 
in the acute phase of stroke: a population-based study. Epilepsia. 
2008;49(6):974–981.

59.	 Vespa PM, Nenov V, Nuwer MR. Continuous EEG monitoring in the 
intensive care unit: early findings and clinical efficacy. J Clin Neuro-
physiol. 1999;16(1):1–13.

60.	 Vespa PM, Nuwer MR, Nenov V, et al. Increased incidence and impact 
of nonconvulsive and convulsive seizures after traumatic brain injury 
as detected by continuous electroencephalographic monitoring. J Neu-
rosurg. 1999;91(5):750–760.

61.	 Loring DW, Williamson DJ, Meador KJ, Wiegand F, Hulihan J. Topi-
ramate dose effects on cognition: a randomized double-blind study. 
Neurology. 2011;76(2):131–137.

62.	 Martin R, Kuzniecky R, Ho S, et al. Cognitive effects of topiramate, 
gabapentin, and lamotrigine in healthy young adults. Neurology. 
1999;52(2):321–327.

63.	 Meador KJ, Loring DW, Vahle VJ, et al. Cognitive and behavioral 
effects of lamotrigine and topiramate in healthy volunteers. Neurology. 
2005;64(12):2108–2114.

64.	 Salinsky MC, Storzbach D, Spencer DC, Oken BS, Landry T, Dodrill CB.  
Effects of topiramate and gabapentin on cognitive abilities in healthy 
volunteers. Neurology. 2005;64(5):792–798.

65.	 Blum D, Meador K, Biton V, et al. Cognitive effects of lamotrigine 
compared with topiramate in patients with epilepsy. Neurology. 
2006;67(3):400–406.

66.	 Lee S, Sziklas V, Andermann F, et al. The effects of adjunctive 
topiramate on cognitive function in patients with epilepsy. Epilepsia. 
2003;44(3):339–347.

67.	 Mula M, Trimble MR, Thompson P, Sander JW. Topiramate and 
word-finding difficulties in patients with epilepsy. Neurology. 
2003;60(7):1104–1107.

68.	 Szaflarski JP, Allendorfer JB. Topiramate and its effect on fMRI of 
language in patients with right or left temporal lobe epilepsy. Epilepsy 
Behav. 2012;24(1):74–80.

69.	 Dikmen SS, Temkin NR, Miller B, Machamer J, Winn HR. Neurobe-
havioral effects of phenytoin prophylaxis of posttraumatic seizures. 
JAMA. 1991;265(10):1271–1277.

70.	 Gallassi R, Morreale A, Lorusso S, Procaccianti G, Lugaresi E, Baruzzi A.  
Carbamazepine and phenytoin. Comparison of cognitive effects in 
epileptic patients during monotherapy and withdrawal. Arch Neurol. 
1988;45(8):892–894.

71.	 Gomer B, Wagner K, Frings L, et al. The influence of antiepileptic drugs 
on cognition: a comparison of levetiracetam with topiramate. Epilepsy 
Behav. 2007;10(3):486–494.

72.	 Helmstaedter C, Witt JA. The effects of levetiracetam on cogni-
tion: a non-interventional surveillance study. Epilepsy Behav. 
2008;13(4):642–649.

73.	 Naidech AM, Kreiter KT, Janjua N, et al. Phenytoin exposure is 
associated with functional and cognitive disability after subarachnoid 
hemorrhage. Stroke. 2005;36(3):583–587.

74.	 Trimble MR. Cognitive hazards of seizure disorders. Epilepsia. 1988;29 
Suppl 1:S19–S24.

75.	 Andrewes DG, Bullen JG, Tomlinson L, Elwes RD, Reynolds EH.  
A comparative study of the cognitive effects of phenytoin 
and carbamazepine in new referrals with epilepsy. Epilepsia. 
1986;27(2):128–134.

76.	 Gillham RA, Williams N, Wiedmann KD, Butler E, Larkin JG, Brodie MJ.  
Cognitive function in adult epileptic patients established on anticon-
vulsant monotherapy. Epilepsy Res. 1990;7(3):219–225.

77.	 Pulliainen V, Jokelainen M. Comparing the cognitive effects of 
phenytoin and carbamazepine in long-term monotherapy: a two-year 
follow-up. Epilepsia. 1995;36(12):1195–1202.

	 78.	 Aldenkamp AP, Alpherts WC, Diepman L, van ‘t Slot B, Overweg J,  
Vermeulen J. Cognitive side-effects of phenytoin compared with 
carbamazepine in patients with localization-related epilepsy. Epilepsy 
Res. 1994;19(1):37–43.

	 79.	 Duncan JS, Shorvon SD, Trimble MR. Effects of removal of pheny-
toin, carbamazepine, and valproate on cognitive function. Epilepsia. 
1990;31(5):584–591.

	 80.	 Giurgea C. The “nootropic” approach to the pharmacology of the 
integrative activity of the brain. Cond Reflex. 1973;8(2):108–115.

	 81.	 Giurgea CE, Greindl MG, Preat S. Nootropic drugs and aging. Acta 
Psychiatr Belg. 1983;83(4):349–358.

	 82.	 Ciesielski AS, Samson S, Steinhoff BJ. Neuropsychological and 
psychiatric impact of add-on titration of pregabalin versus levetirac-
etam: a comparative short-term study. Epilepsy Behav. 2006;9(3): 
424–431.

	 83.	 López-Góngora M, Martínez-Domeño A, Garcia C, Escartín A. Effect 
of levetiracetam on cognitive functions and quality of life: a one-year 
follow-up study. Epileptic Disord. 2008;10(4):297–305.

	 84.	 Helmstaedter C, Fritz NE, Kockelmann E, Kosanetzky N, Elger CE. 
Positive and negative psychotropic effects of levetiracetam. Epilepsy 
Behav. 2008;13(3):535–541.

	 85.	 Eddy CM, Rickards HE, Cavanna AE. The cognitive impact of anti-
epileptic drugs. Ther Adv Neurol Disord. 2011;4(6):385–407.

	 86.	 Neyens LG, Alpherts WC, Aldenkamp AP. Cognitive effects of a new 
pyrrolidine derivative (levetiracetam) in patients with epilepsy. Prog 
Neuropsychopharmacol Biol Psychiatry. 1995;19(3):411–419.

	 87.	 Huang CW, Pai MC, Tsai JJ. Comparative cognitive effects of 
levetiracetam and topiramate in intractable epilepsy. Psychiatry Clin 
Neurosci. 2008;62(5):548–553.

	 88.	 de Groot M, Douw L, Sizoo EM, et al. Levetiracetam improves 
verbal memory in high-grade glioma patients. Neuro-oncology. 
2013;15(2):216–223.

	 89.	 Sanchez PE, Zhu L, Verret L, et al. Levetiracetam suppresses 
neuronal network dysfunction and reverses synaptic and cognitive 
deficits in an Alzheimer’s disease model. Proc Natl Acad Sci U S A. 
2012;109(42):E2895–E2903.

	 90.	 Meador KJ, Loring DW, Abney OL, et al. Effects of carbamazepine 
and phenytoin on EEG and memory in healthy adults. Epilepsia. 
1993;34(1):153–157.

	 91.	 Osorio I, Burnstine TH, Remler B, Manon-Espaillat R, Reed RC. 
Phenytoin-induced seizures: a paradoxical effect at toxic concentra-
tions in epileptic patients. Epilepsia. 1989;30(2):230–234.

	 92.	 Fountain N. Should levetiracetam replace phenytoin for seizure pro-
phylaxis after neurosurgery? Epilepsy Curr. 2009;9(3):71–72.

	 93.	 Milligan TA, Hurwitz S, Bromfield EB. Efficacy and tolerability of 
levetiracetam versus phenytoin after supratentorial neurosurgery. 
Neurology. 2008;71(9):665–669.

	 94.	 Szaflarski JP, Meckler JM, Szaflarski M, Shutter LA, Privitera MD, 
Yates SL. Levetiracetam use in critically ill patients. Neurocrit Care. 
2007;7(2):140–147.

	 95.	 Kilpatrick CJ, Davis SM, Hopper JL, Rossiter SC. Early sei-
zures after acute stroke. Risk of late seizures. Arch Neurol. 1992; 
49(5):509–511.

	 96.	 So EL, Annegers JF, Hauser WA, O’Brien PC, Whisnant JP. 
Population-based study of seizure disorders after cerebral infarction. 
Neurology. 1996;46(2):350–355.

	 97.	 Klitgaard H, Pitkänen A. Antiepileptogenesis, neuroprotection, and 
disease modification in the treatment of epilepsy: focus on levetirac-
etam. Epileptic Disord. 2003;5 Suppl 1:S9–S16.

	 98.	 Pitkänen A, Bolkvadze T, Immonen R. Anti-epileptogenesis in 
rodent post-traumatic epilepsy models. Neurosci Lett. 2011;497(3): 
163–171.

	 99.	 Dichter MA. Emerging concepts in the pathogenesis of epilepsy and 
epileptogenesis. Arch Neurol. 2009;66(4):443–447.

100.	 Herman ST. Clinical trials for prevention of epileptogenesis. Epilepsy 
Res. 2006;68(1):35–38.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Neuropsychiatric Disease and Treatment

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/neuropsychiatric-disease-and-treatment-journal

Neuropsychiatric Disease and Treatment is an international, peer-
reviewed journal of clinical therapeutics and pharmacology focusing  
on concise rapid reporting of clinical or pre-clinical studies on a  
range of neuropsychiatric and neurological disorders. This journal  
is indexed on PubMed Central, the ‘PsycINFO’ database and CAS,  

and is the official journal of The International Neuropsychiatric 
Association (INA). The manuscript management system is completely 
online and includes a very quick and fair peer-review system, which 
is all easy to use. Visit http://www.dovepress.com/testimonials.php to 
read real quotes from published authors.

Dovepress

Neuropsychiatric Disease and Treatment 2014:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1477

TBI, AEDs, and epilepsy

101.	 Mani R, Pollard J, Dichter MA. Human clinical trails in antiepilepto-
genesis. Neurosci Lett. 2011;497(3):251–256.

102.	 Specht U, May T, Schulz R, et al. Cerebellar atrophy and progno-
sis after temporal lobe resection. J Neurol Neurosurg Psychiatry. 
1997;62(5):501–506.

103.	 Inaba K, Menaker J, Branco BC, et al. A prospective multicenter com-
parison of levetiracetam versus phenytoin for early posttraumatic sei-
zure prophylaxis. J Trauma Acute Care Surg. 2013;74(3):766–773.

104.	 Kilbride RD, Costello DJ, Chiappa KH. How seizure detection by 
continuous electroencephalographic monitoring affects the prescribing 
of antiepileptic medications. Arch Neurol. 2009;66(6):723–728.

105.	 DeLorenzo RJ, Waterhouse EJ, Towne AR, et al. Persistent nonconvul-
sive status epilepticus after the control of convulsive status epilepticus. 
Epilepsia. 1998;39(8):833–840.

106.	 Privitera M, Hoffman M, Moore JL, Jester D. EEG detection of 
nontonic-clonic status epilepticus in patients with altered conscious-
ness. Epilepsy Res. 1994;18(2):155–166.

107.	 Varelas PN, Mirski MA. Management of seizures in critically ill 
patients. Curr Neurol Neurosci Rep. 2004;4(6):489–496.

108.	 Vespa PM, Boscardin WJ, Hovda DA, et al. Early and persistent 
impaired percent alpha variability on continuous electroencephalog-
raphy monitoring as predictive of poor outcome after traumatic brain 
injury. J Neurosurg. 2002;97(1):84–92.

109.	 Lee CY, Fu WM, Chen CC, Su MJ, Liou HH. Lamotrigine inhibits 
postsynaptic AMPA receptor and glutamate release in the dentate 
gyrus. Epilepsia. 2008;49(5):888–897.

110.	 Rogawski MA. Revisiting AMPA receptors as an antiepileptic drug 
target. Epilepsy Curr. 2011;11(2):56–63.

111.	 Russo E, Constanti A, Ferreri G, Citraro R, De Sarro G. Nifedipine 
affects the anticonvulsant activity of topiramate in various animal 
models of epilepsy. Neuropharmacology. 2004;46(6):865–878.

112.	 Russo E, Gitto R, Citraro R, Chimirri A, De Sarro G. New AMPA 
antagonists in epilepsy. Expert Opin Investig Drugs. 2012; 
21(9):1371–1389.

113.	 Liu Y, Barks JD, Xu G, Silverstein FS. Topiramate extends the thera-
peutic window for hypothermia-mediated neuroprotection after stroke 
in neonatal rats. Stroke. 2004;35(6):1460–1465.

114.	 Brandt C, Heile A, Potschka H, Stoehr T, Löscher W. Effects of the 
novel antiepileptic drug lacosamide on the development of amygdala 
kindling in rats. Epilepsia. 2006;47(11):1803–1809.

115.	 Gaspard N, Foreman B, Judd LM, et al. Intravenous ketamine for the 
treatment of refractory status epilepticus: a retrospective multicenter 
study. Epilepsia. 2013;54(8):1498–1503.

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com/neuropsychiatric-disease-and-treatment-journal
http://www.dovepress.com/testimonials.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
www.dovepress.com

	Publication Info 2: 
	Nimber of times reviewed: 


