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Abstract: Paclitaxel (Taxol), one of the most important anticancer drugs, has been used for 

therapy of different types of cancers. Mechanistically, paclitaxel arrests cell cycle and induces cell 

death by stabilizing microtubules and interfering with microtubule disassembly in cell division. 

Recently, it has been found that low-dose paclitaxel seems promising in treating non-cancer 

diseases, such as skin disorders, renal and hepatic fibrosis, inflammation, axon regeneration, 

limb salvage, and coronary artery restenosis. Future studies need to understand the mechanisms 

underlying these effects in order to design therapies with specificity.
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Introduction
Taxol, a natural diterpene alkaloid (Figure 1), was originally isolated from the bark 

of Taxus brevifolia tree in the western region of the United States. When it was 

commercially developed by the Bristol-Myers Squibb (BMS; New York, NY, USA) 

Taxol was renamed to paclitaxel. Melting point of paclitaxel is around 216°C–217°C, 

and it has highly lipophilic, low water solubility; higher protein binding rate; and mainly 

disturbs the structure of the inner part of the cell membrane.1,2 The role of paclitaxel 

has been the subject of study on anticancer agents for almost half a century. It is one 

of the most widely used anticancer drugs, and has been used for the treatment of vari-

ous cancers from metastatic breast cancer, advanced ovarian cancer, non-small-cell 

lung cancer, to Kaposi’s sarcoma.3,4 Recent studies, however, have demonstrated using 

low-dose paclitaxel to treat non-cancer human diseases, such as skin disorders, renal 

and hepatic fibrosis, inflammation, axon regeneration, limb salvage, and coronary 

artery restenosis5–12 (Figure 2).

Basic mechanism of the anti-cancer  
effect of paclitaxel
Paclitaxel belongs to the family of cytoskeletal drugs that target tubulin. As a result, 

paclitaxel treatment leads to abnormality of the mitotic spindle assembly, chromosome 

segregation, and consequently defects of cell division. By stabilizing the microtubule 

polymer and preventing microtubules from disassembly, paclitaxel arrests cell cycle 

in the G
0
/G

1
 and G

2
/M phases and induces cell death in cancer13–14 (Figure 3). It has 

been known that inhibition of mitotic spindle using paclitaxel usually depends on its 

suppression of microtubule dynamics.15 However, recent studies demonstrated that 

only low-dose paclitaxel can do so, in contrast, high-dose paclitaxel might suppress 
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microtubule detachment from the centrosomes.16 The bind-

ing site for paclitaxel has been identified to be the subunit of 

beta-tubulin.17 Paclitaxel has other mechanisms of action than 

for microtubule targeting. Panis et al18 found that the breast 

cancer patients after acute paclitaxel treatment exhibited 

immunosuppressive status by a strong type 2 helper T-cell 

(Th2) profile demonstrated by high levels of interleukin (IL)-

10. Alexandre et al19 and Hadzic et al20 reported paclitaxel 

induced reactive oxygen species generation by enhancing 

the activity of  nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase, which contributed to the potent antican-

cer activity of paclitaxel. The antineoplastic mechanisms to 

the non-chemotherapeutic use of paclitaxel were found. For 

example, Sevko et al21,22 reported that paclitaxel enhanced the 

efficacy of chemotherapy by blocking the immunosuppres-

sive potential of myeloid-derived suppressor cells. Gan et al23 

discovered that paclitaxel inhibited the androgen receptor by 

inducing nuclear accumulation of FOXO1 (forkhead box pro-

tein O1) as one of the anticancer mechanisms (Figure 3).

Treatment of fibrotic diseases
Transforming growth factor-beta (TGF-β) is one of the most 

important profibrotic growth factors, which can bind to and 

activate cell surface-specific receptors and in turn promotes 

diverse cellular responses. The activated TGF-β receptors 

activate mothers against decapentaplegic homolog (Smad)2 

and Smad3 proteins, which further form a protein complex 

with Smad4. This protein complex then translocates from the 

cytoplasm into the nucleus to regulate the transcription of target 

genes.24 It has been reported that in some cell lines, binding 

of endogenous Smad2, Smad3 and Smad4 to microtubules 

negatively modulates TGF-β activity.25 Paclitaxel, by stabilizing 

microtubules, may therefore be inhibitory to TGF-β signaling in 

fibrosis (Figure 4). Interestingly, low-dose paclitaxel has been 

shown to inhibit collagen-induced arthritis, hepatic fibrosis, and 

fibrosis associated with systemic sclerosis in severe combined 

immunodeficiency (SCID) mice.5–6,26 In kidneys, Zhang et al7 

reported that low-dose paclitaxel (0.3 mg/kg, twice a week) 

significantly reduced tubulointerstitial fibrosis in a rat model of 

unilateral ureteral obstruction. Karbalay-Doust et al27 found that 

both taurine and paclitaxel (0.3 mg/kg/d) had a renoprotective 

role in the unilateral ureteral obstruction model and the latter 

was more effective. Following subtotal renal ablation in rats, 

low-dose paclitaxel (0.3 mg/kg, twice a week) showed a signifi-

cant renoprotective role by modulating TGF-β/Smad/miR-192 

signaling.8 In respect of lungs, Wang et al28 recently reported 

that low-dose paclitaxel (0.6 mg/kg/d) reduced pulmonary 

fibrosis in rat (bleomycin) BLM-instilled pulmonary fibrosis 
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Figure 2 Reported effects of paclitaxel in non-cancer diseases.
Abbreviations: TLR-4, toll-like receptor 4; TGF-β, transforming growth factor-beta.
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Figure 3 Anti-cancer actions of paclitaxel.
Note: By stabilizing microtubules, paclitaxel arrests cell cycle in the G0/G1 and G2/M 
phases and induces cell death.
Abbreviations: ROS, reactive oxygen species; MDSCs, myeloid-derived suppressor 
cells; AR, androgen receptor.

Figure1 Chemical structure of paclitaxel.
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model. In this model, paclitaxel blocked the TGF-β1/Smad3 

pathway via up regulation of miR-140. Interestingly, low-dose 

paclitaxel (5–10 nM) also reduced stromal fibrosis in gastric 

cancer.29 High-dose paclitaxel (175 mg/mm2) may inhibit tumor 

cell proliferation, however, some cancer patients with prolonged 

paclitaxel (175 mg/mm2) treatment suffered from scleroderma-

like changes or pulmonary fibrosis.30–33 These results suggest 

that low-dose paclitaxel has the potential to treat or prevent 

tissue fibrosis in experimental animal models, but more work 

is needed to carefully assess the effect in human patients.

Regulation of inflammation
It was reported that paclitaxel attenuated tumor necrosis 

factor (TNF)-α and thrombin-induced solute permeability, 

by enhancing the endothelial monolayer and paracellular gap 

junction formation.34,35 Paclitaxel (10, 25, and 50 µg/mL) 

also decreased leukocyte transmigration through endothelial 

monolayers by stabilization of endothelial microtubules.36 

Pretreatment with paclitaxel (5–10 M) markedly inhib-

ited chemotaxis induced by endotoxin-activated serum.37 

Moreover, paclitaxel (plasma concentration of 10 µM) was 

shown to attenuate the vascular leak and inflammation in 

lipopolysaccharide (LPS)-induced acute lung injury in a 

mouse model.9 However, the molecular mechanism under-

lying the inhibitory effect of paclitaxel on inflammation is 

not fully understood. One study indicated that, like LPS, 

paclitaxel ($5 µM) was able to activate nuclear factor-

kappaB (NF-κB) signaling in 70Z/3 pre-B cells;38 however, 

pretreatment with paclitaxel might completely inhibit 

LPS-induced NF-κB activation,38 suggesting that LPS and 

paclitaxel may share and compete for a common receptor/

signaling pathway.39,40 LPS can directly interact with toll-

like receptor (TLR)-4-associated MD-2 which has a criti-

cal role in LPS recognition.41 Of note, in murine cells and 

tissues the effect of paclitaxel is highly dose-dependent. At 

3 µM or lower concentrations, paclitaxel binds to MD-2 to 

block TLR-4 signaling and inflammation in murine cells as 

human cells; however at 3.25 µM or higher concentrations, 

paclitaxel binding to murine MD-2 promoted inflammation 

by activation of MD-2/TLR-442,43 (Figure 5). Our recent 

research demonstrated that paclitaxel at 2 µM had a sig-

nificant protective effect in kidneys by competitive binding 

to MD-2 to block MD-2/TLR-4 signaling during LPS treat-

ment, resulting in the suppression of NF-κB activation and 

pro-inflammatory cytokine production.44 Use of low-dose 

paclitaxel may therefore offer a treatment for inflammatory 

diseases including sepsis and related complications.
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Figure 4 Paclitaxel inhibits TGF-β/Smad signaling via enhancing endogenous Smad2, 
Smad3 and Smad4 binding to microtubules, and thereby ameliorates fibrosis. 
Abbreviations: TGF-β, transforming growth factor-beta; Smad, mothers against 
decapentaplegic homolog; p, phosphorylated; R-I, TGFβ receptor I; R-II, TGFβ 
receptor II.
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Figure 5 Paclitaxel inhibits inflammation by blocking TLR-4 signaling via binding to MD-2.
Notes: Binding of paclitaxel ($3.125 µM) to murine MD-2 results in the activation of MD-2/TLR-4 and promotes inflammation, whereas binding of paclitaxel to human 
MD-2, does not.
Abbreviations: TLR-4, toll-like receptor 4; LPS, lipopolysaccharide; hMD-2, human MD-2; mMD-2, mouse MD-2.
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Facilitation of axon regeneration  
in injured central nervous system
Poor regeneration of damaged axons in traumatic injuries of 

the central nervous system (CNS) usually causes permanent, 

devastating disabilities. Sengottuvel et al45 demonstrated that 

low-dose paclitaxel (1, 10, 100, and 1,000 µM) treatment 

enabled axons to regenerate without affecting the intrinsic 

regenerative state of mature retinal ganglion cells in rats.  

Furthermore, paclitaxel treatment promoted lens injury-

mediated axon regeneration by microtubule stabilization in 

the growth cone. The beneficial effects of paclitaxel were 

accompanied by a reduction of the infiltration of macrophages 

and a delay in glial scar formation at the injury site. These 

findings are supported by another study, which demonstrated 

that paclitaxel (256 ng/day) could reduce fibrotic scarring and 

enhance the capacity of axons to grow after spinal cord injury 

in rodents.10 Mechanistically, it was suggested that paclitaxel 

may reduce accumulation of some inhibitory substances 

from scar tissue by dampening TGF-β signaling.10 These 

data suggest that paclitaxel may be beneficial in facilitating 

axon regeneration in different areas of the CNS.

Paclitaxel use in critical  
limb ischemia
Critical limb ischemia (CLI) typically presents as rest pain, 

tissue ulceration, or frank tissue loss with gangrene, often 

accompanied by infection. A clinical trial tested the effect of 

local paclitaxel application on restenosis, a disease condition 

of narrowing of blood vessels leading to restricted blood 

flow. In this study, 154 patients with stenosis were randomly 

divided into three groups for treatment with balloon; bare 

balloon with paclitaxel dissolved in contrast media; or a 

paclitaxel-coated balloon (3 µg/mm2). The late lumen loss 

was significantly lower in the group treated with paclitaxel-

coated angioplasty balloons.11 Similarly, in another study, 

87 patients were randomized to bare balloon and paclitaxel 

(3 µg/mm2)-coated balloon groups. Both late lumen loss 

and target lesion revascularization were significantly lower 

in the paclitaxel-coated balloon-treated patients.46 In a third 

study, 29 patients with 32 limbs with CLI were treated by 

infrapopliteal application of paclitaxel-eluting stents (PES) 

procedures and acceptable clinical results were achieved in 

CLI, although they failed to prevent vascular restenosis and 

reduce repeat interventions.47 In a fourth study, 104 patients 

were treated with paclitaxel-eluting balloons (PEBs), com-

pared with historical data using uncoated balloons, the early 

restenosis rate of long-segment infrapopliteal disease was 

significantly lower.48 Furthermore, paclitaxel delivered by 

drug-coated balloons or drug-eluting stents enhanced dura-

bility of lower extremity endovascular procedures, and had a 

particular benefit for diabetic limb salvage.49 Mechanically, 

paclitaxel has a role in anti-proliferation and migration for 

muscle smooth cells.49 Together, these clinical trials have 

demonstrated the beneficial effect of paclitaxel in treating 

stenosis and related limb ischemia conditions.

Treatment for patients  
with coronary artery restenosis
Percutaneous coronary intervention was a major and mini-

mally invasive way to treat coronary artery disease. However, 

cell hyperproliferation of local artery after percutaneous 

coronary intervention may result in lumen narrowing,50 which 

limited the use of this technology. The recent development 

of paclitaxel was considered as one of the most promising 

ways for reducing restenosis. Paclitaxel at a dose of 175 mg/

mm2 is recommended for tumor therapy, a broad range of 

doses (1.3–10 µg/mm2) is found to be safe and efficacious 

for reducing restenosis.51 In a randomized study it was dem-

onstrated that restenosis occurred at a lower rate in patients 

with high-dose paclitaxel stents than those receiving low-dose 

paclitaxel stents at 6 months.52 After 9 months follow-up, the 

rate of angiographic restenosis was significantly reduced by 

paclitaxel-eluting stent.12 Gershlick et al53 reported that the 

angiographic indicators of in-stent restenosis were reduced 

without short-term or medium-term side effects by paclitaxel-

coated stents at a dose density of 2.7 µg/mm2. Furthermore, 

Milewski et al54 demonstrated that paclitaxel-coated balloons 

had a dose (1–3 µg/mm2)-dependent effect on the inhibition 

of neointimal proliferation. Byrne et  al55 investigated the 

efficacy among PEBs, PESs, and balloon angioplasty in 

restenosis patients; the results indicated that PEB could be 

a useful treatment. Mechanically, the smooth muscle cell 

cycle was interrupted by low dose paclitaxel via stabilizing 

microtubules, thereby arresting mitosis.53,56 However, Pires 

et al57 demonstrated high dose (53.5 µg) paclitaxel-eluting 

cuffs had adverse vascular pathology and transcriptional 

responses. Hence, low dose paclitaxel is better than high 

dose paclitaxel for reducing restenosis.

Conclusion
Recent research from both clinical trials and preclinical work 

in animal models has demonstrated the therapeutic effects 

of paclitaxel in several non-cancer diseases. While some 

of the effects depend on the tubulin-stabilizing action of 

paclitaxel, others apparently may not. Further investigation 

is needed to gain insights into the cellular and molecular 
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mechanisms of the effects of paclitaxel in various disease 

conditions. A thorough understanding of the actions and 

targets of paclitaxel within a cell would guide the design of 

therapies with efficacy and specificity. High dose paclitaxel 

induces inflammation and partly organ fibrosis, hence, before 

clinical application of paclitaxel, we need to carefully assess 

what dose is safe.
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