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Abstract: Alzheimer’s disease (AD) is a complex and heterogeneous neurodegenerative disorder, 

classified as either early onset (under 65 years of age), or late onset (over 65 years of age). Three 

main genes are involved in early onset AD: amyloid precursor protein (APP), presenilin 1 (PSEN1), 

and presenilin 2 (PSEN2). The apolipoprotein E (APOE) E4 allele has been found to be a main risk 

factor for late-onset Alzheimer’s disease. Additionally, genome-wide association studies (GWASs) 

have identified several genes that might be potential risk factors for AD, including clusterin (CLU), 

complement receptor 1 (CR1), phosphatidylinositol binding clathrin assembly protein (PICALM), 

and sortilin-related receptor (SORL1). Recent studies have discovered additional novel genes 

that might be involved in late-onset AD, such as triggering receptor expressed on myeloid cells 

2 (TREM2) and cluster of differentiation 33 (CD33). Identification of new AD-related genes is 

important for better understanding of the pathomechanisms leading to neurodegeneration. Since 

the differential diagnoses of neurodegenerative disorders are difficult, especially in the early 

stages, genetic testing is essential for diagnostic processes. Next-generation sequencing studies 

have been successfully used for detecting mutations, monitoring the epigenetic changes, and 

analyzing transcriptomes. These studies may be a promising approach toward understanding the 

complete genetic mechanisms of diverse genetic disorders such as AD.

Keywords: dementia, amyloid precursor protein, presenilin 1, presenilin 2, APOE, mutation, 

diagnosis, genetic testing

Introduction
Alzheimer’s disease (AD) is a complex and heterogeneous neurodegenerative disorder. 

Several genetic and environmental factors and gene interactions may be involved in 

the disease’s occurrence and progression.1 Experiments have been performed with 

mono- and dizygotic twins to estimate the role of genetics in AD, the environmental 

influences, and the disease heritability. Variation in age of onset, neuropathological 

patterns, and disease duration may be possible due to genetic–environmental interac-

tions.2–4 AD can be categorized into two subtypes: early onset and late onset. As a 

polygenic disorder, several additional genes might be potential risk factors for AD. 

Many single-nucleotide polymorphisms (SNPs) have been identified and confirmed 

to be associated with AD. The majority of recent studies in the genetics of AD have 

focused on the identification of novel risk-factor genes and mutations.2,5,6

Early onset Alzheimer’s disease
Occurrence of familial Alzheimer’s disease (FAD) represents the minority (5%–10%) of 

all AD cases. Familial early onset Alzheimer’s disease (EOAD) can be characterized by 
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the Mendelian inheritance pattern; however, EOAD patients 

have also been reported without any family history (termed 

“sporadic EOAD”). Three genes are considered the main 

risk factors for EOAD: amyloid precursor protein (APP), 

presenilin 1 (PSEN1), and presenilin 2 (PSEN2; Figure 1). 

Mutations in these genes might result in alteration of amy-

loid beta (Abeta) production (both Abeta 40 and Abeta 42), 

leading to apoptosis of the neurons and dementia.6–9 Figure 2 

presents a timeline of AD onset according to age.5,10

The APP gene is located on chromosome 21. Triplication 

of chromosome 21 results in the triplication of the APP gene, 

which might enhance APP expression and Abeta accumula-

tion. Down syndrome patients have been reported to develop 

AD pathology (deposition of senile plaques and neurofibril-

lary tangles) earlier than those without Down syndrome.11 

These findings suggest that overexpression of APP might be 

related to AD pathology. The APP gene contains 19 exons 

for encoding the APP protein. The Abeta peptide is encoded 

by exons 16 and 17. Following transcription and alternative 

splicing, at least five isoforms of APP protein were identified, 

which contain the Abeta peptide sequence.12 However, APP 

seems to be a very rare risk factor for AD, as 21 and three 

mutations were described at exon 17 and 16, respectively. 

Most of the pathogenic APP mutations were located near the 

cleavage sites of alpha, beta, and gamma secretase enzymes, 

which suggests they might be involved in the onset of AD 

through altering the proteolysis of the Abeta peptide.13,14 

N-terminal mutations in the Abeta sequence can affect the 

endosomal/lysosomal cleavage of Abeta, and might alter the 

beta secretase cleavages.12,15 Mutations near the cleavage 

site of alpha secretase (Glu693Lys, Glu693Gly, Glu693del, 

Asp694Asn) might change the processing of APP, in enhanc-

ing the proteolytic resistance of Abeta peptide.16,17 De Jonghe 

et al studied the APP mutations near the gamma secretase 

cleavage site.13 Missense mutations at codon 714-715 of 

APP decreased the secretion of Abeta 40, and the mutations 

at codon 716-717 increased the production and secretion of 

Abeta 42. This study suggests that gamma secretase cleavage 

might increase the ratio of Abeta 42 to Abeta 40.10–13,18

Linkage analyses (1996) identified two highly homolo-

gous genes – PSEN1 and PSEN2 – that might be involved 

in the onset of AD.19,20 The structures of PSEN1 and PSEN2 

are similar, with a homology of 67%. Both of them contain 

12 exons with ten coding exons (exons 3–12) for a protein 

of ∼450 amino acids. Presenilin 1 (PS1) and presenilin 2 

(PS2) proteins are transmembrane (TM) proteins with at least 

seven TM domains.19 The function of presenilins was first 

described by Wolfe et al, who proposed that two transmem-

brane aspartate (257 and 385) residues in PS1 are critical in 

gamma secretase activity.20 Most AD risk-factor mutations 

have been detected in PSEN1 (approximately 30%–70% of 

early onset FAD), which is located on chromosome 14. More 

than 180 mutations were found in PSEN1 in association with 

FAD, but they might be involved in sporadic AD or LOAD.14 

Patients with PSEN1 mutations might develop AD symptoms 

in their 40s or early 50s, with a few cases occurring in persons 

in their late 30s and early 60s. Several missense mutations 

in PSEN1 can increase the production of Abeta 42 and 40. In 

an alternative mechanism, the levels of Abeta 42 and Abeta 

40 might be increased and decreased, respectively.21

PSEN2, on chromosome 1, is another risk-factor gene 

for AD, especially EOAD among a very small European 

population. The most well-known group with dementia from 

PSEN2 mutation is families with Volga German ancestry. AD 

arising from PSEN2 mutations can be highly variable, and 

may occur between the ages of 40 and 75 years.5,21,22 The first 

PSEN2 mutation in AD patients was described in 1995.5,23–25 

Patients with PSEN2 mutation have not been reported in Korea, 

APP

PSEN1

PSEN2

Altered Abeta
production

AD

Figure 1 The amyloid precursor protein (APP), presenilin (PSEN) 1, and PSEN2 genes 
involved in early onset Alzheimer’s disease (AD). 
Abbreviation: Abeta, amyloid beta.

Down
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PSEN2

PSEN1

20 30 40 50 60
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Age (years)
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Figure 2 The age onset of Alzheimer’s disease (AD), depending on the different 
involvement of genes. The symptoms of dementia can occur at an earlier age in 
Down syndrome patients than in AD patients without trisomy. 
Abbreviations: APOE, apolipoprotein E gene; APP, amyloid precursor protein gene; 
EOAD, early onset Alzheimer’s disease; LOAD, late-onset Alzheimer’s disease; 
PSEN1/2, presenilin 1/2 gene.
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the People’s Republic of China, or Japan, but silent mutations 

have been detected in Japan.26 A few PSEN2 mutations, such 

as Leu143His or Arg143His, have not been associated with 

any neurodegenerative phenotype.27 Two PSEN2 mutations, 

Arg62His and Arg71Trp, may be involved in breast cancer, 

although the pathomechanism is not clear.28 Table 1  sum-

marizes all mutations described in APP, PSEN1, and PSEN2 

genes that may be involved in AD progression.

Late-onset Alzheimer’s disease
In late-onset Alzheimer’s disease (LOAD), several genes 

have been described as potential risk factors, but nongenetic 

factors may also be involved in the disease’s progression 

(Figure 3).9 The APOE gene, located on chromosome 19, is 

an important genetic risk factor for LOAD, and its importance 

has been validated from population studies. Apolipoprotein 

E (ApoE) protein is the major cholesterol carrier in the 

brain, which can be involved in neuronal maintenance and 

repair. ApoE binds to several receptors on the cell surface, 

which are involved in lipid delivery and transport, glucose 

metabolism, neuronal signaling, and mitochondrial function. 

Normally, ApoE binds to Abeta peptide and play a role in 

its clearance.141

Two polymorphic sites, located at codon 112 and 

158, have been described in the human APOE gene. At 

least three main variations of the APOE gene have been 

identified, called “E2,” “E3,” and “E4” alleles. E3 was 

defined as a normal allele with Cys at codon 112 and 

Arg at codon 158. Two other APOE alleles have been 

described, the E2 and E4 alleles, which carry Arg158Cys 

and Cys112Arg polymorphisms, respectively.142,143 Six dif-

ferent genotypes can be distinguished with the following 

combinations: homozygous – E4/E4, E3/E3, and E2/E2 

– and heterozygous – E2/E3, E2/E4, and E3/E4 (Table 2). 

E3 is the most common variant (77%), while E2 (8%) and 

E4 (15%) alleles have been detected less frequently. Higher 

frequencies of the E4 allele have been found among AD 

patients, and increased risk of AD can be found in patients 

with both homo- and heterozygous alleles.141 The pathogenic 

nature of the E4 allele might be associated with the struc-

tural change of ApoE protein. ApoE protein has two major 

functional domains: a 22  kDa N-terminal and a 10  kDa 

C-terminal domain, connected by a hinge region. The E4 

allele can promote domain interactions through the altered 

orientation of Arg61 in the N-terminal domain. Arg112 can 

interact with the Glu255 in the C-terminal domain, resulting 

in structural changes to ApoE protein, neuronal death, and 

neurodegeneration. Mouse experiments revealed that the 

mutation of Arg61 to Thr, or of Glu255 to Ala, may reduce 

the domain interactions.144–148 Figure 4 shows the differences 

between the E3 and E4 alleles.

The prevalence of the E2 allele has been found to be sig-

nificantly lower in individuals with dementia.148 E2 allele was 

suggested to be protective against AD.145 Further, APOE E2 

and E3 may participate in neuronal maintenance and repair.145 

A Korean study detected significant correlation between 

the APOE E4 allele and AD.149 Genotyping analysis was 

performed in a group of AD patients and healthy individuals 

(controls). The allele and genotype frequency were compared 

using chi-square and Fisher’s exact tests. The frequency of 

the APOE E4 allele in the EOAD and LOAD groups was 

significantly higher than in the control group. However, the 

study failed to find any difference in the E2 allele between AD 

patients and controls. These findings suggest that the E2 allele 

might not play a protective role against AD in Korea.149

Genome-wide association studies (GWASs) have iden-

tified novel genes that might be associated with LOAD. 

Recently, SNP arrays have been developed and used for the 

analysis of several genes and SNPs. GWASs have been suc-

cessfully applied to complex polygenic disorders, such as 

diabetes and macular degeneration.150,151 Several papers have 

been published on the association between AD and different 

genes or alleles. Bertram et al have created a publicly avail-

able, constantly updated, database summarizing the poten-

tial genes that may be related to AD (http://www.alzgene.

org).152 Systematic meta-analyses were performed for each 

polymorphism with all genotype data described for them. At 

least three case-control samples were tested. This database 

collected all potential genes that may be involved in AD 

onset, thus is a powerful tool to further the understanding of 

AD genetics. Additionally, it may be considered a model for 

tracking gene candidates in other polygenic disorders.152,153

Clusterin (CLU) is a major inflammatory-related apoli-

poprotein (Apolipoprotein J; ApoJ) that is expressed in all 

mammalian tissues. Clusterin may play a protective role 

against apoptosis, cell damage, or oxidative stress. Clusterin 

expression has been found to be upregulated in the brains of 

AD patients.154 Animal models have suggested it might be 

secreted with soluble Abeta. Clusterin can act as a molecular 

chaperon, which might prevent Abeta oligomerization and 

fibrillization.151 GWASs have determined a strong associa-

tion between CLU mutations (located on chromosome 8) and 

LOAD. Additionally, a significant association has been found 

between the APOE E4 allele and CLU mutations.154,155

The complement receptor 1 (CR1) gene, located on 

chromosome 1, encodes the receptor for C3b complement 
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Table 1 The known Alzheimer’s disease risk-factor mutations in APP and PSEN1–2

Gene Exon SNP Country/countries References

APP 17 Ala692Gly The Netherlands, Belgium 17,29
Glu693Gln The Netherlands 30

Glu693Gly Arctic, USA 31

Glu693del Japan 16

Ala713Thr France, Italy, Spain 32

Thr714Ala Iran 33

Thr714Ile Austria 34

Val715Met Britain, France, Korea 21,26,36

Val715Ala Germany, UK 13,36

Ile716Val USA, UK 36

Ile716Phe Spain 37

Ile716Thr Italy 14

Val717Ile UK, Germany, Japan 38,39

Val717Leu USA, Belgium, Germany 40

Ile718Leu China, Taiwan 41

Leu720Ser China, Taiwan 41

Val710Gly China, Taiwan 41

Val717Phe USA 42

Val717Gly UK, France 43

Leu723Pro Australia 44

Lys724Asn Belgium 45

16 Asp678Asn Japan 46

Lys670Asn Sweden 15

Met671Leu Sweden 15

Glu682Asn Belgium 47

PSEN1 4 Ala79Val Belgium, Germany 48–50
Val82Leu France 51
Met83del UK 52
Leu85Pro Japan 53
Val89Leu Spain 54
Cys92Ser Italy 14,55
Val94Met Colombia 56
Val96Phe Japan 57
Val97Leu China 58 
Phe105Ile France 59
Phe105Val Spain 60
Phe105Leu Germany 49
Leu113Gln Germany 42
Leu113Pro France 61

PSEN1
PSEN1
PSEN1

IVS4 InsTAC USA, UK 50
5 Tyr115His France 49

Tyr115Cys Canada, Belgium, UK 48
Thr116Asn Denmark, France, Italy 37,60 
Thr116Ile France, Italy 60,62 
Pro117Ala France, USA 63
Pro117Ser USA 64 
Pro117Arg Poland, Spain 60,65 
Pro117Leu Poland, Italy, USA 66 
Glu120Lys Denmark, USA 67 
Glu120Gly Spain 60 
Glu120Asp USA, France, Israel 51,59
Asn135Asp USA 68
Asn135Ser Germany, USA 42 
Ala136Gly China 58 

(Continued)
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Table 1 (Continued)

Gene Exon SNP Country/countries References

Glu123Lys Japan 69 
Met139Val USA, Finland, Denmark, Germany,  

Poland, Sweden
65,67

Met139Lys France 70
Met139Thr France, Spain 51 
Met139Ile Korea, USA 71 
Ile143Phe UK 72
Ile143Thr France, Japan, Columbia 50,56
Ile143Val Italy 73
Ile143Met South Africa 14
Ile143Asn France 59
Met146Leu Italy, USA, France, Canada 21,42
Met146Val Sweden, Canada 50
Met146Ile Denmark, UK, Sweden 36,50 
Thr147Ile France 21
Leu153Val France, UK 36
Tyr154Asn Japan 74 
Tyr154Cys UK 36
InsFI Canada, Italy 50

6 His163Tyr Sweden, UK 75 
His163Arg Korea, France, Japan 8,26,76
His163Pro Korea 77 
Trp165Gly Japan 78
Trp165Cys France 21
Leu166del UK 79 
Leu166His Italy 80
Leu166Pro Germany 81
Leu166Arg Spain 82
Ile167del UK 36
Ile168del UK 36
Ser169Pro Spain 82
Ser169Leu Japan 83
Ser169del China 84
Ser170Phe USA, Italy, Poland 85
Leu171Pro UK, Mexico 36
Leu173Trp France 21 
Leu173Phe Japan 86 
Leu174Met Italy 14
Leu174Arg Germany 87
Phe177Leu France, Canada 50
Phe177Ser Canada 50
Ser178Pro Canada 50 
Gly183Val Belgium 88 

7 Glu184Asp Japan, UK 89
Val191Ala Spain, Africa, USA 37
Gly206Ser Korea, France, Canada 35,50 
Gly206Asp France 59
Gly206Ala Spain, Canada 50 
Gly206Val USA 90
Gly209Arg Japan 91
Gly209Glu Canada 50 
Gly209Val USA 92 
Ser212Tyr USA 93
Ile213Leu Canada 50
Ile213Pro Poland 65
Ile213Thr Japan 57
His214Asp Spain 37

(Continued)
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Table 1 (Continued)

Gene Exon SNP Country/countries References

His214Tyr France 59
Gly217Arg USA 94 
Gly217Asp Japan 95
Leu219Phe Italy 14
Leu219Pro Australia 96 
Gln222Arg Canada 50 
Gln222His USA 97
Gln223Arg Germany 98 
Leu226Phe Poland, Spain 99
Leu226Arg USA 100
Ile229Phe UK 36
Ala231Thr France, Canada 21,50
Ala231Val Belgium 48
Met233Val USA 101 
Met233Thr France, Australia, Korea 21,35,50 
Met233Leu Italy 102 
Met233Ile France 103
Leu235Val UK 36
Leu235Pro France 21,50
Phe237Ile Japan 104
Phe237Leu UK 36
Lys239Asn Spain 105
Thr245Pro USA 106
Ala246Glu Poland, Canada 107
Leu248Arg Spain 93
Leu250Val Japan 108
Leu250Ser USA, UK 67
Tyr256Ser USA 97

Ivs8-Ivs9 9del UK, USA, Japan 14,109
9del Finland 110

IVS8 c.869-22_869-23ins18 France 111
8 Ala260Val Canada, Japan, UK, USA 25,36,112

Val261Leu Spain 60,113
Val261Phe Canada 50
Leu262Phe Sweden 114
Cys263Arg Italy 115
Cys263Phe UK, Belgium 36
Pro264Leu France, USA 21,59
Gly266Ser Japan 116,117
Pro267Ser Sweden, UK 67
Pro267Leu Poland 107
Arg269Gly Spain, UK 118
Arg269His Japan, Spain, UK 26,60
Leu271Val Australia 119
Val272Ala Spain 93
Glu273Ala Japan 26
Thr274Arg Canada 50
Arg278Thr Australia 120
Arg278Ser UK 121
Arg278Lys Italy 122
Arg278Ile UK 123
Glu280Ala Japan, Australia, Sweden, Britain 120
Glu280Gly France, Sweden, Britain, USA 25,60
Leu282Val Belgium 124
Leu282Phe Japan 125
Leu282Arg Spain 60
Pro284Leu Japan 109

(Continued)
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Table 1 (Continued)

Gene Exon SNP Country/countries References

Ala285Val Japan, Canada 126
Leu286Val Japan, Canada 127
Leu286Pro Spain 128

9 Thr291Pro France 111
10 Arg358Gln Canada 50

Ser365Ala Spain 93
11 Arg377Met UK 36

Gly378Glu Germany, Japan 127
Gly378Val Australia 36
Leu381Val Japan, Bulgaria, 129
Gly384Ala Japan, Belgium 26,130
Phe386Ser France 59
Ser390Ile France 21
Val391Phe France 21
Leu392Val France, Japan 21,127
Leu392Pro Italy 14
Gly394Val Canada, Italy 50
Asn405Ser Japan 131
Ala409Thr Italy 102
Cys410Tyr France, Canada 21

12 Leu418Phe Canada 50
Leu420Arg USA 132
Leu424Val Spain 133
Leu424Phe Bulgaria 14
Leu424His France, Poland 59,99
Leu424Arg Poland 107
Ala426Pro USA 92
Ala431Glu USA 50
Ala431Val Japan 134
Ala434Cys Canada, USA 50
Leu435Phe Canada 50
Pro436Ser UK 72
Pro436Gln The Netherlands 135
Ile439Ser Spain 60
T440del Japan 29

PSEN2 4 Arg71Trp Spain 37
Ala85Val Spain 136

5 Thr122Pro Germany 42,49
Asn141Ile Germany, Canada 25,42
Vall148Ile Spain 137

6 Met174Val Spain 93
Ser175Cys Italy 138

7 Gln228Leu Poland 65
Met239Val Italy 25
Met239Ile Germany 139

12 Thr430Leu Spain 82
Asp439Ala Spain 82,140

Notes: Underlined mutations were discovered in Asia; emboldened mutations were discovered in Korea. Reproduced from Cruts M, Theuns J, Van Broeckhoven C. 
Locus-specific mutation databases for neurodegenerative brain diseases. Hum Mutat. 2012;33(9):1340–1344.14 © 2012 Wiley Periodicals, Inc.
Abbreviations: APP, amyloid precursor protein; PSEN, presenilin; SNP, single-nucleotide polymorphism.

protein. CR1 and C3b can be involved in Abeta clearance and 

in the prevention of Abeta aggregation. Risk-factor muta-

tions for LOAD have been found in CR1 (rs6656401 and 

rs3818361).155 The functional role of CR1 mutations in AD 

pathogenesis is not determined yet, and further studies are 

needed to find out the effect in Abeta deposition.155,156

Phosphatidylinositol binding clathrin assembly protein 

(PICALM or CALM), located on chromosome 11, may be a 

putative LOAD risk-factor gene. PICALM can play a role 

in APP endocytosis and Abeta generation. Additionally, 

its overexpression may increase Abeta cleavage and 

aggregation.157 Harold et al found strong association between 
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The low-density lipoprotein receptor-related protein 6 

(LRP6) gene on chromosome 12 is expressed as a co-receptor for 

Wnt signaling. Defects in Wnt signaling have been validated as 

risk factors for neurodegenerative disorders such as schizophre-

nia, autism, and AD. Wnt signaling proteins, such as beta-catenin 

or glycogen synthase kinase 3 beta, can form complexes with 

presenilins, which suggests they might play an important role 

in Abeta processing and neurotoxicity. Genetic linkage studies 

have suggested an association between LOAD and chromosome 

12. Polymorphisms in LRP6 might result in abnormalities in 

plasma ApoE catabolism and in Wnt signaling.163

The cadherin-associated protein alpha 3 (CTNNA3) 

gene located on chromosome 10 encodes alpha-T catenin, 

which can be involved in AD pathogenesis by binding 

to beta-catenin and interacting with PS1. Miyashita et al 

identif ied seven putative LOAD risk-factor polymor-

phisms located at intron 9 of CTNNA.164 Polymorphisms in 

CTNNA3 have shown significant association with LOAD 

in female patients, who carried the APOE E3 allele, but 

not the E4.164,165

Growth factor receptor-bound protein 2-associated-binding 

protein 2 (GAB2) molecules are intracellular docking or scaf-

folding molecules. GAB2 can be involved in several signal 

transduction processes, associated with cell growth, survival, 

differentiation, and apoptosis. GAB2 might play a role in the 

suppression of Tau phosphorylation and in neurofibrillary 

tangles (NFTs) formation. Reiman et  al detected six SNPs 

in GAB2 (chromosome 11) which might be associated with 

LOAD.166 Interaction was found between GAB2 haplotypes and 

the APOE E4 allele.166–168

APOE
E4

Other
genetic
factors

Nongenetic
factors

Altered
Abeta
production

Inflammation

Abeta
aggregation

Less Abeta
clearance

AD

Figure 3 Factors involved in late-onset Alzheimer’s disease (AD). 
Abbreviations: Abeta, amyloid beta; APOE, apolipoprotein E.

Table 2 The six genotypes of the apolipoprotein E (APOE) gene

Alleles Polymorphisms
Homozygous E2/E2 Cys 112, Cys 158

E3/E3 Cys 112, Arg158
E4/E4 Arg112, Arg158

Heterozygous E2/E3 Cys112, Cys158, Arg158
E2/E4 Cys112, Cys158, Arg112, Arg158
E3/E4 Cys112, Arg112, Arg158

Note: Data from Rihn et al.143

two polymorphisms in PICALM and LOAD. Rs561655 

is located within a transcription factor-binding site, and a 

silent mutation, rs592297, may be involved in the alterna-

tive splicing.158 Other SNPs in PICALM have also been 

suggested to be involved in LOAD, such as rs3851179 and 

rs541458.158

Sortilin-related receptor (SORL1) on chromosome 

11q23-24 may be involved in Abeta recycling. The under-

expression of SORL1 can increase Abeta generation. Intronic 

polymorphisms, located near the 3′ end of the SORL1 coding 

region, might be associated with AD.159,160

A poly-T repeat (rs10524523) was identified in exon 6 of 

the translocase of outer mitochondrial membrane 40 homolog 

(TOMM40; chromosome 19) gene that can be associated with 

an earlier age of onset of LOAD in patients with APOE E3/E3 

and E3/E4 alleles. Cruchaga et al suggested that TOMM40 and 

other mitochondrial enzymes might be involved in the onset 

of LOAD.161

Bridging Integrator 1 (BIN1; chromosome 2) is a 

tumor suppressor gene that can be involved with protein 

for vesicle trafficking. Mutations in BIN1 may be associ-

ated with autosomal recessive centronuclear myopathy. 

Caenorhabditis elegans experiments have suggested that 

BIN1 protein might have a role in trafficking APP, ApoE 

proteins, and Abeta through the endolysosomal pathways, 

thus BIN1 mutations may be a putative risk factor for 

LOAD.162

A

APOE E3 allele APOE E4 allele
C terminal domain

C terminal domain

No interaction
between C and N
terminal domain

N terminal domain N terminal domain

Arg61
Arg61

Arg112
Cys112

Glu 255

Glu 255

B

Figure 4 The difference between apolipoprotein E (APOE) protein E3 allele (A) and 
APOE E4 allele (B). The pathomechanism of the APOE E4 allele could be based on 
the interaction between Arg112 and Glu255.
Notes: Reproduced with permission from Mahley RW, Huang Y. Alzheimer 
disease: multiple causes, multiple effects of apolipoprotein E4, and multiple 
therapeutic approaches. Ann Neurol. 2009;65(6):623–625.144 Copyright © 2009 
American Neurological Association. Reproduced with permission from Mahley RW, 
Weisgraber KH, Huang Y. Apolipoprotein E4: a causative factor and therapeutic 
target in neuropathology, including Alzheimer’s disease. Proc Natl Acad Sci U S A. 
2006;103(15):5644–5651.146 Copyright (2006) National Academy of Sciences, USA.
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Dynamin-binding protein (DNMBP) or Tuba protein plays 

a role in the transport of dynamin to the actin regulatory pro-

teins. A Belgian study found a significant association between 

two SNPs (rs3740057 and rs10883421) in the 3′ region of the 

DNMBP (chromosome 10) gene and LOAD.169

The A disintegrin and metalloproteinase domain-

containing protein 10 (ADAM10; chromosome 15) gene 

encodes the major brain alpha secretase. Alpha secretase cleav-

age can prevent Abeta formation and aggregation, and increase 

Abeta clearance. In vitro and in vivo studies have shown that 

two mutations (Gln171Gly and Arg181Gly) in the pre-domain 

region of ADAM10 may be associated with AD.170

ATP-binding cassette transporter A7 (ABCA7), located 

on chromosome 19, is a recently discovered potential risk 

factor for AD. ABCA7 protein, which is highly homologous 

to ABCA1, may be involved in the synthesis and transport 

of high-density lipoprotein cholesterol and generate phos-

pholipid and cholesterol efflux from the cells. It can also 

play a key role in sterol homeostasis and in the host defense 

system.171,172 The two variants (rs3752246 and rs3764650) in 

ABCA7 have been suggested to be associated with LOAD.171 

Rs3764650 is located in intron 13, and rs3752246 is a 

missense mutation in exon 32 (Gly1527 Ala).171 Recent 

findings have revealed an additional SNP (rs115550680) 

that might be involved in LOAD in African-Americans. 

Since ABCA7 plays a role in the lipid metabolism as well 

as in APP transport, mutations in ABCA7 gene might be 

involved in LOAD.173

Recent GWASs have revealed that triggering receptor 

expressed on myeloid cells 2 (TREM2), located on chromo-

some 6 can be involved in AD, especially in LOAD. TREM2 

is a member of immunoglobulin family, and it contains a 

single variable domain. TREM2 is located on the membrane 

of several immune cells, such as macrophages and dendritic 

cells. Its main ligand is DNA clamp loader is Replication 

Factor C-activating protein of 12 kilodaltons (DAP12), 

which can be involved in downstream signaling. Functions of 

TREM2 protein can include the clearance of apoptotic cells 

and immunosupression.174 In an Icelandic population, a rare 

variant (Arg47His) has been suggested to increase the risk 

of impairment in inflammation, leading to LOAD.175 Other 

variants located in exon 2 have been shown higher percent-

age in AD patients, such as Glu33X or Asp87 Asn. AD, 

associated with TREM2 can be associated with chronic brain 

inflammation with aberrations in microglial phagocytosis or 

inflammatory pathways.176

Cluster of differentiation 33 (CD33; chromosome 19) is 

a 67 kDa transmembrane glycoprotein that is expressed on 

the surface of myeloid progenitor cells, mature monocytes, 

and macrophages. It can function as a lectin, a carbohydrate-

binding protein, which inhibits cellular activity. The CD33 

locus is related to altered monocyte function, which suggests 

it can be involved in innate immunology, leading to AD 

progression. Rs3865444 can be associated with elevated 

CD33 expression, leading to cognitive decline and AD. 

Mutations in CD33 can be associated with disturbances 

in myeloid function and amyloid pathology, thus may be 

involved in the progression of early AD.177

Methods of detecting mutation
PCR-based methods can be performed for monitoring the 

mutations in the AD risk factor genes (Figure 5).178 Genomic 

DNA can be extracted from total blood, buffy coat (white 

blood cells), bone marrow, or cell cultures, using a specific 

extraction kit. DNA should be amplified by specific primers, 

designed for the AD risk-factor genes such as APP, PSEN1, 

PSEN2, and APOE.6–8,22,26 Several mutation detection meth-

ods have been developed, such as restriction fragment length 

polymorphism (RFLP), single-strand conformation poly-

morphism (SSCP), denaturing gradient gel electrophoresis 

(DGGE), temperature gradient gel electrophoresis (TGGE), 

and heteroduplex analysis. RFLP is based on the recognition 

of a specific cleavage site and can be used for genetic map-

ping and linkage analysis. To identify the polymorphisms in 

the PCR products, the amplicons should be sequenced.178

Methods based on the conformational 
changes of single-stranded DNA
DGGE is a rapid, commonly used method for mutation 

detection. The technology is based on the mobility of 

Genetic testing

Direct

Identification of a specific
mutation

RFLP, microarray, allele-
specific PCR

Indirect (tracking)

Polygenic disorders,
where the gene/mutation

was not well defined

SSCP, DGGE, TGGE,
heteroduplex analysis

Figure 5 Polymerase chain reaction (PCR)-based genetic methods.
Abbreviations: DGGE, denaturing gradient gel electrophoresis; RFLP, restriction 
fragment length polymorphism; TGGE, temperature gradient gel electrophoresis; 
SSCP, single-strand conformation polymorphism.
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dsDNA
(PCR product)

ssDNA1

WT Mutant

ssDNA2

Denaturation:
formation of

ssDNAs
Neutral
PAGE

Figure 6 The single-strand conformation polymorphism process. After denaturation 
of the polymerase chain reaction (PCR) product, the conformation of single-stranded 
DNA (ssDNA) could be different, resulting in altered mobility in polyacrylamide gel. 
Abbreviations: dsDNA, double-strand DNA; PAGE, polyacrylamide gel 
electrophoresis; WT, wild type.

A B

DC

Control Patient

SNP Mismatch

Homo- and
heteroduplexes

Control

Nuclease and enhancer

Patient

Figure 7 The basic steps of genotyping with Surveyor® Nuclease (Transgenomic, Inc, Omaha, NE, USA). After mixing the polymerase chain reaction amplicons of healthy 
control and patient (A), hybridization should be performed, resulting in homo- and heteroduplex formation (B). Treatment with Surveyor Nuclease cleaves the DNA at the 
mismatch site (C). Cleavage products can be separated by electrophoresis (D). 
Abbreviation: SNP, single-nucleotide polymorphism.

double-stranded DNA in polyacrylamide gel containing lin-

early increasing concentrations of denaturing chemicals.179,180 

SSCP is a simple PCR-based mutation detection method. 

The mobility of double-stranded PCR fragments depends on 

the size of the DNA, since the polymorphisms might result 

in the altered mobility of single-stranded DNA by chang-

ing its conformation (Figure 6). The PCR products should 

be denatured by heat and formamide, followed by neutral 

polyacrylamide gel electrophoresis.181,182

Heteroduplex analysis with Surveyor® 
Nuclease
Surveyor Nuclease (Transgenomic, Inc, Omaha, NE, USA) 

is a plant (celery) endonuclease that cleaves double-stranded 

DNA at mismatch sites, including SNPs, insertions, and 

deletions. A novel PCR-based mutation detection method 

has been developed by Transgenomic. The process has four 

main steps: 1) amplification of target DNAs from patients 

and healthy controls; 2) hybridization of normal DNA 

with the DNA of the patient; 3) digestion of homo- and 

heteroduplexes by Surveyor Nuclease; and finally, 4) sepa-

ration of cleavage products by standard gel electrophoresis 

or high-pressure liquid chromatography (Figure  7). This 

method may be promising in molecular diagnosis, and it 

has been successfully used for the identification of genetic-

based disorders.183–185
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APOE genotyping
Allele-specific, multiplex PCR has been developed for 

APOE genotyping, with common and specific inner prim-

ers for polymorphism detection at codons 112 and 158. The 

agarose electrophoresis pattern can show the homozygous 

and heterozygous genotypes of E2, E3, and E4 alleles.186 

Various kits have been designed for APOE PCR genotyping. 

One of the most frequently used kits is the LightCycler® ApoE 

Mutation Kit by Roche Diagnostics (Basel, Switzerland).187 

PCR-RFLP is a widely used, simple and fast method for 

APOE genotyping. The genomic DNA should be amplified 

with specific primers, followed by HhaI digestion. The 

samples can be separated in 8% polyacrylamide (PAGE) gel, 

and visualized with fluorescent dye.188

Future insights into AD genetics: 
from GWASs to next-generation 
sequencing (NGS)
Since AD is a genetically heterogeneous disorder, GWASs 

have been performed for identification of novel disease risk-

factor loci. Several genes and mutations have been tested to 

find association with disease-related phenotypes, such as 

changes in biomarker levels and/or neuropathology.189 Sanger 

sequencing is a widely used technology, but it has limitations 

in terms of cost, speed, and efficacy. High-throughput or NGS 

technologies are recent hot topics in genomic research of 

animals and humans. NGS technologies included sequenc-

ing by synthesis, ligation, or hybridization; single-molecule 

sequencing; nanopore sequencing; and colony sequencing. 

NGS technologies provide fast and cost-effective sequencing 

strategies that can be used in various genetic applications; 

for example, in high-throughput mutation detection, small 

RNA detection, or the monitoring of epigenetic changes. The 

most well-known NGS technologies have been developed by 

Illumina (and Solexa, Inc, purchased by Illumina in 2007; 

San Diego, CA, USA), Helicos BioSciences (Cambridge, 

MA, USA), ABI/SOLiD, and 454  Life Sciences (a sub-

sidiary of Roche; Branford, CT, USA) and use a single-

molecule template for mutation detection with cloning-free 

approaches.190,191

Jin et al performed pooled DNA sequencing with APP, 

PSEN1, PSEN2, progranulin (PGRN) and microtubule-

associated Tau protein (MAPT) genes that was applied 

in a large population for monitoring rare human-specific 

mutations.192 Samples were collected from selected groups 

of patients and pooled in complex mixtures with negative 

control samples (validated as wild-type alleles). The mixes 

were then sequenced by NGS analyzers. The sequencing 

data were mapped back to the sample and to the control as 

reference. The pooled sequencing analysis detected PGRN 

and MAPT mutations in patients with clinically diagnosed 

AD. These findings show that the clinical phenotype of 

amnesic frontotemporal dementia and that of AD may be 

similar, and the overlapping symptoms can result in difficul-

ties in the disease diagnosis. Complex genetic analysis might 

improve the diagnosis of neurodegenerative disorders.192,193

It has been suggested that the development of the human 

brain depends on the level of transcription. Alterations in 

transcription regulation are responsible for the unique gene 

expression patterns in the brain. Aging is the main risk factor 

for AD, but normal aging itself can result in only a low degree 

of neuronal loss. Alternative splicing and gene expression 

may be involved in AD pathogenesis. Microarrays are widely 

used for transcriptome analysis, but their accuracy might be 

limited because of mistakes in hybridization. Transcriptome 

studies have been performed in animals, various cell lines, 

cells derived from AD patients, and in postmortem brain 

tissues. Twine et al performed a whole-transcriptome analysis 

in different regions of an AD brain.194 Illumina RNA-Seq 

analysis was used for whole-transcriptome profiling. This 

study provided a possible insight into the changes in gene 

expressions and alternative splicing. NGS can produce digital 

signals directly from the complementary DNA, decrease the 

risk for false-positive data, and correspond to the existing 

genomic sequence.194,195

Conclusion
AD is the most common form of senile dementia, but it can 

sometimes be difficult to distinguish heterogeneous neuro-

degenerative disorders, such as frontotemporal dementia, 

dementia with Lewy Bodies, Parkinson’s disease, and 

Creutzfeldt–Jakob disease.5 AD is a complex disorder, so 

several genes on different chromosomes could be involved in 

its onset. Finding the potential genes involved in AD progres-

sion is an essential step in molecular diagnosis. Genetic testing 

should be important to understand the mechanisms and path-

ways leading to neurodegeneration and disease symptoms. It 

is believed that disease-modifying therapies are more likely 

to be effective in the earlier stages of AD, especially before 

the clinical symptoms appear. Genetic testing in the family 

members of patients should also be important to predict the 

risk for disease onset in the future. Using disease markers with 

genetic testing together may provide more effective disease 

diagnosis. In addition, the discovery of novel genes may pro-

vide more information on AD-related pathways.9,25,196,197
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Genetic analysis can improve the differential diagnosis 

of neurodegenerative dementias. Standard Sanger sequenc-

ing is still a widely used technology, but can be costly and 

time consuming. NGS technologies offer a faster, less 

expensive approach, not only for mutation detection but 

also for transcriptome analysis or epigenetics.198 Several 

loci have been identified that might be involved in both 

familial and sporadic forms of neurodegenerative disorders. 

Understanding the complete genetic mechanisms of AD 

can provide additional information about the patho-

logical mechanisms of neurodegeneration. GWASs and 

NGS studies may improve the prevention and treatment 

of AD.199
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