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Abstract: Beyond its critical function in calcium homeostasis, vitamin D has recently been found 

to play an important role in the modulation of the immune/inflammation system via regulating 

the production of inflammatory cytokines and inhibiting the proliferation of proinflammatory 

cells, both of which are crucial for the pathogenesis of inflammatory diseases. Several studies 

have associated lower vitamin D status with increased risk and unfavorable outcome of acute 

infections. Vitamin D supplementation bolsters clinical responses to acute infection. Moreover, 

chronic inflammatory diseases, such as atherosclerosis-related cardiovascular disease, asthma, 

inflammatory bowel disease, chronic kidney disease, nonalcoholic fatty liver disease, and others, 

tend to have lower vitamin D status, which may play a pleiotropic role in the pathogenesis of the 

diseases. In this article, we review recent epidemiological and interventional studies of vitamin D 

in various inflammatory diseases. The potential mechanisms of vitamin D in regulating immune/

inflammatory responses in inflammatory diseases are also discussed.

Keywords: asthma, atherosclerosis, chronic kidney disease, inflammatory bowel disease

Introduction
Vitamin D insufficiency or deficiency has increased in the general population and 

become an important public health issue.1 Vitamin D is mainly known for its favor-

able effects in calcium and bone metabolism. However, increasing numbers of studies 

have established that vitamin D insufficiency contributes to a number of diseases, 

suggesting a range of physiological functions of vitamin D.2–4 Several clinical studies 

have confirmed that vitamin D plays a crucial role in modulating innate immune 

responses toward various pathogens.5 Moreover, recent studies indicate that vitamin D 

can regulate the adaptive immune response in various inflammatory and autoimmune 

diseases.6,7 These results suggest the beneficial effects of vitamin D supplementation 

in decreasing the risk and adverse outcomes of inflammatory diseases, although the 

precise effect remains to be elucidated in large clinical trials.

The two major physiologically relevant forms of vitamin D are vitamin D
2
 

(ergocalciferol) and vitamin D
3
 (cholecalciferol). In humans, vitamin D

3
 seems 

to be more effective than vitamin D
2
 in maintaining the circulatory level of 

25-hydroxyvitamin D
3
 (25[OH]D

3
), a stable marker of vitamin D status.8,9 The main 

sources of vitamin D
3
 are endogenous production from 7-dehydrocholesterol in the 

skin by ultraviolet B energy and dietary intake from foods, including egg yolk, beef 

liver, and milk products.8,9 Vitamin D
3
 is metabolized to 25(OH)D

3
 in the liver by 

vitamin D 25-hydroxylase and then further hydroxylated by the key enzyme 25-hydroxyl 

vitamin D
3
-1α-hydroxylase (CYP27B1) to the biologically active form: calcitriol 
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(1,25-dihydroxycholecalciferol [1,25{OH}
2
D

3
]).10 

1,25(OH)
2
D

3
 binds and activates the vitamin D receptor 

(VDR), a member of the superfamily of nuclear receptors 

and functions as a ligand-activated transcription factor.11 It is 

now well recognized that CYP27B1 and VDR are expressed 

in cells involved in the immune/inflammation system in the 

human body,12 which provides the biological basis for the 

role of vitamin D in inflammatory diseases.

Most clinical studies support the view that serum 

25(OH)D
3
 levels of less than 20 ng/mL (50 nmol/L) indicate 

vitamin D deficiency. Serum 25(OH)D
3
 levels below 30 

ng/mL indicate insufficiency, while levels between 30 and 

60 ng/mL (75 and 150 nmol/L) represent normal values.1,13 

Epidemiological studies suggest an inverse association 

between circulating levels of 25(OH)D
3
 and inflammatory 

markers, including CRP and interleukin (IL)-6.14 Supple-

mental vitamin D and calcium have been found to decrease 

the biomarkers of inflammation.15,16 However, a role for 

supplementation of vitamin D in modifying inflammatory 

disease has not been well defined, and it is unclear at present 

whether vitamin D status is causally related to the patho-

genesis of the disease or is merely a marker of health.17 This 

review summarizes and critically evaluates the data from 

preclinical, epidemiological, and interventional studies in 

order to elucidate the role and mechanisms of vitamin D in 

inflammatory diseases.

Vitamin D signaling and  
immune/inflammation system
VDR expression has been documented in macrophages, 

a crucial cell type in the innate immune response.18 In 

macrophages, activation of the toll-like receptor (TLR1/2) 

heterodimer by Mycobacterium tuberculosis results in the 

upregulation of VDR and CYP27B1, leading to induction 

of the antimicrobial peptide cathelicidin and the killing of 

intracellular M. tuberculosis.19 In this process, IL-15 links 

TLR2/1-induced macrophage differentiation to the vita-

min D-dependent antimicrobial pathway.20 The increase of 

CYP27B1 results in the accumulation of 1,25(OH)
2
D

3
, which 

further activates VDR, leading to the target gene transcription 

via vitamin D response elements located in the regulatory 

regions of 1,25(OH)
2
D

3
 target genes.21 Chen et  al22 found 

that 1,25(OH)
2
D

3
 can regulate TLR signaling via stimulating 

SOCS1 by downregulating miR-155 in macrophages, which 

provide a novel negative feedback regulatory mechanism 

for vitamin D to control innate immunity. In a recent study, 

both forms of vitamin D – 1,25(OH)
2
D

3
 and 25(OH)D

3
 – 

dose-dependently inhibited lipopolysaccharide-induced 

p38 phosphorylation, IL-6, and TNFα production by human 

monocytes via histone H4 in an acetylation-dependent man-

ner.23 Moreover, 1,25(OH)
2
D

3
 or its analogs have been shown 

to initiate the differentiation of myeloid progenitors into 

macrophages,24 and to reduce MCP-1 and IL-6 expression 

via inhibiting the activation of NF-κB in macrophages.25 In 

addition, Vitamin D has been thought to be a natural endo-

plasmic reticulum stress reliever,26 and can selectively sup-

press key effector functions of interferon (IFN)-γ-activated 

macrophages.27 Interestingly, in the presence of 1,25(OH)
2
D

3
, 

VDR has also been found to repress gene transcription via 

displacing the deoxyribonucleic acid-bound nuclear factor 

of activated T-cells, thus repressing inflammatory cytokine 

expression28 (Figure 1).

Dendritic cells (DCs) are the most potent antigen-

presenting cells. A number of studies have shown that 

1,25(OH)
2
D

3
 inhibits the differentiation, maturation, and 

immunostimulatory capacity of human DCs, character-

ized as the tolerogenic properties, in a VDR-dependent 

manner.29,30 Molecular mechanisms underlying the modu-

lation of tolerogenic properties of DCs by 1,25(OH)
2
D

3
 

include decreasing surface expression of major histocom-

patibility complex II and costimulatory molecules (CD40, 

CD80, CD86), upregulating inhibitory immunoglobulin-

like transcript 3 molecules, and enhancing secretion of 

chemokine (C–C motif) ligand 22 and IL-1029,31 (Figure 2). 

The enhancement of DC tolerogenicity by 1,25(OH)
2
D

3
 

results in the induction of T-regulatory cells, a critical event 

for suppressing the inflammatory response of T-effector 

cells.31 1,25(OH)
2
D

3
 also acts directly with VDR on the 

T lymphocyte to inhibit its proliferation.32 Although native 

T-cells did not express VDR, VDR expression was induced 

by T-cell antigen-receptor signaling via the alternative p38 

MAPK pathway, which is crucial for T-cell antigen-receptor 

responsiveness in naïve T-cells.33 Recent work has revealed 

that 1,25(OH)
2
D

3
 inhibited production of proinflammatory 

cytokines, including IFNγ, IL-17, and IL-21 in CD4+CD25− 

T lymphocytes, and promoted development of T-regulatory 

cells expressing cytotoxic T-lymphocyte antigen 4 and 

FOXP334 (Figure 2). T-cell cytokines also control vitamin D 

metabolism in macrophages. For example, IFNγ, a T-helper 

(Th)-1 cytokine, upregulates the macrophage CYP27B1, 

leading to enhanced bioconversion of 25(OH)D
3
 to its 

active metabolite – 1,25(OH)
2
D

3
. In contrast, the Th2 

cytokine IL-4 induces catabolism of 25(OH)D
3
 to the 

inactive metabolite 24,25(OH)
2
D

3
,35 suggesting a poten-

tial mechanism by which vitamin D metabolism links the 

cell-mediated immune responses to the innate immune 

responses, although the exact role of vitamin D in this 

process remains unclear.
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Figure 1 Schematic representation of the primary mechanisms through which vitamin D regulates macrophage-mediated innate immune response.
Notes: Vitamin D from sunlight or dietary sources is hydroxylated by the 25-hydroxylase to form its major circulating form – 25(OH)D3. 25(OH)D3 is then hydroxylated 
by 1α-hydroxylase (CYP27B1) to form the hormonal form of vitamin D – 1,25(OH)2D3. 1,25(OH)2D3 acts to modulate TLR signaling via stimulating SOCS1, inhibiting 
the phosphorylation of p38 MAPK and activation of NF-κB signaling in human macrophages, which reduces the gene expression and protein release of proinflammatory 
mediators, such as TNFα, IL-6, and MCP-1, leading to decreased recruitment of monocytes/macrophages and overall inflammation within tissue. In addition, 1,25(OH)2D3 
acts to increase the production of the antimicrobial peptide cathelicidin and the killing of intracellular mycobacterium tuberculosis (MTB).
Abbreviations: LPS, lipopolysaccharide; VDR, vitamin D receptor; VDREs, vitamin D response elements; IL-6, interleukin-6; MAPK, mitogen-activated protein kinase; 
MCP-1, monocyte chemoattractant protein-1; TLR, toll-like receptor; TNFα, tumor necrosis factor-α.
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Figure 2 Schematic representation of the primary mechanisms through which vitamin D-regulated dendritic cells (DCs) and T-lymphocyte function. 
Notes: Vitamin D precursors can be further processed to their active metabolite, 1,25(OH)2D3, in DCs and T lymphocytes. In DCs, 1,25(OH)2D3 binds to the vitamin D 
receptor–retinoid X receptor (VDR/RXR) complex in the nucleus, leading to a tolerogenic DC phenotype, characterized by decreased expression of major histocompatibility 
complex (MHC)-II, CD40, CD80, CD86, enhanced expression of immunoglobulin-like transcript (ILT)-3, and increased secretion of interleukin (IL)-10 and CCL22, which 
results in the induction of T-regulatory (Treg) cells. The 1,25(OH)2D3 signaling in T-cells is dependent on the stimulation of T-cell antigen-receptor (TCR) signaling. VDR 
expression can be induced by TCR signaling via the alternative p38 MAPK pathway. 1,25(OH)2D3 binds to VDR, leading to inhibition of proinflammatory cytokine expression, 
including interferon (IFN)-γ, IL-17, and IL-21, and promotion of the development of Treg cells.
Abbreviations: CCL22, chemokine (C-C motif) ligand 22; MAPK, mitogen-activated protein kinase.

Vitamin D and inflammatory 
diseases
Acute infections
Epidemiology studies have indicated seasonal variations 

in influenza and pneumococcal community-acquired 

pneumonia, suggesting an association between vitamin D 

insufficiency due to less sun exposure and acute respiratory 

infection (ARI).36 A number of clinical studies have suggested 

an inverse association between 25(OH)D
3
 levels and ARI 

(Table 1).37–42 Ginde et al41 performed a secondary analysis 
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of the Third  National  Health and Nutrition Examination 

Survey, and found a strong negative association between 

serum 25(OH)D
3
 levels (,30 ng/mL) and risk of upper 

respiratory tract infection, which seemed to be stronger in 

individuals with asthma and chronic obstructive pulmonary 

disease. In a large retrospective study, vitamin D status was 

found to have a linear association with seasonal infections and 

lung function, in which each 10 nmol/L increase in 25(OH)

D
3
 was associated with a 7% lower risk of infection and an 

8 mL increase in forced expiratory volume in 1 second.39 

Several prospective cohort studies in adults and children 

further demonstrated that serum vitamin D concentration 

was associated with acute respiratory tract infection (ARTI): 

25(OH)D
3
 levels ,38 ng/mL were associated with increased 

risk of ARTI.37,40,42 Recently, Mohamed et al38 found that low 

cord blood 25(OH)D
3
 levels are associated with increased risk 

of ARTI in the first 2 years of life, suggesting a necessary early 

intervention for vitamin D starting from newborns.

Evidence from double-blinded randomized clinical trials 

(RCTs) for vitamin D interventional studies is warranted to 

confirm the clinically relevant effect of vitamin D in RTIs. 

Camargo et al43 investigated whether vitamin D supplemen-

tation in children with vitamin D deficiency would lower 

the risk of ARI. Compared with controls, children receiving 

vitamin D (300 IU/daily) have been reported to have signifi-

cantly fewer ARIs during the study period. In another place-

bo-controlled double-blinded study comprising 164 voluntary 

young Finnish men (18–28 years of age), the proportion of 

men remaining healthy throughout the 6-month study period 

was greater in the intervention group (vitamin D
3
, 400 IU/

daily) than in the placebo group.44 More RCTs with larger 

populations, however, are warranted to investigate the role of 

vitamin D supplementation on respiratory health and ARI.

Studies with VDR-knockout mice have been critical in 

demonstrating the relationship between vitamin D and acute 

infections.45–49 Compared with VDR+/+ mice, VDR−/− mice 

exhibited significantly higher Chlamydia trachomatis loading 

and reduced clearance of chlamydial infection than wild-

type VDR+/+ mice, suggesting a vitamin D–VDR pathway 

involved in respiratory mucosal defense against infections.46 

VDR-knockout mice developed an unaltered Th1 response to 

infection due to impaired upregulation of arginase 1 expres-

sion under Leishmania infection.45 Although 1,25(OH)
2
D

3
 

inhibits the proliferation and differentiation of both T and 

B lymphocytes, the central mechanism underlying micro-

bial eradication of vitamin D seems to be the inhibition of 

activation of TLRs in the host cell, which induces the for-

mation of potent antimicrobial peptides.19,50 The additional 

Table 1 Summary of the major clinical studies evaluating the relationship between vitamin D status and acute respiratory infections

Source Study design Condition Population (cases) Main outcome(s)

Ginde et al41 Retrospective study  
(secondary analysis of the  
US NHANES III data)

25(OH)D3 levels ,30 ng/mL 18,883 participants Serum 25(OH)D3 levels were 
inversely associated with recent 
upper respiratory tract infections 
(URTIs)

Berry et al39 Retrospective study (secondary  
analysis of the Nationwide  
1958 British Birth Cohort data)

25(OH)D3 levels .10 ng/mL 6,789 participants Vitamin D status had a linear 
relationship with respiratory 
infections and lung function

Sabetta et al40 Cross-sectional (prospective  
from Tromsø Study)

25(OH)D3 levels .38 ng/mL 198 healthy adult  
participants

25(OH)D3 levels .38 ng/mL were 
associated with reduction in risk of 
viral URI

Laaksi et al42 Cross-sectional (prospective  
Tromsø Study)

25(OH)D3 levels ,40 nmol/L 800 young Finnish men Serum vitamin D concentrations 
with acute respiratory tract infection 
(ARTI) in young Finnish men

Science et al37 Cross-sectional (prospective  
cohort study)

Median serum 25(OH)D3  
level 62.0 nmol/L

743 participants (children 
aged 3–15 years)

Lower serum 25(OH)D3 levels were 
associated with increased risk of 
viral RTI in children

Mohamed and  
Al-Shehri38

Cross-sectional (prospective  
Tromsø Study)

Cord blood  
25-hydroxyvitamin D levels

206 newborns Low cord blood 25(OH)D3 levels 
were associated with increased risk 
of ARTI in the first 2 years of life

Camargo et al43 Double-blinded randomized  
clinical trials

Vitamin D3 supplementation 
(300 IU)

744 school children Vitamin D supplementation 
(300 IU/daily) significantly reduced 
the risk of ARTI in winter among 
children with vitamin D deficiency

Laaksi et al44 Double-blinded randomized  
clinical trials

Vitamin D3 supplementation 
(400 IU)

164 young Finnish men 400 IU vitamin D3 daily significantly 
decreased the risk of ARTI in young 
Finnish men

Abbreviation: US NHANES, United States National Health and Nutrition Examination Survey.
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anti-infection mechanism of vitamin D may be related to 

the ability to modulate inflammatory factor levels in ARI 

patients. 25(OH)D
3
 levels below 21 ng/mL have an inverse 

relationship with CRP concentration in asymptomatic ambu-

latory patients.51 However, these associations were not found 

in symptomatic patients.52 In a randomized controlled trial 

of vitamin D supplements (1,400 IU/week) in infants, there 

were no differences in plasma levels of CRP or inflamma-

tory cytokines between the treatment group and the control 

group.53 The exact effects and mechanisms of vitamin D in 

infectious diseases therefore require further study.

The functioning of VDR is affected by gene polymor-

phisms, in which a start codon polymorphism (rs2228570) 

and three polymorphisms in the 3′ untranslated region (UTR) 

of the VDR gene (rs1544410, rs7975232, and rs731236) 

are the most commonly studied polymorphisms in the VDR 

gene.54 There are reports that VDR polymorphism is linked 

to increased susceptibility to infection. Alagarasu et al have 

found that the frequency of the C/C genotype of rs7975232 

was significantly lower in dengue virus infection patients 

(DEN) compared to health controls.54 Aslan et al examined 

VDR gene polymorphisms in urinary tract infections, and 

found that the ff genotype in rs2228570 was significantly 

increased in UTI children with urinary tract infection.55 

Rathored et  al have also found that the patients with ff 

genotypes in rs2228570 were at high risk of multidrug-

resistant tuberculosis with smear-positive disease.56 In a 

multicenter clinical trial, Levin et  al recently investigated 

the relationship of common variation within genes encoding 

the vitamin D-binding protein, megalin, cubilin, CYP27B1, 

CYP24A1, and VDR with low 25(OH)D levels, and found 

some minor alleles at rs7968585 and rs7968585 within the 

VDR gene that were related to low 25(OH)D
3
.57 The results 

of these studies suggest that VDR gene polymorphisms can 

be important for the susceptibility of inflammatory diseases, 

which may be due to the lower 25(OH)D
3
 status affected by 

VDR gene polymorphisms.

Atherosclerosis-related  
cardiovascular disease
It is well known that inflammation plays a key role in 

the development of atherosclerosis. Inflammatory cells, 

mainly macrophages and T lymphocytes, produce a 

wide range of inflammatory cytokines in atherosclerotic 

lesions, which are critically important in the progression 

of atherosclerosis-related cardiovascular disease (CVD).58 

Numerous studies have verified vitamin D deficiency 

(25[OH]D
3
 ,20 ng/mL) as one of the new risk factors for 

coronary heart disease (CHD).59,60 Many potential functions 

of vitamin D – including protection of endothelial func-

tion, inhibition of smooth-muscle cell (SMC) proliferation, 

improvement of lipid profile, and others – have been thought 

to contribute to the antiatherogenic effect of vitamin D.61–63 

Clinical studies have indicated an inverse association 

between 25(OH)D
3
 levels and CHD risk (Table 2). Three 

large retrospective studies demonstrated that 25(OH)D
3
 

levels below 20 ng/mL are associated with increased risk 

for CHD, including hypertension, diabetes mellitus, obesity, 

high serum low-density lipoprotein (LDL), triglyceride (TG), 

and low high-density lipoprotein (HDL) levels.17,64,65 Several 

cross-sectional prospective studies further strengthened this 

evidence, which demonstrated a significant increase for all-

cause mortality when serum 25(OH)D
3
 levels were less than 

30 ng/mL.66–70 In a population-based cohort study, Lim et al71 

reported that a low 25(OH)D
3
 concentration had a higher risk 

of significant coronary artery stenosis. The odds ratios were 

2.08 for 25(OH)D
3
 concentration of 15–29.9 ng/mL versus at 

least 30 ng/mL and 3.12 for 25(OH)D
3
 concentration below 

15 ng/mL versus at least 30 ng/mL.

Although observational studies suggest that vitamin D 

deficiency or insufficiency is related to a higher risk for CVD, 

data from recent RCTs designed to assess the impact of vitamin 

D supplementation on cardiovascular outcomes are conflicting 

(Table 3). Some RCT results have shown that a higher intake of 

vitamin D is associated with a lower risk of CVD, especially in 

men, due to the improvement of vascular endothelial function 

and decrease in inflammation.72–74 However, most evidence at 

present shows that vitamin supplementation has no effect on 

vascular disease mortality or all-cause mortality.73–78 Since 

large well-controlled double-blinded RCTs aiming primarily 

for cardiovascular end points are still absent, whether or not 

vitamin D supplementation can significantly improve cardio-

vascular outcomes is largely unknown. At this time, larger 

RCTs, which can be used to evaluate the application of vitamin 

D in cardiology, have yet to be implemented.

The regulation of the immune/inflammatory response is 

one of the most verified mechanisms of the antiatherogenic 

effect of vitamin D. First, vitamin D exerts protective effects 

against endothelial dysfunction, an inflammatory process 

that precedes atherosclerosis, via multiple mechanisms, 

including stimulating nitric oxide production and inhibiting 

oxidative stress.59,79 Vitamin D has been found to inhibit 

contractions, which were endothelium-dependent through 

inhibiting cyclooxygenase-1 expression and reactive oxygen 

species production.59,79 In addition, calcitriol significantly 

repressed the expression of cyclooxygenase 2 and promoted 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Inflammation Research 2014:7submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

74

Yin and Agrawal

prostaglandin catabolism, both of which reduce the level 

of prostaglandins and suppress proinflammatory cytokine 

expression in endotheliocytes.80 Second, 1,25(OH)
2
D

3
 may 

alter macrophage function and gene expression, which is 

crucial in the formation of foam cells and vascular inflamma-

tion response that promote the process of atherosclerosis.26 

In patients with type 2 diabetes mellitus, 1,25(OH)
2
D

3
 can 

inhibit foam-cell formation, and suppresses macrophage 

cholesterol uptake via reducing peroxisome proliferated-ac-

tivated receptor-γ-dependent CD36 expression.81 In addition, 

vitamin D induces an antiatherogenic monocyte/macrophage 

phenotype via regulating endoplasmic reticulum stress.26 

Previous studies by our group have found vitamin D defi-

ciency causes increased proinflammatory cytokine expres-

sion in epicardial adipose tissue, which is coupled with 

increased inflammatory cellular infiltrate, suggesting the 

anti-inflammation effect of vitamin D in epicardial adipose 

tissue is a novel mechanism for atheroprotection.82 Third, 

1,25(OH)
2
D

3
 inhibits the proliferation of vascular SMCs 

(VSMCs),83 and exerts protective effects against VSMC 

morphological changes, which further inhibit the secretion 

of inflammatory molecules.84

In a hypercholesterolemic swine model, our group has 

found that vitamin D deficiency significantly increases the 

expression of TNFα in neointimal lesions after balloon 

angioplasty and that calcitriol has antiproliferative properties 

in TNFα-stimulated human VSMCs.85 Besides the direct anti-

atherogenic effect, vitamin D has a variety of indirect effects 

on the systemic pathophysiological conditions that promote 

atherosclerosis, such as improving insulin resistance and 

hypertension.59 However, Ponda et  al17,77 recently reported 

repletion of 25(OH)D
3
 levels in the short term does not correct 

or even ameliorate dyslipidemia, suggesting that the definitive 

role of vitamin D in CVD remains to be elucidated.

Asthma
Asthma is a disorder characterized by varying and recurring 

symptoms of airflow obstruction and bronchial hyperrespon-

siveness in the setting of inflammation.86 Epidemiologic 

studies suggest an association between vitamin D deficiency 

Table 2 Summary of major clinical studies evaluating the relationship between vitamin D status and cardiovascular disease (CVD) risk

Source Study design Condition Population (cases) Main outcome(s)

Martins et al65 Retrospective study  
(secondary analysis of  
the US NHANES III data)

Mean 25(OH)D3  
levels =30 ng/mL

15,088 participants in  
the US

Serum 25(OH)D3 levels were negatively 
associated with important CVD risk factors, 
including hypertension, diabetes mellitus, 
obesity, and high serum TG levels

Ponda et al17 Cross-sectional 
(retrospective study)

25(OH)D3 levels ,20 ng/mL 107,811 participants in  
the US

Vitamin D deficiency was associated with 
an unfavorable lipid profile, including higher 
TC, LDL, TG, and lower HDL

Park and Lee64 Cross-sectional 
(retrospective study)

25(OH)D3 levels ,25 nmol/L 5,559 Korean participants Vitamin D insufficiency was associated with 
increased prevalence of CVD, accompanied 
by higher waist circumference, fasting 
glucose, LDL, and TG levels and lower  
HDL cholesterol levels

Wang et al69 Cross-sectional 
(prospective study)

25(OH)D3 levels ,15 ng/mL 1,739 Framingham  
offspring

Vitamin D deficiency was associated with 
incident CVD

Dobnig et al70 Cross-sectional 
(prospective study)

25(OH)D3 levels ,13.3 ng/mL 3,258 participants in  
Austria

Low 25(OH)D3 and 1,25(OH)2D3 levels 
were independently associated with  
all-cause and cardiovascular mortality

Semba et al68 Cross-sectional 
(prospective study)

25(OH)D3 levels ,10.5 ng/mL 1,006 participants in Italy Older community-dwelling adults with low 
serum 25(OH)D3 levels were at higher risk 
for all-cause and CVD mortality

Zhao et al66 Cohort study  
(prospective study)

25(OH)D3 levels ,29 ng/mL 2,609 participants with  
hypertension in the US

Concentrations of 25(OH)D3 were inversely 
associated with all-cause and CVD mortality 
among adults with hypertension in the US

Wasson et al67 Cross-sectional  
(prospective study)

The 25(OH)D3 levels  
,15 ng/mL

1,844 ischemic heart  
disease (IHD) patients

Vitamin D Levels of ,15 ng/mL were 
associated with a hazard ratio of 2.30 
(P=0.035) for IHD events compared to 
levels $30 ng/mL

Lim et al71 Cross-sectional 
(prospective study)

25(OH)D3 levels ,30 ng/mL 921 participants with  
hypertension in the US

Low 25(OH)D3 concentrations were 
independently associated with higher risk  
of coronary artery stenosis

Abbreviations: TC, total cholesterol; LDL, low-density lipid; TG, triglyceride; HDL, high-density lipid; US NHANES, United States National Health and Nutrition Examination 
Survey.
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and asthma (Table 4).87–92 Some prospective studies and 

case-control studies have shown the majority of asthmatic 

children to be vitamin D-deficient.91,93 Vitamin D deficiency 

has been found to increase the risk of severe asthma exacerba-

tion, defined as the need for emergency room evaluation or 

hospitalization.94 A prospective study of adults and children 

found that low serum 25(OH)D
3
 levels were associated with 

increased requirement of steroids in the pediatric asthma 

group.90 Higher maternal circulating 25(OH)D
3
 concentra-

tions in pregnancy were independently associated with lower 

risk of asthma at 5 years old in offspring.92 However, another 

study showed that high 25(OH)D
3
 levels in pregnant women 

could pose an increased risk of asthma in offspring,95 indi-

cating a reasonable level of vitamin D in pregnant women 

is crucial for maintaining normal bronchial responsiveness 

in offspring.

The mechanisms of vitamin D deficiency in asthma 

pathophysiology are not fully understood. Many researchers 

have focused on the potential effect of vitamin D in inflam-

matory response that inhibits the progress of asthma.86 

Vitamin D has been found to increase the production of 

IL-10, an anti-inflammatory cytokine, while decreasing the 

expression of proinflammatory cytokines in airway SMCs.96,97 

In a mouse model, Gorman et  al98 recently examined 

asthma-like responses 24 hours after airway challenge with 

the experimental allergen ovalbumin in adult offspring born 

to vitamin D
3
-replete and vitamin D

3
-deficient mothers. 

They found the ability of airway-draining lymph-node cells 

to proliferate and secrete cytokines in response to ovalbumin 

ex vivo was significantly enhanced by vitamin D deficiency.98 

In a mouse model of allergic airway inflammation, our group 

has previously found vitamin D deficiency causes an increase 

in the expression of TNFα, which decreases the expression 

of VDR and prohibitin, a vitamin D target gene.95 Vitamin D 

supplementation reduces the levels of TNFα, thereby increas-

ing the expression of VDR and prohibitin, which could be 

responsible for reducing allergic airway inflammation.99

Inflammatory bowel diseases
Vitamin D deficiency is common in patients with inflamma-

tory bowel diseases (IBDs), including ulcerative colitis (UC) 

and Crohn’s disease (CD)100–105 (Table 5). Several retrospec-

tive and cross-sectional studies have reported a high preva-

lence of vitamin D deficiency in patients with IBD, which 

was associated with disease activity and quality of life.101–105 

Recently, a prospective cohort study of 72,719 women 

enrolled in the Nurses’ Health Study examined the relation-

ship between vitamin D status and risk of CD and UC.100 

Table 3 Summary of interventional studies evaluating the effect of vitamin D supplements on cardiovascular disease (CVD) risk

Source Study design Condition Population (cases) Main outcome(s)

Harris et al72 Randomized, placebo-
controlled trial

Vitamin D (2,000 IU/day) for 
16 weeks

57 African American  
adults

Vitamin D supplements (2,000 IU/day) for 
16 weeks were effective at improving vascular 
endothelial function in African American adults

Zittermann  
et al73

Randomized, placebo-
controlled trial

Vitamin D (83 μg/day) for  
1 year

200 overweight  
subjects  
(mean 25[OH]D3  
levels =12 ng/mL)

Vitamin D supplements enhanced the 
beneficial effects of weight loss on CVD 
risk, including decreasing lipid levels and 
inflammation

Sun et al74 Cross-sectional 
(prospective study)

Vitamin D ($600 IU/day) or 
vitamin D (,100 IU/day)

2,280,324 person-years  
of follow-up

Higher intake of vitamin D was associated 
with a lower risk of CVD in men but not  
in women

Cauley et al75 Cross-sectional 
(prospective study)

Calcium plus vitamin D  
supplementation

29,862 postmenopausal 
women

There was no difference in CVD morbidity 
between groups

Ponda et al77 Randomized, placebo-
controlled trial

Vitamin D (50,000 IU/week) 
for 8 weeks

151 vitamin D-deficient  
(25[OH]D levels  
,20 ng/mL) patients

Correcting vitamin D deficiency in the short 
term did not improve the lipid profile

Yiu et al78 Randomized, placebo-
controlled trial

Vitamin D (5,000 IU/day) for  
12 weeks

100 type 2 diabetes  
mellitus patients

12 weeks of oral supplementation with  
vitamin D did not significantly affect vascular 
function or serum biomarkers of inflammation 
and oxidative stress

Stricker et al168 Randomized, placebo-
controlled trial

Vitamin D (100,000 IU/single 
oral dose)

76 patients with  
peripheral arterial disease

Vitamin D supplementation did not influence 
endothelial function, arterial stiffness, 
coagulation, or inflammation parameters

Gepner et al76 Randomized, placebo-
controlled trial

Vitamin D (2,500 IU/day) for  
4 months

114 subjects Vitamin D supplementation did not improve 
endothelial function, arterial stiffness,  
or inflammation
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Table 4 Summary of major clinical studies evaluating the relationship between vitamin D status and asthma risk

Source Study design Condition Population (cases) Main outcome(s)

Korn et al91 Prospective study 25(OH)D3 levels ,30 ng/mL 280 adult asthma  
patients

Severe and uncontrolled adult asthma was 
associated with vitamin D insufficiency and 
deficiency

Brehm et al169 Cross-sectional  
study

25(OH)D3 levels ,30 ng/mL 616 children (6–14 years) Vitamin D insufficiency was relatively frequent in 
an equatorial population of children with asthma; 
lower vitamin D levels were associated with 
increased markers of allergy and asthma severity

Bener et al93 Randomized  
compared trial

25(OH)D3 levels ,30 ng/mL 483 children with asthma  
and 483 healthy controls

The majority of asthmatic children had vitamin D 
deficiency compared to control children

Freishtat et al89 Cross-sectional  
case-control study

25(OH)D3 levels ,30 ng/mL 92 asthma and  
21 controls in African  
American youths

The prevalence of vitamin D insufficiency and 
deficiency was significantly greater among 
asthma cases than control subjects

Brehm et al94 Prospective study 25(OH)D3 levels ,30 ng/mL 1,024 children with  
asthma

Vitamin D insufficiency was associated with 
higher odds of severe exacerbation over a 
4-year period

Morales et al92 Prospective cohort  
study

Maternal circulating  
25(OH)D3 levels

1,724 children Maternal vitamin D intake resulted in a lower 
risk of asthma in children at 5 years of age

Gale et al95 Prospective cohort  
study

25(OH)D3 levels .75 nmol/L 596 pregnant women  
and 466 children

High vitamin D levels in pregnant women could 
pose an increased risk of asthma in offspring

Goleva et al90 Prospective cohort  
study

25(OH)D3 levels ,20 ng/mL 205 adults and children Significant associations between serum vitamin D 
status and steroid requirement in the pediatric 
asthma group

Table 5 Summary of major clinical studies evaluating the role of vitamin D status and vitamin D supplementation in inflammatory 
bowel disease (IBD)

Source Study design Condition Population (cases) Main outcome(s)

Ananthakrishnan 
et al100

Prospective cohort 
study

25(OH)D3 levels ,20 ng/mL 72,719 women Higher predicted plasma levels of 25(OH)D3 
significantly reduced the risk for incident  
Crohn’s disease (CD) and insignificantly reduced 
the risk for ulcerative colitis (UC) in women

Pappa et al103 Cross-sectional study 25(OH)D3 levels ,15 ng/mL 130 IBD patients  
(UC =36, CD =94)

Vitamin D deficiency was highly prevalent among 
pediatric patients with IBD

Jahnsen et al105 Cross-sectional study 25(OH)D3 levels ,30 nmol/L 120 IBD patients  
(UC =60, CD =60)

Hypovitaminosis D was common in IBD patients

Sentongo et al104 Cross-sectional study 25(OH)D3 levels ,38 nmol/L 112 CD patients Hypovitaminosis D was common in CD patients
Ulitsky et al102 Retrospective cohort 

study
25(OH)D3 levels ,20 ng/mL 
or ,10 ng/mL (deficiency or 
severe deficiency)

504 IBD patients  
(UC =101, CD =403)

Vitamin D deficiency was common in IBD, and was 
independently associated with lower health-related 
quality of life and greater disease activity in CD

Levin et al101 Retrospective cohort 
study

25(OH)D3 levels ,50 nmol/L 
or ,30 nmol/L (deficiency or 
severe deficiency)

78 children with IBD A high proportion of children with IBD were 
vitamin D-deficient; treating vitamin D deficiency 
is important for the management of pediatric IBD

Jørgensen et al106 Randomized double-
blind placebo- 
controlled trial

Oral vitamin D with  
1,200 IU daily for 12 months

108 patients with CD Oral supplementation with 1,200 IU vitamin D3 
significantly reduced the risk of relapse from 
29% to 13%

Yang et al107 Randomized,  
controlled clinical trial

Oral vitamin D with  
5,000 IU daily for 24 weeks

18 mild-to-moderate 
patients with CD

24 weeks’ supplementation with up to  
5,000 IU/day vitamin D3 effectively raised serum 
25(OH)D3 and reduced CD activity index scores 
in a small cohort of CD patients

Pappa et al108 Randomized,  
controlled clinical trial

Vitamin D2 2,000 IU/day  
(arm A) or vitamin D3  
2,000 IU/day (arm B) or  
vitamin D2 50,000 IU/week  
(arm C) for 6 weeks

61 children with IBD 
(25[OH]D level  
,20 ng/mL)

Oral doses of 2,000 IU vitamin D3 daily and 
50,000 IU vitamin D2 weekly for 6 weeks was 
superior to 2,000 IU vitamin D2 daily for 6 
weeks in raising serum 25(OH)D concentration, 
and was well tolerated among children and 
adolescents with IBD

Miheller et al109 Randomized,  
controlled clinical trial

1,25(OH)2D3 (active vitamin D  
or plain vitamin D [pVD])

37 inactive CD  
patients

1,25(OH)2D3 had a more prominent short-term 
beneficial effect than pVD on disease activity of CD
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In this study, researchers used Cox proportional hazard 

modeling to examine the hazard ratio (HR) for incident CD or 

UC after adjusting for potential confounders. Compared with 

women with a predicted 25(OH)D
3
 level less than 20 ng/mL, 

the multivariate-adjusted HR was 0.38 (95% confidence 

interval 0.15–0.97) for CD and 0.57 (95% confidence inter-

val 0.19–1.70) for UC for women with a predicted 25(OH)

D
3
 level greater than 30 ng/mL, suggesting higher predicted 

plasma levels of 25(OH)D
3
 significantly reduce the risk for 

incident CD.100

Vitamin D supplementation has shown potential therapeu-

tic benefit for IBD in some small, randomized, double-blind 

studies (Table 5). Jørgensen et al106 reported that oral supple-

mentation with vitamin D
3
 (1,200 IU/day for 12 months) 

significantly reduced the risk of IBD relapse from 29% to 

13%. Yang et al107 investigated the effect of high-dose vitamin 

D
3
 on serum vitamin D levels and CD activity index. They 

found supplementation of vitamin D
3
 (5,000 IU/day for 24 

weeks) effectively raised serum 25(OH)D
3
 and reduced CD 

activity index scores. Pappa et al108 reported oral doses of 

2,000 IU vitamin D
3
 daily or 50,000 IU vitamin D

2
 weekly 

seem to be superior to 2,000 IU vitamin D
2
 daily in raising 

serum 25(OH)D
3
 concentration, and was tolerated among 

children and adolescents with IBD. Another study has 

shown that 1,25(OH)
2
D

3
 (active form of vitamin D) has a 

more prominent short-term beneficial effect than 25(OH)D
3
 

(plain vitamin-D) on CD activity.109 Although most studies 

have now shown vitamin D
3
 treatment might be effective in 

IBD, larger, randomized, double-blind, placebo-controlled 

trials needed to elucidate this correlation are lacking.

In VDR-knockout mice models, vitamin D deficiency 

increases susceptibility to dextran sodium sulfate-induced 

colitis.110 Histological examination revealed the disruption 

in the epithelial junctions in dextran sodium sulfate-treated 

VDR–/– mice. 1,25(OH)
2
D

3
 preserved the integrity of the 

tight junctions in Caco-2 cell monolayers.110 Ryz et  al111 

found that 1,25(OH)
2
D

3
 treatment increases host susceptibil-

ity to Citrobacter rodentium, an extracellular microbe that 

causes acute colitis, by suppressing mucosal Th17 immune 

responses. Taken together, these observations suggest that 

vitamin D plays a critical role in mucosal barrier homeostasis 

by preserving the integrity of junctions via regulating the host 

immune/inflammatory response, leading to decreased suscep-

tibility to mucosal damage and decreased risk of IBD.

Chronic kidney disease
Normal renal function is crucial for vitamin D metabolism.1 

Vitamin D deficiency is highly prevalent among patients 

with chronic kidney disease (CKD; 20%–85%).112,113 Studies 

have demonstrated a strong association between vitamin D 

deficiency and increased all-cause and CKD mortality in the 

general population (Table 6).113–118 Chronic low-grade inflam-

mation is a hallmark of CKD, and has been disclosed as one 

important factor contributing to the progression of CKD and 

high cardiovascular mortality.10 A prospective cohort study 

of 444 patients with eGFR ,60 mL/min/1.73 m2 (follow-up 

time 9.4 years) showed that most patients died from cardiovas-

cular causes.116 Cox proportional hazard modeling has shown 

multivariate-adjusted HRs (with 95% confidence intervals) 

in severely vitamin D-deficient (25[OH]D
3
 ,10 ng/mL) 

compared to vitamin D-sufficient patients (25[OH]D
3
 

$30 ng/mL) were 3.79 (1.71–8.43) for all-cause and 5.61 

(1.89–16.6) for cardiovascular mortality, suggesting low 

25(OH)D
3
 levels are a crucial factor linking CKD to CVD.116 

Another cross-sectional study strengthened this evidence, 

demonstrating that higher vascular stiffness and endothelial 

dysfunction were  associated with low levels of 25(OH)

D
3
 and 1,25(OH)

2
D

3
  in CKD patients.119 Vitamin D 

intake  for  more  than 12 months can significantly reduce 

the probability of cardiovascular events.117 Low 25(OH)D
3
 

and 1,25(OH)
2
D

3
 levels are independently associated with 

albuminuria, a major risk factor for the progression of renal 

disease linked to all-cause mortality and cardiovascular 

mortality.114 Treatment with active vitamin D preparations 

also has a beneficial effect in decreasing albuminuria.120 

Besides regulating inflammation and proteinuria, vitamin D 

has been found to improve aerobic capacity and increase the 

level of fetuin-A, an important protective factor for cardio-

vascular morbidity in pediatric CKD patients.115,121

Several randomized, double-blind, placebo-controlled 

studies have examined the role of vitamin D as a therapeutic 

agent for CKD (Table 7).120,122–127 High-dose cholecalciferol 

supplementation (50,000 IU/week for 12 weeks) was safe 

and sufficient to maintain serum 25(OH)D
3
 concentrations 

($30 ng/mL) and simultaneously decreased serum MCP-1 

concentrations in early CKD.122–124 In moderate CKD 

patients, both cholecalciferol (vitamin D
3
) and ergocalcif-

erol (vitamin D
2
) are effective in increasing 25(OH)D

3
 and 

decreasing parathyroid hormone and inflammatory cytokine 

levels.125,127 In nonhemodialysis patients, supplementation of 

cholecalciferol with 40,000 IU/week for 8 weeks significantly 

increased the level of 1,25(OH)
2
D

3
 and decreased serum 

parathyroid hormone and inflammatory cytokine levels.126 

However, this effect was not observed in end-stage renal 

disease (ESRD) patients.126 As patients with CKD progress 

to ESRD, renal CYP27B1 activity decreases, resulting in 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Inflammation Research 2014:7submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

78

Yin and Agrawal

the impaired formation of 1,25(OH)
2
D

3
 in many of these 

patients.128 Previous attempts to counteract these changes 

in mineral metabolism with nutritional vitamin D therapy 

have been unsuccessful.129 For this reason, most therapeutic 

approaches to treat vitamin D deficiency in ESRD patients 

favor the use of calcitriol or its associated analogs instead of 

the use of nutritional vitamin D forms.128,130 Interestingly, in 

an uncontrolled trial of seven ESRD patients, Stubbs et al128 

reported significant and favorable effects after 8 weeks of 

cholecalciferol supplementation on circulating monocytes 

and concentration of inflammatory cytokines, which may be 

have been due to extrarenal production of calcitriol in the set-

ting of minimal renal CYP27B1 activity in ESRD patients.

Experimental studies have demonstrated that vitamin D 

can control inflammation and oxidative stress that prevent 

CKD progress.131,132 Using a mouse model of obstructed 

nephropathy, Tan et al132 reported that the synthetic vitamin D 

analog paricalcitol reduced the infiltration of inflammatory 

T-cells and macrophages in the obstructed kidney, which 

was accompanied by a decreased expression of RANTES 

and TNFα. In a human proximal tubular cell line (HKC-8), 

paricalcitol inhibited RANTES messenger ribonucleic acid 

and protein expression and abolished the ability of tubular 

cells to recruit lymphocytes and monocytes after TNFα 

stimulation.132 In a study using a uremic rat model, parical-

citol significantly decreased cardiac oxidative stress. When 

combining with the angiotensin-converting enzyme inhibitor 

enalapril, paricalcitol further prevented inflammation and 

oxidative injury in uremic rats.131 These studies provide 

experimental evidence supporting the role of inflammation in 

providing a pathological link between vitamin D and CKD.

Liver inflammatory disease
Nonalcoholic fatty liver disease (NAFLD) refers to the 

presence of hepatic steatosis without significant alcohol 

use or other known liver disease, and is characterized by 

chronic portal inflammation.133 Recent studies emphasize 

the role of insulin resistance, metabolic syndrome, and 

proinflammatory cytokines in the development and progres-

sion of NAFLD.134,135 Vitamin D serum levels negatively 

correlate with insulin resistance and metabolic syndrome. 

Supplementation of vitamin D has been found to reduce 

Table 6 Summary of major clinical studies evaluating the relationship between vitamin D status and chronic kidney disease (CKD) risk

Source Study design Objective Population (cases) Main outcome(s)

Pilz et al116 Prospective  
cohort study

To investigate the relationship  
between the vitamin D status and  
mortality of CKD

444 CKD patients Low 25(OH)D3 levels were associated 
with increased all-cause and cardiovascular 
mortality in CKD patients

Santoro et al117 Cross-sectional  
study

To investigate the relationship  
between the vitamin D status  
and mortality of CKD

104 CKD patients Vitamin D has been shown to reduce 
the probability of cardiovascular or renal 
events; vitamin D intake for more than  
12 months can reduce the probability of 
such events by 11.42%

London et al119 Cross-sectional  
study

To investigate the relationship  
between vitamin D status and  
cardiovascular risk factors

104 CKD patients  
(end stage)

Vitamin D deficiency and low 1,25(OH)2D3 
could be associated with arteriosclerosis 
and endothelial dysfunction in 
hemodialysis patients

Isakova et al114 Cross-sectional  
study

To investigate the relationship  
between vitamin D level,  
inflammation, and albuminuria

1,847 participants Low 25(OH)D3 and 1,25(OH)2D3 
levels were independently associated 
with albuminuria; vitamin D deficiency 
may contribute to inflammation and 
subsequent albuminuria

Petchey et al115 Cross-sectional  
study

To investigate the relationship between  
vitamin D status and maximum aerobic- 
exercise capacity in patients with CKD

85 CKD participants Vitamin D was independently associated 
with aerobic capacity in CKD patients

Satirapoj et al113 Cross-sectional  
study

To investigate the relationship  
between vitamin D status and the  
staging of CKD

2,895 CKD patients 25(OH)D3 insufficiency and deficiency were 
more common and associated with level of 
kidney function in the Thai CKD population, 
especially in advanced-stage CKD

Schaible et al121 Cross-sectional  
study

To investigate the effect of vitamin D  
status on fetuin-A in CKD patients

112 pediatric patients Cumulative intake of 25(OH)D3 and 
calcitriol were significantly correlated  
with fetuin-A in CKD patients

Seeherunvong  
et al118

Cross-sectional,  
retrospective  
study

To assess the prevalence of abnormal  
vitamin D status in children and  
adolescents with CKD

258 patients with  
early CKD

Vitamin D insufficiency and deficiency may 
contribute to growth deficits during the 
earliest stages of CKD
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insulin resistance in obese children.134 Recently, lower 

vitamin D levels were found to be independently associated 

with increased severity of steatosis, necroinflammation, and 

fibrosis in NAFLD.136,137 Furthermore, serum vitamin D levels 

that could predict the severity of NAFLD independently 

of other metabolic characteristics and relate vitamin D to 

NAFLD are largely unknown. Considering that inflamma-

tion is followed by steatosis in most NAFLD patients,138 

vitamin D may be involved in NAFLD through its ability to 

modulate the immune/inflammation system. Recently, Roth 

et  al139 fed young (25-day-old) Sprague Dawley rats with 

a low-fat diet  alone, with vitamin D depletion, or with a 

Westernized diet, and found that vitamin D-depleted animals 

fed a Westernized diet exhibited significantly greater hepatic 

steatosis and inflammation compared to low-fat diet groups, 

which may be related to the upregulation of TLR2, TLR4, 

TLR9, and endotoxin receptor CD14 in the liver, suggesting 

vitamin D depletion exacerbates NAFLD, possibly by way 

of endotoxin exposure in a Westernized diet rat model. Low 

vitamin D serum levels have also been found to correlate 

with the severity of inflammation and fibrosis in chronic 

hepatitis B and C viruses, where cellular immunity played 

crucial roles in the progress of diseases.140,141 In hepatitis B, 

VDR polymorphisms have been associated with infection 

susceptibility and clinical course in different populations.142 

Taken together, these data indicate a potential link between 

vitamin D and viral hepatitis.

Multiple sclerosis
Multiple sclerosis (MS) is a chronic inflammatory disease 

of the central nervous system, which affects more than 

2 million individuals worldwide. Growing evidence suggest 

that vitamin D deficiency might be one of the most important 

environmental factors for the prevalence, relapse rate, and 

progression of MS143–146 (Table 8). In a large prospective 

case-control study of 7 million US military personnel, high 

circulating levels of 25(OH)D
3
 were found to be associated 

with a lower risk of MS, in which every 50 nmol/L increase 

in serum 25(OH)D
3
 led to a 41% decrease in MS risk.145 

Another prospective study of 35,794 mothers of participants 

in the Nurses’ Health Study II has shown that the relative risk 

of MS was lower among women born to mothers with high 

milk or vitamin D intake during pregnancy.147 In addition, 

serum 25(OH)D
3
 concentrations in patients with MS were 

also found to be related to the relapse of the disease. Mowry 

et al found that each 10 ng/mL increase in 25(OH)D
3
 level 

was associated with a 15% lower risk of a new T
2
 lesion 

and a 32% lower risk of a gadolinium-enhancing lesion. 

Each 10 ng/mL increase in vitamin D level was associated 

with lower subsequent disability, suggesting higher vitamin D 

levels were associated with lower relapse risk.143 

Although a link between vitamin D supplementation 

and decreased risk of MS has been widely assumed, pres-

ent vitamin D-repletion therapies have not yet shown a 

significant effect on the progress of MS (Table 8). In a 

retrospective cohort study of 116,671 female registered 

nurses, intake of vitamin D ($400 IU/day) from multivita-

mins was not been found to statistically reduce the risk of 

MS.145 Moreover, no published RCTs of vitamin D repletion 

so far – low dose or high dose – have shown any benefit on 

relative risk of MS relapse.148–150 However, in a high-dose 

vitamin D
3
-supplementation RCT (20,000 IU/day for 12 

weeks) in MS patients, vitamin D was found to increase 

proportion of IL-10+ CD4+ T-cells and decrease the ratio 

between IFNγ+ and IL-4+ CD4+ T-cells.151 Moreover, in a 

myelin oligodendrocyte glycoprotein-induced animal model 

of MS, vitamin D significantly attenuated central nervous 

system inflammation and demyelination, accompanied by 

a lower amount of IFNγ-producing myelin oligodendrocyte 

glycoprotein-specific T-cells via a developmental stage-

dependent manner.152 

These results suggest the exact effect of vitamin D reple-

tion on the risk of MS remains to be clarified, since large, 

high-quality, randomized trials are still lacking.

Other inflammation/ 
immune-related disorders
Inflammation has also been found to play an important role 

in other chronic diseases, including hypertension, diabetes, 

chronic lower-back pain (CLBP), and congestive heart failure 

(HF). Several reviews have thoroughly discussed the relation-

ship between vitamin D and hypertension or diabetes.153,154 

There is clear evidence to support an association between 

low plasma levels of 25(OH)D
3
 and hypertension and type 2 

diabetes.153,154 Furthermore, clinical trials aimed at testing 

the effect of vitamin D supplementation on hypertension 

and type 2 diabetes documented a dose-dependent blood 

pressure-lowering and insulin sensitivity-increasing effect of 

vitamin D in patients.155–157 However, in a recent randomized, 

double-blind, placebo-controlled clinical trial, high-dose 

oral vitamin D
3
 (100,000 IU) for 6 months seemed not to 

reduce blood pressure or left ventricular mass in patients 

with resistant hypertension.158 Because the 6-month period 

used in this study may have been too short a period to detect 

meaningful effects of vitamin D on left ventricular mass and 

function, longer trials and detailed studies are needed to better 
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investigate the definite role of vitamin D supplementation in 

various forms of hypertension.

Nonspecific lower-back pain is one of the most common 

reasons for CLBP that burdens health care systems with high 

cost. Human population studies have shown that plasma levels 

of vitamin D are inversely associated with risk for CLBP.159 

However, results from a double-blind RCT of 53 patients aged 

18–40 years with nonspecific CLBP showed no significant 

effect of vitamin D supplementation (50,000 IU) in decreasing 

the pain visual analog scale score of the patients.160 Vitamin 

D deficiency is associated with loss of muscle strength and 

poor outcomes in patients with HF. In a double-blind RCT 

in 31 patients (25[OH]D
3
 levels #37.5 ng/mL), vitamin D

3
 

repletion (50,000 IU) decreased aldosterone in patients with 

HF and low serum vitamin D, suggesting that vitamin D may 

be an important adjunct to standard HF therapy.161

Apart from inflammatory disorders, vitamin D defi-

ciency has been found to be associated with immune-related 

disorders, such as rheumatoid arthritis and systemic lupus 

erythematosus.162,163 Randomized placebo-controlled trials 

have shown that vitamin D supplementation seems to ame-

liorate inflammatory and hemostatic markers and show a 

tendency toward subsequent clinical improvement in these 

diseases.146,163,164 In a healthy population, vitamin D levels were 

significantly higher in antinuclear antibody-negative individu-

als than antinuclear antibody-positive individuals.165 Along 

with this finding is the additional observation that vitamin D 

deficiency is associated with certain immune abnormalities in 

such autoimmune disorders as systemic lupus erythematosus 

and rheumatoid arthritis.163,166 Recently, a retrospective cross-

sectional study showed the risk of auto- and cellular immune 

abnormalities is increased in women with recurrent pregnancy 

losses and vitamin D deficiency.167

Conclusion
The remarkable expression of the CYP27B1 and VDR genes 

by macrophages, DCs, and T lymphocytes suggests that the 

immune/inflammation system could be a target for the effect 

of vitamin D. Emerging evidence from clinical studies has 

indicated that vitamin D deficiency is associated with sev-

eral inflammatory diseases; however, the question remains 

whether or not vitamin D deficiency contributes to the eti-

ology of inflammatory disease or if vitamin D deficiency is 

simply a manifestation of these diseases. In acute infection 

and autoimmune disorders, preliminary evidence suggests an 

important role of vitamin D supplementation in decreasing 

the risk of disease. The pathophysiological process in many 

chronic inflammatory diseases, including atherosclerosis, 

is complex and confounded by various metabolic factors. 

Whether vitamin D supplementation is beneficial in the 

prognosis of these diseases requires further evaluation in 

larger prospective trials with a focus on major outcome 

events. In addition, dose-response randomized trials are 

necessary to identify threshold effects and possible adverse 

effects in vitamin D therapy. Future studies should aim to 

characterize optimal ranges of vitamin D status following 

vitamin D therapy, and should focus on determining the exact 

relationship between vitamin D dose and outcomes during 

the progression of diseases.

The identification and characterization of the molecular 

mechanisms responsible for recognizing and responding to 

vitamin D in the immune/inflammation system has widened 

our view of the essential components of a healthy immune 

response. Nonetheless, many key questions remain to be 

addressed. These include the cell type-specific roles of 

VDR in the progression of inflammatory diseases and the 

mechanisms of cross talk between VDR and other nuclear 

receptors, such as the retinoid X receptor and liver X recep-

tor, which stimulate the intracellular pathway to exert the 

anti-inflammation effect. In addition, a single measurement 

of serum vitamin D status or the current standard value is 

unlikely to be valid in all situations. The development of 

research to refine existing biomarkers or establish new indi-

cators that takes many factors into account and to identify 

useful functional biomarkers of vitamin D status in specific 

tissues will offer key insights into the development of targeted 

therapies for individuals with functional vitamin D insuf-

ficiency or deficiency in inflammatory diseases, though the 

research methodology for these potential biomarkers remains 

to be elucidated.
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