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Abstract: In recent years, emerging evidence has linked vitamin D not only to its known effects 

on calcium and bone metabolism, but also to many chronic illnesses involving neurocognitive 

decline. The importance of vitamin D
3
 in reducing the risk of these diseases continues to increase 

due to the fact that an increasing portion of the population in developed countries has a significant 

vitamin D deficiency. The older population is at an especially high risk for vitamin D deficiency 

due to the decreased cutaneous synthesis and dietary intake of vitamin D. Recent studies have 

confirmed an association between cognitive impairment, dementia, and vitamin D deficiency. 

There is a need for well-designed randomized trials to assess the benefits of vitamin D and 

lifestyle interventions in persons with mild cognitive impairment and dementia.

Keywords: vitamin D, 25(OH)D level, cognition, mild cognitive impairment, Alzheimer’s 

disease, vascular dementia

Introduction
Vitamin D is involved in calcium and bone metabolism, as well as in numerous other 

metabolic processes that are important for maintaining health. Vitamin D deficiency 

is common in the elderly. In this review, we will summarize and discuss the current 

knowledge of the association between vitamin D levels and neurocognitive function. 

We will begin with overviews of vitamin D metabolism, vitamin D and aging, the 

vitamin D receptor (VDR) in the brain, malnutrition in the elderly, and the current 

evidence of vitamin D deficiency. Next, we will summarize new clinical data on the 

role of vitamin D among patients with mild cognitive impairment (MCI), Alzheimer’s 

disease (AD), and vascular dementia (VaD).

Background
vitamin D metabolism
Vitamin D

3
 is produced in the human skin with the influence of sunlight (ultraviolet B; 

290–315 nm) from 7-dehydrocholesterol (7-DHC).1 Even though 7-DHC is the precur-

sor of cholesterol, statins have no influence on the cutaneous synthesis of vitamin D
3
.2 

Major factors that influence the cutaneous production of vitamin D
3
 include time of day, 

season, latitude, skin pigmentation, sunscreen use, and aging.3,4 Vitamin D (D represents 

D
2
 or D

3
) from cutaneous synthesis or dietary/supplemental intake is bound to the 

vitamin D binding protein and transported to the liver, where it is hydroxylated on 

C-25 by the cytochrome P450 enzyme (CYP2R).1 In addition, 25-hydroxyvitamin D 

[25(OH)D] is the main circulating metabolite of vitamin D.1 In the kidneys, a second 

C
lin

ic
al

 In
te

rv
en

tio
ns

 in
 A

gi
ng

 d
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.dovepress.com/permissions.php
http://creativecommons.org/licenses/by-nc/3.0/
http://dvpr.es/18NArKg.qrcode
http://dvpr.es/1dIuH1f.qrcode
http://dvpr.es/1dIuH1f
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/CIA.S51785
mailto:mfholick@bu.edu


Clinical Interventions in Aging 2014:9submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

560

Schlögl and Holick

hydroxylation at the C1-position by the cytochrome P450 

[5(OH)D-1α-hydroxylase; CYP27B1] occurs.1 This results 

in the production of 1,25-dihydroxyvitamin D [1,25(OH)
2
D], 

the biologically active metabolite of vitamin D.1 The con-

centration of 1,25(OH)
2
D in the blood is regulated via a 

feedback mechanism by 1,25(OH)
2
D itself (via an induction 

of the 25(OH)D–24-hydroxylase; CYP24A1), as well as by 

parathyroid hormone, calcium, fibroblast growth factor 23, 

and various cytokines such as interferon γ and tumor necrosis 

factor α (Figure 1).1,5 For a long time, it was assumed that 

only the kidneys were capable of converting 25(OH)D to 

1,25(OH)
2
D. In vitro experiments and studies in patients 

with nephrectomy have shown that numerous extrarenal 

cells, including keratinocytes, monocytes, macrophages, 

osteoblasts, prostate, and colon cells are capable of expressing 

the 1α-hydroxylase so as to convert 25(OH)D in these cells to 

1,25(OH)
2
D.1,6,7 In keratinocytes, both the 1α-hydroxylase as 

well as the 25-hydroxylase (CYP2R) have been detected.6,8,9 

Lehmann et al10 have shown in vitro that keratinocytes are 

capable of engaging in the complete enzymatic synthesis 

of 1,25(OH)
2
D

3
 from vitamin D

3
. Moreover, 1,25(OH)

2
D is 

produced locally in organs and cells, and it is thought to func-

tion in an autocrine manner to regulate a variety of metabolic 

processes that are not related to calcium metabolism. Once 

it performs these functions, it induces its own destruction 

by increasing the expression and production of CYP24A1, 

which hydroxylates and oxidizes the side chain, forming the 

inactive water-soluble calcitroic acid.1

vitamin D receptor in the brain
It should be noted that 1,25(OH)

2
D signaling is conducted 

through the VDR, which shares its structural characteris-

tics with the broader nuclear steroid receptor family.11 In 

1992, Sutherland et al12 provided the first evidence that 

the VDR is expressed in the human brain. Using radiola-

beled complementary deoxyribonucleic acid probes, the 

authors showed that VDR messenger ribonucleic acid is 

expressed in the postmortem brains of patients with AD 

or Huntington’s disease. In a landmark study, Eyles et al13 

described that both the VDR and CYP27B1 are widespread 

in important regions of the human brain including the 

hippocampus, which is particularly affected by neurode-

generative disorders.14–17  Furthermore, the VDR is also 

expressed in the prefrontal cortex, cingulate gyrus, basal 

forebrain, caudate/putamen, thalamus, substantia nigra, 

lateral geniculate nuclei, hypothalamus, and cerebellum.18 

Importantly, VDR gene polymorphisms are associated with 

cognitive decline,19,20 AD,21–24 Parkinson’s disease,25–29 and 

multiple sclerosis.30

vitamin D and aging
With age, the skin’s ability to synthesize vitamin D signifi-

cantly decreases. MacLaughlin and Holick31 described that 

the capacity of the skin’s ability to synthesize vitamin D is 

reduced by more than 50% at 70 years of age compared to 

20 years of age; however, aging does not affect the intestinal 

absorption of vitamin D. While hydroxylation at the C-25 

position in the liver is not affected by aging,32 the ability for 

the hydroxylation at the C-1 position is reduced by age-related 

functional limitations of the kidneys, and is less responsive 

to the parathyroid hormone stimulation of CYP27B1.33,34 

Decreased thickness of the skin with age,35 in addition to a 

reduction in 7-DHC content is considered the reason for the 

decrease in vitamin D synthesis with aging.31 In 1989, Holick 

et al36 described that a single exposure to simulated solar 

radiation (32 mJ/cm²) in younger subjects led to a significant 

threefold increase in serum vitamin D
3
 concentration, as 

compared to elderly subjects. Several studies have reported 

that 25(OH)D ,30 ng/mL is common in older persons with 

illnesses.37–39 Perry et al40 also described that there is a longi-

tudinal decline in 25(OH)D levels with aging, even in those 

taking a vitamin D supplement.

Malnutrition in the elderly
Malnutrition is not a symptom of old age, but it often accom-

panies one or more diseases, and its clinical presentation 

is often nonspecific. The type and intensity of symptoms 

depend on the patient’s prior nutritional status and on the 

nature of the underlying disease and the speed at which it is 

progressing.41 Malnutrition can be a causative factor not only 

for vitamin D deficiency, but for other fat and water-soluble 

vitamins that are important for neurocognitive function. 

Alterations in smell42 and taste perception,43 as well as 

in chewing and swallowing disorders,44 lead to a decrease in 

the enjoyment of food and may contribute to the reduction 

of energy consumption. Pain, nausea, and polypharmacy 

are among the most common reasons that many hospital 

patients do not consume enough nutrients.45 Nutrient loss 

can be accelerated by bleeding, diarrhea, abnormally high 

sugar levels (glycosuria), kidney disease, and other factors 

such as fever, infection, surgery, or benign or malignant 

tumors. Furthermore, life events, such as the loss of a spouse, 

or social factors, such as the nature and extent of nursing 

support,46 have a significant impact on energy consumption. 

Patients with depression47 and most patients with dementia 

are at a higher risk for malnutrition during the course of their 

disease,48 and ensuring adequate oral intake within the group 

of patients with dementia is often problematic.49–51 A recent 

meta-analysis of 12 articles  evaluated the effectiveness of 
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Figure 1 Schematic representation of the synthesis and metabolism of vitamin D for skeletal and nonskeletal function.
Note: Copyright Holick 2013, reproduced with permission.
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oral nutritional supplements (ONS) in older adults with 

and without cognitive impairment.52 The authors showed 

that patients exhibited a significant improvement in weight 

(P,0.0001), body mass index (P,0.0001), and cognition at 

a 6.5±3.9-month follow up (P=0.002) when ONS were given, 

as compared to the control group.52
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However, caution should be applied to the finding regard-

ing the influence of ONS on cognitive performance, as 

measured by the Mini-Mental State Examination (MMSE), 

since only four studies with a total of 141 patients in the 

intervention groups and 130 in the control groups were 

included.52

Prevalence of vitamin D deficiency
According to the US Endocrine Society, which addresses 

the evaluation and treatment of patients with specific dis-

eases who are at risk for vitamin D deficiency, a cut-off 

level ,20 ng/mL (50 nmol/L) for 25(OH)D defined vitamin D 

deficiency.53 The US Institute of Medicine report, which 

addresses the dietary reference intake of vitamin D in the 

normal, healthy North American population, concluded that 

25(OH)D equal to 16 ng/mL (40 nmol/L) should be the cut-

off for vitamin D deficiency, but for maximum bone health, 

the team recommended a 25(OH)D level .20 ng/mL.54 

Recent reviews reported that children, as well as young, 

middle-aged, and older adults are at risk for vitamin D defi-

ciency worldwide.55–57 In Europe, vitamin D deficiency in the 

elderly is more likely in women than in men, and it is more 

common in the south than in the north.58 Based on the defini-

tion of the US Endocrine Society, the prevalence of vitamin D 

deficiency was almost one-third of the US population.59 Data 

from the Healthy Lifestyle in Europe by Nutrition in Adoles-

cence (HELENA) study, which obtained blood samples from 

1,006 adolescents in nine different European countries, also 

indicated that vitamin D deficiency is highly prevalent, even 

in children.60 Importantly, vitamin D deficiency is associated 

with a significantly increased prevalence of hypertension, 

obesity, and dyslipidemia, type 2 diabetes, chronic kidney 

disease, and endothelial dysfunction.61,62

Vitamin D and neurocognitive  
functioning
There is strong evidence that 1,25(OH)

2
D contributes to 

neuroprotection by modulating the production of nerve 

growth,63–65 decreasing L-type calcium channel expression,66 

regulating the toxicity of reactive oxygen species,67–71 and 

neurotrophic factors such as nerve growth factor,64,72–76 glial 

cell-derived neurotrophic factor,77 and nitric oxide synthase.69 

Furthermore, vitamin D and its metabolites are involved in 

other neuroprotective mechanisms including amyloid phago-

cytosis and clearance,78,79 and vasoprotection.80

Multiple systematic reviews and meta-analyses of obser-

vational studies confirm that cardiovascular risk factors (for 

example, hypertension, hypercholesterolemia, atheroscle-

rosis, diabetes mellitus, and smoking) are associated with 

low levels of 25(OH)D and predict cardiovascular events 

including strokes.81–86 Gunta et al86 recently described mul-

tiple vitamin-D-related pathways that contribute to cardiovas-

cular morbidity and mortality. Vitamin D plays a protective 

role in the cardiovascular system through downregulating the 

renin–angiotensin–aldosterone system,87–90 cardiac remodel-

ing,91–93 regulating the endothelial response to injury,94–96 and 

blood coagulation by increasing thrombus formation and 

tissue factor activity (Figure 2).97 Furthermore, 25(OH)D 

levels are inversely associated with one’s risk for develop-

ing vascular calcification,98,99 which is known as a marker of 

atherosclerotic burden and a risk factor for dementia.100–103

In recent years, the relationship between blood pressure 

and cognitive function and dementia has received much 

attention from epidemiological research. It is known that 

midlife hypertension is an important modifiable risk factor 

for late-life cognitive decline,104,105 MCI106,107 and VaD.108,109 

Qiu et al110 described that some cross-sectional studies have 

shown an inverse association between blood pressure and 

the prevalence of dementia and AD, whereas longitudinal 

studies yielded mixed results that largely depend on the age 

at which blood pressure is measured and the time interval 

between blood pressure and outcome assessments.

A recent American Heart Association and American 

Stroke Association guidance statement published in 2011 

provided an excellent overview of the evidence on vascular 

contributions to cognitive impairment and dementia.111 There 

is reasonable evidence (class 2a, Level of Evidence B) to 

suggest that blood pressure-lowering therapy can be use-

ful for the prevention of late-life dementia among people 

who are middle-aged, and for younger elderly individuals. 

However, the usefulness of lowering blood pressure in those 

over 80 years of age for the prevention of dementia is not well 

established (class 2b, Level of Evidence B). Furthermore, 

lowering blood pressure in patients who do not have cogni-

tive impairment can reduce the risk of subsequent cognitive 

impairment, whereas lowering blood pressure to preserve 

cognition among patients who already have cognitive impair-

ment is not a proven successful strategy.

In 2010, The National Institutes of Health launched a 

two-arm, multicenter, randomized clinical trial to deter-

mine whether maintaining blood pressure levels lower than 

the current recommendations further reduces one’s risk 

of developing cardiovascular and kidney diseases, or age-

related cognitive decline. Called the Systolic Blood Pres-

sure Intervention Trial (SPRINT), this 9-year, $114 million 

study will be conducted in more than 80 clinical sites across 
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the United States. More than 9,000 patients .55 years of 

age with systolic blood pressure $130 mmHg and with 

at least one other vascular risk factor will be randomized 

to either an “aggressive” treatment arm characterized 

by a target systolic blood pressure of ,120 mmHg, or a 

more “routine” arm with a target systolic blood pressure 

of ,140 mmHg. In a substudy (SPRINT-MIND) – which is 

funded by the National Institute on Aging and the National 

Institute of Neurological Disorders and Stroke –whether 

the lower systolic blood pressure goal influences the 

occurrence of dementia, change in cognition, and change 

in brain structure (on magnetic resonance imaging) will 

also be tested.

Vitamin D and mild cognitive 
impairment
MCI is a condition that “represents an intermediate state of 

cognitive function between the changes seen in aging but does 

not fulfill the criteria for dementia.”112 Petersen112 estimated that 

between 10% and 20% of people aged 65 years or older suffer 

from MCI, and several other studies have shown that patients 

with MCI are at a greater risk of developing dementia.113–116 

A meta-analysis by Etgen et al117 suggested a more than dou-

bled risk of cognitive impairment in patients with vitamin D 

deficiency among 7,688 participants. The authors showed an 

increased risk of developing cognitive impairment in those 

with low 25(OH)D compared with those with normal 25(OH)D 

levels (odds ratio: 2.39; 95% confidence interval: 1.91–3.00; 

P,0.0001). Only five cross-sectional and two longitudinal 

studies were included in the meta-analysis, which underlines 

the need for future prospective studies.

One of the studies by Llewellyn et al118 showed an inverse 

relationship with serum 25(OH)D and cognitive impairment 

in 1,766 adults aged 65 years and older from the Health 

Survey for England 2000. There was a 230% increased risk 

for cognitive impairment in those with 25(OH)D ,20 ng/mL 

compared to those with a 25(OH)D level .20 ng/mL. 

 Including 2,749 participants from eight studies, Balion 

et al119 compared mean MMSE scores between individu-

als with levels of 25(OH)D ,50 nmol/L and $50 nmol/L. 
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Figure 2 vitamin D-related pathways, cardiovascular morbidity, and mortality.
Notes: A decreased serum level of 25-hydroxyvitamin D (vitamin D status) is a risk factor for cardiovascular morbidity and mortality, owing to increases in systolic blood 
pressure, LvH, and adverse cardiovascular events. These effects may involve various pathways, including increases in endothelial adhesion, which could promote atherosclerosis 
causing negative inotropic effects on the heart, vascular calcification through osteogeneic processes in VSMCs, and an increase in thrombogenesis. Furthermore, increases in 
the inflammatory milieu cause macrophage infiltration, and increased levels of parathyroid hormone could be involved in a complex interaction with the renin–angiotensin 
system. Adapted by permission from Macmillan Publishers Ltd: Nature Reviews Nephrology. Gunta SS, Thadhani RI, Mak RH. The effect of vitamin D status on risk factors for 
cardiovascular disease. Nat Rev Nephrol. 2013;9(6):337–347.86 Copyright © 2013.
Abbreviations: TNF, tumor necrosis factor; vSMC, vascular smooth muscle cell; LvH, left ventricular hypertrophy; mRNA, messenger RNA.
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The authors showed a higher average MMSE score in those 

participants with higher 25(OH)D concentrations. There is 

also a need for long-term, placebo-controlled, randomized 

trials to assess the potential benefits of pharmacologic and 

lifestyle interventions in persons with MCI. A very promising 

randomized-controlled trial (DO-HEALTH) began enroll-

ing participants in December 2012; it will enroll a total of 

2,152 community-dwelling men and women aged 70 years 

of age to test the individual and the combined benefits of 

2,000 IU of vitamin D/day, 1 g of omega-3 fatty acids/day, 

and a simple home exercise program (http://do-health.eu/

wordpress/). One of the five primary endpoints is the risk of 

functional decline.

Vitamin D, Alzheimer’s disease,  
and vascular dementia
AD is the best known and the most common cause of dementia 

in older people.120 According to a study by Ferri et al121 that 

was conducted in 2005, the global prevalence of dementia 

was 24.3 million. The authors hypothesized that this number 

will double every 20 years to a total of 42 million individuals 

by 2020 and 81 million people by 2040. VaD is the second 

most common type of dementia.122–124 According to The 

Aging, Demographics, and Memory Study (ADAMS), the 

prevalence of VaD in the United States among those aged 

71 years and older has been estimated to be approximately 

594,000.125 The development of clinical AD and VaD is very 

complex,126,127 since several pathophysiological pathways 

leading to vascular and neurodegenerative processes are simi-

lar.128 Importantly, macroscopic infarcts are very common in 

approximately one-third to one-half of older people,129–132 and 

infarcts frequently coexist with AD pathology in the brains 

of older people.130,132–136 Several studies showed that cerebro-

vascular lesions lower the threshold of the AD-type changes 

that are necessary to cause cognitive decline.133,135,137

It has to be acknowledged that the prevalence and inci-

dence figures from AD and VaD pertain to diagnostic thresh-

olds for these disorders,111 and that there exist multiple sets 

of criteria for VaD.124 Most older studies use the construct of 

VaD, and more recently, the term “vascular cognitive impair-

ment” has been introduced to capture the entire spectrum of 

cognitive disorders that range from MCI to fully developed 

dementia.111 Since most of the recent systematic reviews 

and meta-analyses that have been published within the last 

3–5 years, the old term (VaD) has been used to characterize 

cognitive syndromes associated with vascular disease and cog-

nitive decline. A meta-analysis from Balion et al,119 which was 

conducted using five different databases including 37 different 

studies published in 2012, compared cognition (as measured 

by the MMSE) to 25(OH)D levels. The results showed that 

individuals with AD had lower 25(OH)D concentrations 

compared to those without AD. In addition, MMSE scores 

were lower in patients with lower 25(OH)D concentrations. 

However, the authors noted that the nature of the relation-

ship between cognition and 25(OH)D concentrations is still 

not clear. In contrast to Balion et al,119 who included studies 

with and without regression models to answer this question, 

Annweiler et al114 restricted their report to studies that used 

regression models. The authors concluded that in older adults, 

vitamin D deficiency was associated with dementia,138–141 and 

that vitamin D supplementation might have a protective effect. 

Similar results were reported by Barnard and Colón- Emeric.142 

Furthermore, in a systematic review and meta-analysis, Ann-

weiler et al143 critically analyzed the domain-specific cognitive 

performance affected in vitamin D deficiency. The authors 

demonstrated that vitamin D deficiency “is cross-sectionally 

associated in adults with episodic memory disorders and 

executive dysfunctions, in particular mental shifting, infor-

mation updating, and processing speed.”143 Recently, van der 

Schaft et al144 also conducted a systematic review that included 

25 studies with a cross-sectional design and six studies with 

a prospective design; three of these studies showed cross-

sectional as well as prospective data.145–147 The main finding 

was a statistically significantly worse outcome on one or more 

cognitive function tests, or a higher frequency of dementia, 

with lower 25(OH)D levels or vitamin D intake in 72% of the 

studies. In addition, 67% of the prospective studies showed 

a higher risk of cognitive decline after a follow-up period 

of 4–7 years in participants with lower 25(OH)D levels at 

baseline compared with participants with higher 25(OH)D 

levels.

Importantly, several limitations have to be considered 

while interpreting the data of the systematic reviews and 

meta-analyses. Cross-sectional studies cannot answer the 

question of whether vitamin D deficiency leads to cognitive 

decline, or whether people with a cognition disorder have 

lower exposure to sunlight or lower vitamin D intake, nor do 

they reflect seasonal fluctuation of vitamin D status.144 Using 

different cut-off points for vitamin D status classification, 

and different diagnostic criteria for MCI and VaD, make it 

difficult to compare these studies. Finally, the differences in 

adjustments for potential confounders such as age, sex, race, 

depression, level of education, diabetes, hypertension, kidney 

disease, physical activity, and/or season that the sample was 

obtained may explain some of the different study results 

reported in the systematic reviews and meta-analyses.
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Conclusion
Older adults are at a high risk of developing vitamin D 

deficiency due to decreased cutaneous synthesis and dietary 

intake of vitamin D. Vitamin D deficiency is associated 

with substantial increases in the incidence of hypertension, 

hyperlipidemia, myocardial infarction, stroke, fractures, and 

diabetes. Vitamin D signaling is involved in brain develop-

ment and function. Many studies have shown that AD and 

VaD share hypertension as a common risk factor, and there 

is reasonable evidence to suggest blood pressure-lowering 

therapy can be useful for the prevention of late-life dementia 

for middle-aged and younger elderly individuals, whereas 

the usefulness of lowering blood pressure among those over 

80 years of age for the prevention of dementia is not well 

established. The overlap between AD and VaD makes it 

difficult to estimate to what extent each disease contributes 

to cognitive decline. The majority of the cross-sectional and 

prospective studies found that vitamin D deficiency is associ-

ated with a statistically significantly worse outcome on one 

or more cognitive function tests, or with a higher frequency 

of MCI and dementia. The identification of people who are 

at risk for cognitive impairment holds realistic promise for 

the prevention or postponement of dementia. There is a need 

for long-term, placebo-controlled, randomized trials to assess 

the potential benefits of pharmacologic and lifestyle interven-

tions in persons with MCI, VaD, and AD.
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