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Abstract: In the last two decades, animal models have become important tools in understanding 

and treating pain, and in predicting analgesic efficacy. Although rodent models retain a dominant 

role in the study of pain mechanisms, large animal models may predict human biology and phar-

macology in certain pain conditions more accurately. Taking into consideration the anatomical and 

physiological characteristics common to man and pigs (median body size, digestive apparatus, 

number, size, distribution and communication of vessels in dermal skin, epidermal–dermal 

junctions, the immunoreactivity of peptide nerve fibers, distribution of nociceptive and non-

nociceptive fiber classes, and changes in axonal excitability), swines seem to provide the most 

suitable animal model for pain assessment. Locomotor function, clinical signs, and measurements 

(respiratory rate, heart rate, blood pressure, temperature, electromyography), behavior (bright/

quiet, alert, responsive, depressed, unresponsive), plasma concentration of substance P and 

cortisol, vocalization, lameness, and axon reflex vasodilatation by laser Doppler imaging have 

been used to assess pain, but none of these evaluations have proved entirely satisfactory. It 

is necessary to identify new methods for evaluating pain in large animals (particularly pigs), 

because of their similarities to humans. This could lead to improved assessment of pain and 

improved analgesic treatment for both humans and laboratory animals.

Keywords: pain assessment, experimental model, translational research

Introduction
To date, the majority of publications on pain research have focused on humans. The 

greatest limitation of this human approach is the fact that these studies are primarily 

aimed at characterizing states of pain, and only a small percentage directly test the 

anatomical, biochemical, or pathophysiological mechanisms of pain.1 If we are to make 

significant advances in our understanding and treatment of pain, animals provide an 

important resource for predicting analgesic efficacy, which can lead to the development 

of clinical drugs.2 The last two decades have witnessed an evolution of animal mod-

els which has improved our understanding of the pathophysiology of inflammation, 

peripheral nerve disease, and bone infiltration by cancer cells.3 The animal models have 

also encouraged multidisciplinary analysis in the field of pain studies. Although the 

relative importance of genetic variability in human pain perception remains unclear, it 

is well-known that rodent populations display large and heritable differences in both 

nociceptive and analgesic sensitivity.4 Improving our understanding of the genetic 

bases of pain-related traits may have important scientific and clinical implications, and 

could facilitate the development of novel analgesic strategies or improve treatment of 

pain using conventional therapies. The first evidence has recently been presented of 
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epigenetic regulation in animals as a key factor in control-

ling states of pain.5 Other “-omics” techniques are currently 

being developed, such as metabolomics, which has recently 

been associated with pain in the rat model.6

Behavior resulting from pain can even be measured in 

decerebrate animals.7,8 Withdrawal from algogenic stimulus 

(spinal reflex),9 abdominal stretching and jumping (bulb-

spinal reflex),10 vocalization, biting, guarding, scratching, and 

licking (innate behaviors) are the most frequently used param-

eters in this type of evaluation.7,8 Unfortunately, some of these 

behaviors may be affected by a number of conditions (eg, 

reflexive withdrawal by surgical damage to motor neurons) 

which could affect the objectivity of the measurements,9,11 

as well as their relevance to clinical pain.12

Despite the many studies conducted on small animals, 

more efforts are necessary to develop tools for identifying 

pain and evaluating its intensity and form in large animals. 

Further research is needed on pain mechanisms and their 

phylogenetic bases across farm animal species.13

Materials and methods
In order to assess published data on pain in large animals, 

we conducted a literature search on PubMed by using the 

keywords: “animal model sheep and pain”, “animal model 

horse and pain”, “animal model cattle and pain”, “animal 

model cow and pain”, “animal model pony and pain”, and 

“animal model pig and pain”. We searched a full range of 

articles that explain how the authors assessed pain in these 

animal models.

For “pig” we conducted a further search for clinical trials 

only, with the words “pig and pain” and “pig and castration”. 

This additional search for “pig” reflected the importance of 

this animal model in the scientific community, despite the 

fact that other species are also used. We searched “pig and 

castration” because castration is one of the most common 

operations to cause pain in this animal, so analyzing the 

evaluation of pain in this context could help us assess pain 

in pigs more effectively.

To summarize the results of the literature search, we 

used tables with four columns containing the following 

information: the first author as reported in the article, the pub-

lication year, the animal model used, and a brief description 

of how pain was evaluated.

We listed the articles in the table in order of publica-

tion year, from newest to oldest. For each species, we also 

grouped together the articles which evaluated pain in similar 

ways, and in the description, we ordered the methods used 

from most frequent to least frequent.

Large animal studies – the current  
situation
There are a number of reasons why rodent models have 

dominated the study of pain mechanisms: they cost less, 

are easier to manage ethically, and there is a large histori-

cal database of previous research with which authors can 

compare new findings. However, large animal models may 

predict human biology and pharmacology more accurately 

for a number of pain conditions. Validated pain models in 

these animals could facilitate the development of new and 

efficient analgesic drugs with few side effects, which could 

also be used in humans. In fact, the phylogenetic proximity 

of humans and large animals plays a key role for several 

reasons:14 1) species-specific variations in sequence patterns 

which result in different affinity or potency of the target; 

2) they share a greater sequence homology than small ani-

mals and humans; 3) they experience different evolutionary 

pressure and therefore express pain in different ways; and 

4) they have a different drug metabolism (large animals bet-

ter predict human metabolism).15 Unfortunately, a universal 

method for identifying and recording pain objectively in large 

animal models has not yet been developed.

In studies involving cattle, locomotor function is used 

as the main indicator for pain. Bruijnis et  al used a five-

point scale, in which scores 1 (discomfort) and 2 (severe 

discomfort) represented a subclinical disorder visible on 

close inspection, where scores 3 (pain), 4 (severe pain), and 

5 (very severe pain) represented a clinical disorder which 

causes lameness.16,17 O’Driscoll et  al used a locomotion 

score which considered four characteristics (spine curvature, 

tracking, head carriage, and abduction/adduction), each of 

which was evaluated on a five-point scale, from less severe 

to very severe.18

Rajkondawar et al compared a gait score (GS), a five-

point score from “sound” to “severely lame”, and a lesions 

score (LS), in which lesion descriptions (such as “sole ulcer”, 

“interdigital dermatitis”, “puncture wound of the sole”, and 

“hemorrhage”) were associated with a score. This led to a 

better descriptor of lameness in cows.19 The authors found 

that LS was a better descriptor of lameness than GS. Thoefner 

et al, in a study on heifers, considered lameness an indicator 

of pain, as well as other clinical signs, such as claw inflam-

mation (warmth and increased pulsation), cardiovascular 

function, and gastrointestinal status.20

Newby et al, in a study for evaluating the effects of a label 

dose of ketoprofen after left displaced abomasums surgery 

in dairy cattle, used physiological (respiratory rate, heart 

rate, rumen motility, and rectal temperature) and behavioral 
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(bright/quiet, alert, responsive, depressed, unresponsive) 

indicators of pain,21 whereas Saeed et  al, after median 

sternotomy in calves, evaluated pain only by indirect signs 

such as heart rate, respiratory rate, and the animal’s ability 

to change posture.22

Finally, Coetzee et  al, in a study to evaluate plasma 

concentration of substance P and cortisol after castration or 

simulated castration in calves, also considered behavioral 

changes such as vocalization (scored on a scale of 0 (no 

vocalization) to 3 (continuous vocalization), and attitude 

or temperament, scored on a scale of 0 (unchanged from 

premanipulation behavior) to 3 (violent escape behavior) 

(Table 1).23

Pippi et  al analyzed three kinds of pain (superficial, 

deep, and visceral) to test analgesic drugs in ponies. The 

test for superficial pain used a heat source on a skin area, 

the test for deep pain used a current stimulus through a 

heating device on the surface of the radius, and the visceral 

test used a pressure stimulus through a rubber balloon into 

the cecum. In all the cases, the animal’s reaction was move-

ment away from the source in the superficial and deep tests, 

and a strong movement in the visceral test. This movement 

was recorded using an accelerometer.24 Boatwright et al, in 

a study comparing two drugs for analgesia in a model of 

abdominal pain in ponies, used a cumulative pain score, a 

numerical ranking based only on physical criteria (kicking, 

pawing, head movement) with a score ranging from 0 (no 

pain) to 12 (maximum pain).25 Clinical signs of colic in 

ponies were used by Roelvink et al to evaluate pain in a 

comparative study of two analgesic and spasmolytic drugs. 

These signs (head shaking, kicking the abdomen, flehmen, 

stretching, pawing the ground and looking at the abdomen, 

yawning, restlessness, and leaning against the stocks) were 

evaluated before and after the administration of the drugs.26 

Fikes et  al compared lidocaine and xylazina as epidural 

analgesics in ponies; to evaluate pain, they observed the 

reaction to a pin prick adjacent to the anus. Movements, 

such as attempts to kick or turn the head towards the stimu-

lus site, were considered positive signs of pain.27 Epidural 

analgesia in ponies with carpal synovitis was reported by 

Freitas et al. Pain was assessed mainly through a lameness 

score, where 0 signified absence of visible lameness and 

4 indicated severe lameness. Clinical signs such as heart 

rate, systolic arterial pressure, respiratory rate, body tem-

perature, and intestinal motility were also evaluated during 

the experiment (Table 2).28

In sheep, pain has largely been evaluated on the basis 

of escape-avoidance responses to different noxious stimuli. 

Dolan et  al assessed withdrawal responses after formalin 

injection (into interdigital space) and mechanical stimulation 

with a pneumatic device.29 Wilkes et al used a stiff von Frey 

filament tip connected to an anesthesiometer on the hind limb 

of the animal, exerting increasing pressure until it elicited a 

withdrawal response.30 Stubsjøen et al inflated a tourniquet 

to a pressure of 300 mmHg (or until sheep showed signs of 

aversion) and Ong et al used four different electrical stimuli 

to produce a response.31,32 Mather et al measured the pain 

threshold with a pneumo-mechanical pressure device on the 

animal’s foreleg.33

Some authors have used clinical signs and measurements 

(heart rate, blood pressure, eye temperature, rectal body tem-

perature, electromyography), behavioral measures (appetite, 

Table 1 Articles analyzing pain evaluation in cattle

First author Publication 
year

Animal  
model

Pain evaluation  
in cattle

Newby et al23 2013 Cows Behavioral assessment  
with an ethogram

Bruijnis et al19 2012 Cattle Locomotion score
O’Driscoll  
et al20

2009 Cows Locomotion score

Saeed et al24 2008 Calves RR, HR, ability to  
change posture

Coetzee  
et al25

2008 Calves Vocalization and change  
in attitude or temperament

Rajkondawar  
et al21

2006 Cows Reaction after claw 
compression and gait score

Thoefner  
et al22

2004 Heifers Evaluation of lameness,  
signs of claw inflammation,  
cardiovascular function,  
gastrointestinal function

Abbreviations: HR, heart rate; RR, respiratory rate.

Table 2 Articles analyzing pain evaluation in ponies

First  
author

Publication  
year

Animal  
model

Pain evaluation in ponies

Freitas  
et al30

2011 Ponies Lameness, HR, SAP, RR, T,  
intestinal motility

Boatwright  
et al27

1996 Ponies CPS – kicking, pawing,  
head movement

Roelvink  
et al28

1991 Ponies Head-shaking, flehmen, yawning, 
stretching, restlessness, leaning 
against the stocks, looking  
at the abdomen, kicking  
the abdomen and pawing  
the ground

Fikes  
et al29

1989 Ponies Movement, attempts to kick,  
turning the head towards the  
site of a pin prick

Pippi  
et al26

1978 Ponies Superficial, deep, and visceral 
pain tests

Abbreviations: CPS, composite pain scale; HR, heart rate; RR, respiration rate; 
SAP, systolic arterial pressure; T, body temperature.
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vocalization, lip-licking, teeth-gnawing, ear posture, reaction 

to the environment, social isolation, feeding behavior), 

and motor function (abnormalities in gait, righting reflex, 

limping) as direct and indirect signs of pain.34–39 Welsh 

et al compared a visual analog scale (VAS) and a numeri-

cal rating scale (NRS), developed by two veterinarians, to 

assess lameness in sheep. They found that, although the 

NRS and VAS are both repeatable and reproducible but not 

interchangeable, the VAS is intrinsically more sensitive.40 

An evaluation of electroencephalography (EEG) changes 

in young lambs before, during, and after seven treatments 

(tail-docking, castration, sham-shearing, formalin injection, 

mulesing, ear-tagging, handling) was reported by Jongman 

et  al,41 and showed a good correlation between EEG and 

painful procedure (Table 3).

Table 3 Articles analyzing pain evaluation in sheep

First  
author

Publication  
year

Animal  
model

Pain evaluation in sheep

Yong  
et al39

2014 Sheep Gait abnormalities, teeth-gnawing, 
social isolation

Wilkes  
et al32

2012 Sheep Hind limb withdrawal thresholds

Hee  
et al40

2011 Sheep Animal alertness, movement,  
flock behavior, feeding behavior, 
and respiratory rate

Dolan  
et al31

2011 Sheep Withdrawal response to mechanical 
stimulation; time spent not bearing 
weight or flinching

Stubsjøen  
et al33

2010 Sheep Lifting the limb after tourniquet 
inflation

Wegener  
et al37

2009 Sheep Limping and other signs of pain

Stubsjøen  
et al41

2009 Sheep Eye temperature, heart rate, heart 
rate variability, blood pressure, 
vocalization, lip-licking, ear posture

Houfflin  
Debarge  
et al38

2005 Sheep Nociceptive flexion reflex, 
neurovegetative response  
(mean aortic pressure and fetal 
heart rate), EMG

Johansen  
et al36

2004 Sheep Appetite, posture, ambulation, 
herding activity, reaction to the 
environment, and rectal body 
temperature
Behavior and motor function 
recorded on a four-grade scale

Jongman  
et al43

2000 Sheep EEG changes

Mather  
et al35

2000 Sheep Foreleg lift escape response

Ong  
et al34

1997 Sheep Escape-avoidance responses to the 
electrical stimuli

Welsh  
et al42

1993 Sheep VAS and NRS score

Abbreviations: EEG, electroencephalography; EMG, electromyography; NRS, 
numerical rating scale; VAS, visual analog scale.

In studies involving horses as animal models, lameness 

is considered the main indicator of pain. Buchner et al used 

kinematic patterns of head and trunk, as well as the body 

centre of mass, to evaluate adaptations in movement dur-

ing experimental lameness.42,43 This indicator was applied 

to assess repair and the evolution of pain after removing 

calcified cartilage.44 Other authors used a lameness score 

associated with other signs. Collier et  al, for example, 

analyzed whether the surgical site was hot, painful, or swol-

len,45 and an increase in heart rate has also been used as a 

good indicator of the severity of lameness.46–49 Cornelissen 

et al, using a five-point scale of lameness, considered indi-

rect clinical and behavioral signs of pain such as heart and 

respiratory rate, rectal temperature, demeanor, appetite, and 

circumference and distension of the fetlocks; they also noted 

changes in local temperature by palpation.50 Cayzer et  al 

measured responses to pain through flexion tests and joint 

palpation, and noted the degree of swelling, scoring each 

indicator on a five-point scale.51 Some authors have detected 

pain by monitoring mainly behavioral responses. Bussières 

et al, for example, used a composite pain scale (CPS) with 

multifactorial numerical rating, which was also used by Van 

Loon et al.52,53 The CPS considers physiological data (heart 

rate, respiratory rate, digestive sounds, rectal temperature), 

response to treatment (response to palpation of the pain-

ful area and interactive behavior), and behavior (sweating, 

appearance, posture, kicking at abdomen, pawing on the floor, 

head movement, appetite). In the authors’ opinion, these indi-

cators are the most effective in identifying orthopedic pain. 

Scantlebury et al studied the incidence of recurrent colic in 

horses and the risk factors involved, using specific indicators 

of colic as signs of pain, including pawing, violent rolling, 

lying still, getting up and down, kicking belly, vocalization, 

rolling eyes, rapid breathing, and irritability. Other clini-

cal signs, such as heart and respiratory rate, temperature, 

and borborygmi were considered.54 Clinical observations 

such as resting, respiratory rate, rectal temperature, carpal 

flexion angle, carpal circumference, carpal hyperthermia, 

and signs of carpal pain were scored on a scale from 0 (no 

warmth/signs of pain) to 2 (marked warmth/signs of pain).55 

Miller et al considered indirect signs of pain, and evaluated 

the quality of analgesia during anesthesia in horses, using 

EEG, electrocardiography, heart rate, and blood pressure. 

The authors found that associating EEG and standard clini-

cal parameters led to a better understanding of anesthetic 

management. Haussler et al assessed pain in horses with a 

pressure algometer, looking for avoidance reactions such as 

skin-twitching, local muscle fasciculation, lifting the thoracic 
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limb, or stepping away from the pressure source.56,57 Finally, 

Fureix et al hypothesized that chronic pain (for the presence 

of vertebral problems) in horses is associated with increased 

aggression towards humans.58 The authors found that chronic 

pain may behave similarly to acute pain, and therefore, it is 

important to include chronic pain as an influential factor in 

interpersonal relations and aggressive behavior (Table 4).

Focusing on pigs
In studies on pain, pigs seem to be the most suitable animal 

model. They share a number of anatomical and physiological 

characteristics with man. Moreover, their median body size 

facilitates the collection of samples such as biopsies, body flu-

ids, and blood samples, which can be managed conveniently 

in standard facilities. Moreover, pigs are omnivorous, and 

anatomically, have a similar digestive apparatus to humans. 

The skin of pigs is similar to human skin in that it has little 

hair, and the pigmentation changes in different breeds.59 The 

similarities between the skin of pigs and humans has been 

demonstrated in a number of studies, particularly when the 

animal is on average 12±4 weeks of age and the body weight 

is 20–27 kg.60 Number, size, distribution, and communica-

tions of vessels in dermal porcine skin are similar to those 

in human skin,61 as are tissue turnover time and keratinous 

proteins in the epidermis.62 Transmission electron micros-

copy shows that the epidermal–dermal junctions in pigs 

and humans are similar, as well as immunoreactivity in the 

peptide nerve fibers, for example calcitonin gene related 

peptide, vasoactive intestinal polypeptide (VIP), and sub-

stance P.63,64 Changes in distribution and axonal excitability 

of nociceptive and non-nociceptive fiber classes are also 

similar in humans and pigs, which means that this animal 

model can be used to study the modulation of excitability in 

these C-fiber classes.65

Unfortunately, pain in pigs can only be estimated by 

responses to nociceptive stimuli and none of these are ideal. 

Any reactions which are monitored are similar to other ani-

mal models in that they are almost always motor responses 

ranging from spinal reflexes to complex behaviors. Motor 

responses, however, are not the only ones analyzed. In fact, 

Kluivers-Poodt et al, who studied the effect of pain relief 

in piglets, used vocalization as an indicator.66 Using the 

common classification system described by Weary et  al,67 

they divided the calls produced by piglets into “high calls” 

($1,000 Hz) and “low calls” (,1,000 Hz), and these varia-

tions may reflect not only gross quantitative differences, but 

also the intensity and nature of the pain. The calls are regis-

tered to provide a record of their characteristics, using mea-

sures such as temporal parameters (eg, call rate and duration), 

waveform parameters (ie, peak-to-peak), and spectrum-based 

parameters (including peak amplitude and frequency, main 

frequency, and band width).

Other authors have used vocalization in association 

with other behaviors, but have evaluated quantitative char-

acteristics, rather than qualitative ones as described above. 

Walker et al assessed the reaction of piglets after castration 

by monitoring the presence and degree of movements, and the 

presence or absence of vocalization.68 Reyes et al modified a 

method used by Firth and Morton, which considers behav-

ioral parameters such as vocalization, lameness, aggression, 

restlessness, posture, isolation, appearance, sling time, agi-

tation, and posture.69–71 Possible scores ranged from 10 (no 

pain) to 35 (maximum pain). Other clinical parameters were 

Table 4 Articles analyzing pain evaluation in horses

First  
author

Publication  
year

Animal  
model

Pain evaluation in horses

van Loon  
et al55

2012 Horses CPS with physiological 
response to treatment and 
behavioral data

Foreman  
et al50

2012 Horses Lameness scale and HR

Cayzer  
et al53

2012 Horses Flexion test, response to pain 
in palpation of joints, swelling 
flexion test, swelling

Scantlebury  
et al56

2011 Horses Signs of colic and clinical 
signs

Foreman  
et al48

2011 Horses Lameness score and HR

Fureix  
et al60

2010 Horses Increased aggressiveness 
towards humans

Foreman  
et al49

2008 Horses Lameness score and HR

Bussières  
et al54

2008 Horses CPS with physiological 
response to treatment and 
behavioral data

Haussler  
et al59

2007 Horses Avoidance reactions

Frisbie  
et al46

2006 Horses Lameness

Seino et al51 2003 Horses Lameness score and HR
Buchner  
et al45

2001 Horses Lameness

Cornelissen  
et al52

1998 Horses Lameness scale and local 
signs

Hamm  
et al57

1997 Horses Subjective signs of carpal pain 
and clinical signs

Buchner  
et al44

1996 Horses Lameness score

Miller et al58 1995 Horses EEG, EMG HR, BP
Collier  
et al47

1985 Horses Lameness score and clinical 
signs (heat and swelling)

Abbreviations: BP, blood pressure; CPS, composite pain scale; ECG, EMG, 
electromyography; EEG, electroencephalography; HR, heart rate.
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heart and respiratory rate, blood pressure, and temperature. 

Lupu et al analyzed the response after a pinprick test – the 

usual response involved vocalization and/or withdrawal of 

the ipsilateral forelimb. On the other hand, Navarro et al, in 

addition to measuring withdrawal responses and vocalization 

after a mechanical stimulus, analyzed motor function, muscle 

hypertonia and hyperreflexia, anal sensation, and the presence 

of allodynia to study a chronic spinal compression model in 

minipigs.72,73 Sutherland et al, in their study on reactions in 

pigs after castration with or without anesthesia, analyzed 

behavior such as lying down, nursing, sitting, standing, and 

walking. In terms of behavior indicating pain, the authors 

analyzed sitting, huddling, scooting, and stress vocaliza-

tion, with an automatic system for monitoring stress calls.74 

Murison et al, in their study on pain behavior after laryngeal 

transplant, used a combination of locomotion scores to assess 

pain (the willingness of the pig to lie down, to stretch its neck 

and to approach its food, or how it moved), wound palpation 

(gently increasing pressure until the animal responded by 

turning away or grunting, for example), and other behavior 

(grunting, willingness to play with carers, appetite, or nest-

ing behavior). Numerical scores were used, from 0 (no pain) 

to 10 (worst pain imaginable).75 In a study to evaluate the 

response to doses of ketoprofen, Mustonen et al examined 

clinical signs (locomotion, general temperature, respiratory 

rate, and general behavior) to form a total clinical score.76 The 

same authors used a five-grade lameness scale to measure 

the efficacy of oral ketoprofen, recording lameness scores 

before and after the treatments as an index of pain relief.77 

Friton et al also used lameness as a primary parameter.78 In 

a study to evaluate the safety and efficacy of meloxicam in 

non-infectious locomotor disorders in pigs, the authors used 

clinical examination classifications to describe and categorize 

“lameness at rest” and “lameness while walking”, as well as 

“feed intake” and “behavior”. Other authors have analyzed 

pain indicators in terms of behavior such as inactivity, hud-

dling up, trembling, tail-wagging, scratching, stiffness, sleep 

spasms, recumbency, coprophagy, aggression, depression, 

head-pressing, changes in activity, nursing, lying, body 

movement, muscle-twitching, and withdrawal.79–84 These 

analyses allowed the authors to evaluate pain relief in pigs, 

distress after surgical procedures (such as castration), and the 

effects of some analgesics. Finally, some authors have used 

different methods, such as assessing postoperative analgesia 

after femoral fracture in pigs using a modified VAS for five 

different conditions: VAS1, observation; VAS2, contact; 

VAS3, ambulation; VAS4, vocalization; and VAS5, overall. 

The VAS chart consisted of a 100 mm horizontal line, 

where the left side represented no pain and the right side 

the highest level of pain.85 Haga et al analyzed EEG, mean 

arterial blood pressure, and pulse rates as indicators of pain 

in post-castration piglets. The results showed significant 

differences between animals which had received intrafu-

nicular or intratesticular lidocaine and the control group 

which had not received it.86 Rukwied et  al analyzed axon 

reflex vasodilatation by laser Doppler imaging as an indirect 

sign of C-fiber activation after irradiating pig skin to create 

erythema and applying mechanical (with von Frey needles) 

and thermal stimuli (with increased skin temperature to 45°C 

or 47°C).87 To measure the concentration of substance P and 

VIP involved in the transmission of pain, Cornefjord et al 

applied an ameroid constrictor at the root of the spinal nerve, 

and measured the gradual reduction in diameter of tissue 

samples from the nerve root (cranial to constrictor), and from 

the dorsal root (ganglion).88 The results showed that there 

was an increase of substance P but no significant differences 

in VIP concentration (Table 5).

Reactions analyzed in the studies of all species include: 

1) responses organized by centers which are “low” in the 

hierarchy of the central nervous system (termed “pseudo-

affective reflexes”) – these include neurovegetative reac-

tions (tachycardia, hyperpnea, arterial hypertension, etc), 

basic motor responses (contractures, withdrawal, etc), and 

vocalization;89,90 and 2) more complex responses integrated 

by higher nervous centers, which include conditioned motor 

responses after a period of learning such as behavioral reac-

tion (escape, avoidance, aggression, etc) or modifications of 

behavior (social, food, sleep, etc).

However, none of these evaluations are entirely 

satisfactory. They display a number of weaknesses, some 

of which are due to the types of stimuli or how they are 

applied, the plasticity of the animal or the way the data has 

been measured. Specific protocols will therefore need to be 

developed to improve estimates of pain in animal models, 

and in future, in patients who are unable to express their 

pain verbally, such as infants and comatose or cognitively 

impaired patients (Table 6).91–93

Future pain models in pigs
When we choose the animal species for a scientific study, it 

is important to consider the similarity of organs and tissues 

between the animal and humans. It is not possible, therefore, 

to make a general statement about animal models.94 For exam-

ple, some experts suggest that non-human primates should be 

used where there is no alternative, such as in studies involving 

neuroscience and brain function, or in diseases common to 
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Table 5 Articles evaluating pain in pigs

First author Publication year Animal model Pain evaluation

Royal et al87 2013 Pigs HR, RR, subjective pain assessment with a modified VAS
Di Giminiani et al85 2014 Pigs Body movement, rubbing, muscle twitches

Leg movements, lifting the leg, kicking
Navarro et al75 2012 Minipigs Withdrawal response to a mechanical stimulus, vocalization, muscle 

hypertonia and hyperreflexia, anal sensation, and presence of allodynia
Mustonen et al78 2012 Pigs General behavior, RR, locomotion, rectal temperature
Janczak et al86 2012 Piglets Withdrawal response
Kluivers-Poodt et al68 2012 Piglets Vocalization
Sutherland et al76 2012 Pigs Scooting, sitting, huddling, vocalization
Rault et al81 2011 Piglets Tail-wagging, huddling up, trembling, stiffness, lying prostrate, spasms, 

scratching, sleep spasms
Van Beirendonck et al82 2011 Piglets Huddling up, trembling, spasms, scratching, tail-wagging
Mustonen et al79 2011 Sows Lameness
Lupu et al74 2010 Pig Vocalization and/or withdrawal of the forelimb
Murison et al77 2009 Pigs Wound palpation, behavior, and locomotion scoring
Rukwied et al89 2008 Pigs Reflex erythema
Carroll et al84 2006 Pigs Active, lying, sitting, standing, and nursing
Haga et al88 2005 Piglets EEG, MAP, pulse rate
Walker et al70 2004 Piglets Vocalization and movement
Friton et al80 2003 Pigs Lameness, food intake, behavior
Reyes et al71 2002 Piglets Lameness, isolation, posture, vocalization, aggression, restlessness, 

agitation, and playfulness
Harvey-Clark et al83 2000 Pigs Inactivity, recumbency, aggression, depression, head-pressing, 

coprophagy, stereotypical chewing, changes in activity
Cornefjord et al90 1995 Pigs Increase in substance P

Abbreviations: EEG, electroencephalography; HR, heart rate; MAP, mean arterial blood pressure; RR, respiratory rate; VAS, visual analog scale.

Table 6 Biological similarities between humans and large animals

1.  Phylogenetic proximity:
   – � Greater sequence homology
   – � Better prediction of human metabolism
   – � Less species-specific variations in sequence patterns
   – � Different evolutionary pressure
2.  Median body size
3.  Humans and pigs are both omnivorous
4.  Similar digestive apparatus with porcine species
5.  Similarity with porcine skin:
   – � Number, size, distribution, and communications of dermal vessels
   – � Tissue turnover time
   – � Keratinous proteins in the epidermis
   – �E pidermal–dermal junctions
6.  Immunoreactivity in the peptide nerve fibers
7.  Similarities in nociceptive and non-nociceptive fiber classes

man and other primates (HIV/AIDS or tuberculosis). On the 

other hand, dogs are preferred in the development of anti-

ulcer drugs because of the similarity between the human and 

canine gastric mucosal membrane.95

In terms of pain and its evaluation, it is important to 

emphasize that each species manifests pain in its own way, 

according to the behavioral repertoire of the species, and a 

particular reaction does not necessarily suggest that the ani-

mal is experiencing pain. Moreover, no single behavior is a 

definite sign of pain, and each reaction must be assessed in 

context (Committee on Regulatory Issues in Animal Care and 

Use, 2000).96 In fact, vocalization in piglets is not necessarily 

an indicator of pain. Piglets run a natural risk of being crushed 

by their mother, and they have developed a low threshold for 

screaming in order to alert her. Piglets will scream simply if 

they are picked up, but this does not mean they are feeling 

any pain. Equally, it is not true to say that piglets never feel 

pain when they scream. It only means that vocalization, as a 

single indicator, is not a sensitive parameter of pain.

Conversely, if it is difficult to find an indicator of pain, 

we can analyze signs of well-being that suggest the absence 

of pain, such as play (nudging and running, grabbing, 

biting chains, playful fighting), vocalization (calling the 

piglet or conversing in a group), strong growth, and good 

health.97–99

Overall, pigs seem to be the most suitable animal model 

for studying pain. In fact, there are a number of reasons for 

choosing pigs. Firstly, their similarities with humans in terms 

of size, anatomy, and genetics make pigs suitable for studies 

where results can be reproduced in humans. Secondly, pigs 

are easily managed in the animal facility, which optimizes the 

conditions for study. Thirdly, the ethics committee is more 

likely to approve studies involving pigs as opposed to other 
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animals such as dogs or primates, and finally, pigs are most 

frequently used by the scientific community because they are 

likely the most practical for follow-up studies.

This evidence therefore indicates that pigs represent the 

best models for studying and assessing postoperative pain 

in humans.

Conclusion
It is necessary to identify new methods for evaluating pain 

(particularly postoperative pain) in large animals, and pigs 

represent the most suitable model because of their similarities 

to humans. The aim would be to transfer the results to human 

patients, to develop better pain evaluation and treatment. 

This would be especially useful in non-verbal patients to 

prevent complications in short- and long-term therapies due 

to incorrect diagnosis on the basis of pain.

Teamwork will be essential in this endeavor: biologists, 

anesthetists, surgeons, pain therapists, and biomedical engi-

neers will need to work together “from bench to bedside”, 

each contributing their specific skills to the task.
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