
© 2014 Vyas et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0)  
License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further 

permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on 
how to request permission may be found at: http://www.dovepress.com/permissions.php

OncoTargets and Therapy 2014:7 1015–1023

OncoTargets and Therapy Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
1015

R e v i e w

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/OTT.S60114

Chemotherapy-enhanced inflammation may  
lead to the failure of therapy and metastasis

Dinesh Vyas
Gieric Laput
Arpitak K Vyas
College of Human Medicine, Michigan 
State University, East Lansing, MI, USA

Correspondence: Dinesh Vyas 
Department of Surgery, Nanomedical 
OncoSepsis Laboratory, Institute of 
International Health, College of Human 
Medicine, Michigan State University,  
1200 East Michigan Avenue, Suite 655, 
East Lansing, MI 48824, USA 
Tel +1 517 267 2460 
Email dinesh.vyas@hc.msu.edu

Abstract: The lack of therapy and the failure of existing therapy has been a challenge for 

clinicians in treating various cancers. Doxorubicin, 5-fluorouracil, cisplatin, and paclitaxel are 

the first-line therapy in various cancers; however, toxicity, resistance, and treatment failure limit 

their clinical use. Their status leads us to discover and investigate more targeted therapy with 

more efficacy. In this article, we dissect literature from the patient perspective, the tumor biology 

perspective, therapy-induced metastasis, and cell data generated in the laboratory.
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Introduction
Drug resistance and failure remains a major challenge in cancer therapy. Two broad 

categories have been identified that classify cancer resistance on the basis of response 

to chemotherapy: primary and acquired.1 Although primary resistance precedes initial 

chemotherapy, acquired resistance involves an accumulation of genetic changes after 

clinical intervention until tumor cells develop resistance phenotypes. A form of acquired 

resistance is mediated by the interaction of tumor cells with their microenvironment.1 

Here, tumor cells circumvent the apoptotic effects of chemotherapy through cell 

adhesion-mediated resistance, in which tumor cell integrins adhere to fibroblast or 

the extracellular matrix;2 and soluble factor-mediated resistance, which induces the 

stroma to produce cytokines, chemokines, and growth factors.3–5

One developing theme is that not only do chemotherapies induce signaling events 

that eliminate and control tumor cells but also they stimulate signals that could mini-

mize their clinical efficacy and promote metastatic development.6 Advances in our 

understanding of the molecular mechanisms that elucidate cancer progression and 

the etiology of drug resistance have identified various crucial targets. Unsurprisingly, 

some of these targets promote inflammation events and seem to play a role in tumor 

proliferation, angiogenesis, and metastasis. In this review, we explore four common 

chemotherapy drugs (cisplatin, paclitaxel, 5-fluorouracil, and doxorubicin) and discuss 

how each drug induces inflammatory events that may lead to metastasis.

Cisplatin and inflammation
Cisplatin is one of the most effective anticancer drugs used to treat a variety of 

solid tumors.7 Cisplatin-DNA crosslinks cause cytotoxic lesions in dividing tumor 

cells; however, the drug’s effect on quiescent renal tubular cells is problematic. Many 

studies indicate that cisplatin-induced renal injury is mediated by oxidative stress, 

apoptosis, and inflammation.7
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The inflammatory changes play an important role, in 

particular nuclear factor kappa B (NFkB) and tumor necrosis 

factor alpha (TNF-α) signaling pathways. Ohta et al assessed 

the effects of cisplatin treatment on ovarian cancer cells on 

NFkB activation and found that cisplatin enhanced its phos-

phorylation significantly, mediated by the PI3/Akt signaling 

cascade.8 This finding is consistent with the coexpression of 

NFkB transcription factors p65 and p50 in ovarian cancer 

patients who received a chemotherapy regimen that included 

cisplatin.9

NFkB signaling is a converging point for control-

ling downstream signaling cascades that include TNF-α, 

interleukin 1 (IL-1), IL-6, IL-8, and transcription of other 

inflammatory genes.10–12 IL-6 is an important cytokine that 

regulates angiogenesis, cell proliferation, and invasion.13–16 

The IL-6 receptor system involves STAT-3- and extracel-

lular signal regulated kinase (ERK)-mediated pathways.17 

STAT-3 plays multiple roles in cell survival and prolifera-

tion through activation of c-myc, cyclin-D, and bcl-2,17 and 

persistent activation of STAT-3 is involved in tumorigenesis 

in a variety of leukemias.18,19 Activation of ERK induces 

cell proliferation through phosphorylation of transcrip-

tion factors such as c-FOS and ELK1.20 IL-8 has been 

implicated in cancer progression, particularly in mediating 

angiogenesis in various cancer types including melanoma,21  

pancreatic,22 colon,23 and non-small-cell lung carcinoma.24

TNF-α is also increased after cisplatin treatment, and 

a variety of pharmacological inhibitors attenuate cisplatin 

nephrotoxicity mediated by TNF-α.25–27 Salicylate treatment 

on mouse kidneys attenuated cisplatin-induced increase in 

TNF-α mRNA and also reduced serum TNF-α levels. Rutin 

treatment on Wistar rats has a beneficial effect on cisplatin’s 

deteriorative effects through inhibition of TNF-α and NFkB 

pathway-mediated inflammation. Likewise, administration of 

luteolin in kidneys of mice significantly reduced TNF-α and 

NFkB, as well as COX-2 expression.

The role of poly (ADP-ribose) polymerase (PARP) 

proteins has been a target for anticancer therapy. PARP-1 

has been implicated in DNA base excision repair, and many 

studies on PARP inhibitors have explored its antineoplastic 

profile. Mukhopadhyay et al found that its genetic deletion 

and pharmacological inhibition attenuates cisplatin-induced 
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Figure 1 Cisplatin-induced inflammation is mediated through multiple effectors including activation of NFkB, TNF-α, and PARP. NFkB is a focal point for downstream cell 
survival and proliferation signaling that involves IL-6 and IL-8 upregulation. Cisplatin also induces the MAPK/ERK pathway and EMT acquisition. The ERK signaling cascade is 
suggested as an upstream signal for TNF-α activation.
Abbreviations: ADP-ribose, poly; COX-2, cyclooxygenase; EMT, epithelial–mesenchymal transition; ERK, mitogen-activated protein kinase; HGF, hepatocyte growth 
factor; HIF-α, hypoxia-inducible factor; ICAM-1, intercellular adhesion molecule; IL, interleukin; MAPK, mitogen-activated protein kinase; MMP, matrix metalloproteinase; 
NFkB, nuclear factor kappa B; PARP, polymerase; STAT-3, signal transducer and activator of transcription; TNF-α, tumor necrosis factor alpha; VCAM-1, vascular cell 
adhesion molecule; VEGF, vascular endothelial growth factor. 
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renal damage and inflammatory response. In this study, 

cisplatin triggers PARP activation, renal oxidative stress, 

and inflammatory response. Conversely, administration of 

PARP inhibitors and PARP-1 knockout mice showed reduced 

expression of mRNA TNF-α and IL-1β, as well as adhesion 

molecules intracellular adhesion molecule (ICAM)-1 and 

vascular cellular adhesion molecule (VCAM)-1, and also 

reduced leukocyte infiltration.28

Cisplatin and metastasis
Several studies have associated cisplatin in inducing 

prosurvival signaling pathways and markers for invasion, 

such as the mitogen-activated protein kinase (MAPK), 

ERK, and acquisition of epithelial–mesenchymal transition 

(EMT) in cancer.

Genotoxic stress in response to cisplatin causes activation 

of multiple signal transduction pathways,29,30 among which 

are members of the MAPK pathways.31 The MAPK pathway 

is also implicated in Twist suppression, which sensitizes alve-

olar cancer cells to cisplatin.32 In addition, cisplatin-induced 

c-Jun N-terminal protein kinase (JNK) and ERK1/2 activation 

has been demonstrated in ovarian cancer cell lines.33 Lee et al 

showed that cisplatin-resistant ovarian cancer cell lines have 

high basal levels of nuclear ERK2.34 Moreover, inhibition of  

ERK1/2 has also been shown to sensitize ovarian cancer 

cells to cisplatin,35 implicating a role of ERK1/2 as a media-

tor in prosurvival signaling in cisplatin-resistant cell lines. 

Finally, in a recent study, Latifi et al36 assessed the role of 

EMT in ovarian cancer cells in response to cisplatin.36 In this 

study, cisplatin-induced acquisition of EMT correlated with 

reduced E-cadherin and increased Vimentin, Snail, Twist, 

and matrix metalloproteinase (MMP)-2, as well cell surface 

expression of a variety of cancer stem cell-like markers.36

Relationship between  
cisplatin-induced increase  
in inflammation and metastasis
(Figure 1). Although there is evidence of the association 

between inflammation and metastasis as a result of cisplatin 

treatment,37 the underlying mechanism remains to be eluci-

dated. Several reports suggest that ERK is an upstream signal 

for the expression of TNF-α, prostaglandin, interleukin, and 
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Figure 2 Paclitaxel-induced inflammation is mediated by upregulation of IL-8 via NFkB signaling. In some cancers, paclitaxel has been shown to activate ERK through Toll-
like receptor 4 (TLR4)-myeloid differentiation gene 88 (MyD88) signaling. TLR-4 phosphorylates c-Jun (component of activator protein 1 transcription complex), thereby 
inducing NFkB activation and upregulation of IL-6, IL-8 and VEGF. Paclitaxel also upregulates metastatic markers consistent with EMT acquisition, including fibronectin, 
vimentin, Snail, and Twist.
Abbreviations: COX-2, cyclooxygenase; EMT, epithelial–mesenchymal transition; ERK, mitogen-activated protein kinase; HGF, hepatocyte growth factor; HIF-a, hypoxia-
inducible factor; IL, interleukin; MMP, matrix metalloproteinase; NFkB, nuclear factor kappa B; STAT-3, signal transducer and activator of transcription; TNF-a, tumor 
necrosis factor alpha; VEGF, vascular endothelial growth factor.
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COX-2. Inhibition of ERK pathway reduces gene expression 

of TNF-α in mouse kidney tissue.38 In sertoli cells, an ERK 

inhibitor reduced the cisplatin induction of prostaglandin, 

interleukin, and COX-2.39

Paclitaxel and inflammation
Paclitaxel, another major drug used to treat solid tumors,40 

causes apoptosis by overstabilizing microtubules,41 leading to 

cell arrest.42 Overall low response to this therapy, especially 

in breast cancer patients, limits its clinical use, primarily 

because of recurrence after cessation therapy.43 Pathways 

associated with cell death induced by paclitaxel include phos-

phorylation of Bcl-2, activation of p53 and cyclin dependent 

kinases, and activation of the component of the activator 

protein 1 transcription complex (c-jun) NH2-terminal kinase/

stress-activated protein kinase signaling pathway.44,45

A variety of inflammatory mediators and signal-

ing pathways are upregulated in response to paclitaxel 

administration such as IL-1β,46 IL-8,47 IL-6,48 and vascular 

endothelial growth factor (VEGF)-A.49,50 IL-8 expression, 

in particular, is activated by paclitaxel in ovarian and lung 

carcinoma cells via activator protein 1 and NFkB promoter 

sites.47–51 Paclitaxel activates Toll-like-receptor 452 and 

other prooncogenic signaling, including NFκB.53 These 

effects are evident in a variety of cancer systems.53–56 

Rajput et al showed that paclitaxel upregulated cytokine 

production via Toll-Like-Receptor-4 (TLR-4) in breast 

cancer cells and that overexpression of TLR-4 is correlated 

with resistance to the drug by promoting anti-apoptopic 

proteins.57 In addition, many studies show that paclitaxel 

can induce inflammatory cytokine production in murine 

macrophages cell lines and in human PBMCs, which 

is most likely related to its ability to mimic bacterial 

lipopolysaccharide.58,59

Paclitaxel and metastasis
Several studies also report the induction of markers for 

invasion and metastasis as a result of paclitaxel admin-

istration. Paclitaxel induces activation of the MEK/

ERK pathway in human breast cancer60 and lymphoma.61 
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Figure 3 In HNSCC, 5-FU activates G-CSF and IL-6. In breast cancer, 5-FU induces NFkB as well as the mitogen activated protein kinase (MAPK)/extracellular signal 
regulated kinase (ERK) pathway. Hepatocellular carcinoma cells treated with 5-FU have phenotypes consistent with epithelial-to-mesenchymal transition (EMT) acquisition, 
including down-regulation of E-cadherin, spindle-shaped morphology, increased pseudopodia formation and upregulation of Twist. 
Abbreviations: 5-FU, 5-Fluorouracil, c-Jun, component of the activator protein 1 transcription complex; EMT, epithelial–mesenchymal transition; ERK, mitogen-activated 
protein kinase; G-CSF, granulocyte colony-stimulating-factor; HGF, hepatocyte growth factor; HIF-a, hypoxia-inducible factor; HNSCC, Head and Neck Squamous Cell 
Carcinoma; IL, interleukin; MMP, matrix metalloproteinase; NFkB, nuclear factor kappa B; STAT-3, signal transducer and activator of transcription; TNF-a, tumor necrosis 
factor alpha; TWIST, oncogene protein TWIST; VEGF, vascular endothelial growth factor. 
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Taxman et al showed that paclitaxel increases the expres-

sion of multiple genes that are important in proliferation, 

adhesion, and metastasis, such as chemokine IL-8 and 

EGF-like growth factors.6 In particular, the melanoma 

growth stimulating activity/growth-related oncogene 1 

(MGSA/Gro1), a gene linked to melanoma growth and 

transformation and that is a marker for melanoma metas-

tasis, is increased by paclitaxel and is reduced by an MEK 

inhibitor. These findings provide evidence that paclitaxel 

coordinately targets a group of genes with crucial global 

effects on the tumor cell.

Kajiyama et al62 also investigated the effects of paclitaxel 

treatment of epithelial ovarian carcinoma on cellular functions 

such as cell motility, invasive ability, and proliferative poten-

tial. Consistent with EMT acquisition, epithelial-ovarian 

cancer cell line (NOS2-PR) cells showed spindle-shaped 

morphology and enhanced pseudopodia formation. In addi-

tion, a decreased expression of E-cadherin and an increased 

expression in mesenchymal markers such as fibronectin, 

vimentin, smooth muscle actin, and EMT regulatory factors 

Snail and Twist were observed. A marked enhancement of 

migratory potential in wound assay and metastatic potential 

to the peritoneum of mice was also evident.62

Connection between paclitaxel-
induced increase in inflammation 
and metastasis
(Figure 2). Recent studies indicate that the expression of 

TLR-4, its adaptor protein MyD88, and the activation of ERK 

signaling pathways are inextricably linked with tumor growth, 

progression, invasion, and chemoresistance. Wu et al showed 

that paclitaxel activated the TLR-4-MyD88-ERK signaling 

pathway.63 Another study demonstrated that the inhibition  

of ERK signaling potentiates paclitaxel-induced apoptosis 

in human colon cancer cells. In ovarian cancer cell lines, 

paclitaxel binding to TLR-4 induced cJun phosphorylation, 

activated the NFκB pathway, and induced the production of 

IL-8, IL-6, VEGF, and monocyte chemotactic protein 1.64 

Conversely, silencing of TLR-4 with siRNA resulted in down-

regulation of cJun phosphorylation and chemoresistance.65
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interleukin; MAPK, mitogen activated protein kinase; MMP, matrix metalloproteinase; NFkB, nuclear factor kappa B; STAT-3, signal transducer and activator of transcription; 
TNF-a, tumor necrosis factor alpha; VEGF, vascular endothelial growth factor. 
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5-Fluorouracil and inflammation
5-Fluorouracil (5-FU), another commonly used antineoplastic 

drug, leads to the misincorporation of fluoronucleotides into 

RNA and DNA and to the inhibition of the nucleotide synthetic 

enzyme thymidylate synthase. It is used to treat a variety of 

cancers, including colorectal cancers and breast cancers.66 How-

ever, its clinical use is hampered because of drug resistance67 

and induction of intestinal damage, referred to as intestinal 

mucositis, the most significant dose-limiting toxicity.68,69

Studies in animal and human models have established 

evidence of changes in proinflammatory cytokine levels 

after administration of 5-FU. Logan et al showed that tissue 

and serum levels of NFκB, TNF-α, IL-1β, and IL-6 in rats 

were elevated after 5-FU administration before histological 

evidence of tissue damage.70

Another recent study by Reers et al demonstrated complex 

cytokine changes in the tumor microenvironment in eight 

different cell lines of patients with squamous cell cancer of 

the head and neck.71 In this study, although no evidence of 

changes in IL-8 secretion was observed, low doses of 5-FU 

stimulated the secretions of IL-6 and granulocyte colony-

stimulating-factor (G-CSF) on all screened squamous cell 

cancer of the head and neck cell lines. However, sublethal 

concentrations of 5-FU revealed a dose-dependent decrease 

in IL-1β. Concerning G-CSF and TNF-α secretion in primary 

tumors versus metastatic cell lines, G-CSF and TNF-α were 

increased in primary tumors at low doses of 5-FU, whereas 

a sharp decrease in secretion was evident in the metastases. 

Another recent study has investigated the inflammatory 

effects of 5-FU chemotherapy in bone, which can result in 

osteopenia and osteoporosis. Supplementation with Emu oil, 

a substance known to have a potent anti-inflammatory effect, 

demonstrated suppression of 5-FU-induced expression of 

TNF-α and an osteoclast activator of NFκB.72

5-FU and metastasis
Several reports have shown that 5-FU treatment results in 

activation of markers for invasion and metastasis. Elsea 

et  al demonstrated that clinically relevant doses of cyto-

toxic chemotherapy drugs, including 5-FU, activate the p38 

MAPK pathway in murine macrophages.73 A recent study 

has implicated a mechanistic role for EMT in elucidating 

5-FU chemoresistance in human hepatocellular carcinoma 

cell lines (HLF-R). Uchibori et al found that after treatment 

with 5-FU, HLF-R cell lines showed a decreased number of 

apoptotic cells and had morphologic phenotypes consistent 

with EMT acquisition, such as spindle-shaped morphology, 

increased pseudopodia formation, and loss of cell–cell 

adhesion.74 In addition, 5-FU treatment also downregulated 

E-cadherin gene expression and induced Twist gene expres-

sion in HLF-R cells. Genes associated with 5-FU metabolism 

such as ribonucleotide reductases and multidrug resistance 

protein 5 were also downregulated and upregulated, respec-

tively, providing further evidence that 5-FU metabolism 

plays a role in 5-FU-induced EMT acquisition.

Connection between 5-FU-induced 
inflammation and metastasis
(Figure 3). Several reports have explored the interplay 

between the induction of markers for invasion and inflam-

mation as a result of 5-FU administration. As stated ear-

lier, findings from Elsea et al showed that 5-FU treatment 

activated the MAPK pathway in murine macrophages.73 In 

this study, 5-FU-induced activation of MAPK activity was 

associated with increased production of IL-1β, IL-6, and 

TNF-α. Addition of an inhibitor of p38 MAPK blocked the 

accumulation of IL-1β, IL-6, and TNF-α, demonstrating 

that 5-FU-induced inflammatory cytokine production is 

dependent on p38 MAPK.73 A recent study by Vinod et al 

also showed that 5-FU treatment upregulates NFκB, MAPK 

pathway, and thymidylate synthase in breast cancer cell lines 

and demonstrated that there is cross-talk between NFκB, 

MAPK pathway, and thymidylate synthase as a result of 

5-FU-induced signaling events.75

Doxorubicin and inflammation
Doxorubicin is used for hematologic and solid tumors;76,77 

however, its major limitation is cardiotoxicity,78 cardio-

myopathy, and congestive heart failure79,80 through partially 

understood mechanisms.

Doxorubicin treatment induces inflammation in various 

cancer cell lines (eg, urothelial cells on exposure to doxo-

rubicin show an increase in prostaglandin E2 and IL-1β).81 

Similarly, studies have shown that high IL-8,82,83 NFκB, 

TNF-α,82,84 monocyte chemotactic protein-1 (MCP-1),83 

and G-CSF84-expressing mice have better outcomes from 

doxorubicin-induced mortality and cardiac damage if they 

are pretreated with an IL-1 receptor antagonist.85

Doxorubicin-mediated activation of NFκB and inflam-

matory cytokines has been shown with doxorubicin effect 

on adipose tissue, thereby increasing serum total cholesterol, 

triglyceride, and low-density lipoprotein levels.86–88 This can 

be explained by doxorubicin induced downregulation of 

peroxisome proliferator activated receptor gamma, which is 

present in white adipose tissue.89–93 The sequence of events 

can be summarized as a reduction in circulating free fatty 
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acid clearance,94–96 macrophage recruitment,97 and activation 

of NFκB and inflammatory cytokines.98,99

Doxorubicin and metastasis
Doxorubicin induces production of transforming growth 

factor beta, leading to EMT acquisition in human MDA-

MB-231.100 Doxorubicin-induced transforming growth factor 

beta production enhances Smad2 and Smad3 phosphoryla-

tion, causing tumor cell migration and invasion, suggesting a 

role in EMT-associated signaling. Doxorubicin also induced 

spindle-shaped morphology and increased nuclear transloca-

tion of Snail, suggestive of EMT phenotypic characteristics 

in breast cancer cells.

Connection between  
doxorubicin-induced increase  
in inflammation and metastasis
(Figure 4). In neuroblastoma cell lines, doxorubicin-induced 

p53 activation is essential for subsequent NFκB activa-

tion.101 In murine macrophages, exposure to doxorubicin 

resulted in significant increase in IL-1β and IL-6 mRNA 

expression and this pathway is mediated by p38 MAPK, 

suggesting a role for p38 MAPK in the induction of inflam-

matory cytokines.73
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