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Abstract: Dissolution of protein macromolecules from poly(lactic-co-glycolic acid) (PLGA) 

particles is a complex process and still not fully understood. As such, there are difficulties in 

obtaining a predictive model that could be of fundamental significance in design, development, 

and optimization for medical applications and toxicity evaluation of PLGA-based multiparticulate 

dosage form. In the present study, two models with comparable goodness of fit were proposed for 

the prediction of the macromolecule dissolution profile from PLGA micro- and nanoparticles. 

In both cases, heuristic techniques, such as artificial neural networks (ANNs), feature selec-

tion, and genetic programming were employed. Feature selection provided by fscaret package 

and sensitivity analysis performed by ANNs reduced the original input vector from a total of 

300 input variables to 21, 17, 16, and eleven; to achieve a better insight into generalization error, 

two cut-off points for every method was proposed. The best ANNs model results were obtained 

by monotone multi-layer perceptron neural network (MON-MLP) networks with a root-mean-

square error (RMSE) of 15.4, and the input vector consisted of eleven inputs. The complicated 

classical equation derived from a database consisting of 17 inputs was able to yield a better 

generalization error (RMSE) of 14.3. The equation was characterized by four parameters, thus 

feasible (applicable) to standard nonlinear regression techniques. Heuristic modeling led to the 

ANN model describing macromolecules release profiles from PLGA microspheres with good 

predictive efficiency. Moreover genetic programming technique resulted in classical equation 

with comparable predictability to the ANN model.

Keywords: poly(lactic-co-glycolic acid) (PLGA) microparticles, genetic programming, feature 

selection, artificial neural networks, molecular descriptors

Introduction
Poly(lactic-co-glycolic acid) (PLGA) microparticles play a prominent role in many 

drug formulations. PLGA is flexible and has a satisfactory safety profile. It also has 

the ability to modify the drug dissolution profile for controlled-release formulations.1 

Moreover, the drug protective properties of PLGA were found to be suitable for unstable 

active pharmaceutical ingredients (APIs).2 Therefore, PLGA has wide applications 

as an excipient.

PLGA can be formulated as films, discs, microcapsules, and nano- or micro-

spheres.3–6 The current study is focused on the formulation of PLGA nano- and micro-

spheres. One of the most studied properties of PLGA particles over the past years is the 

API release mechanism. There are often contradictory results reported in the literature, 

which demonstrate the high level of complexity of PLGA-based dosage forms. The drug 

release from the PLGA matrix is mainly governed by two mechanisms: diffusion and 
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degradation/erosion.7 The work of D’Souza and DeLuca8 and 

Mollo and Corrigan9 showed that the drug release profile can 

be divided into two stages. Initially, the release is considered 

to be diffusion-controlled, corresponding to the low amount 

of released drug. Afterwards, the drug release is controlled 

primarily by the degradation and erosion of the PLGA matrix. 

There are many factors influencing the diffusion and degrada-

tion rate of PLGA. For example, pore diameters, matrix–API 

interactions, API–API interactions, and formulation composi-

tion;10–13 however, there is, to date, no versatile quantitative 

model describing the relationships among these factors in a 

consistent, mathematical manner. Recently, Fredenberg et al 

proposed four so-called “true” drug release mechanisms 

from PLGA matrices: 1) diffusion through water-filled pores;  

2) diffusion through the polymer; 3) osmotic pumping; and  

4) polymer erosion. The release profile of large and hydro-

philic molecules, such as proteins and peptides, is mostly 

limited by diffusion through water-filled pores.7

Over the past 2 decades, there have been several publi-

cations covering the model development of the drug release 

profile from PLGA microspheres. Among the most recog-

nized are the works of Zygourakis and Markenscoff14 and 

Göpferich,15 in which Monte Carlo and cellular automata 

microscopic models were introduced. The authors used a 

two-dimensional model of the polymer matrix based on the 

physicochemical characterization to predict erosion and 

therefore the release rate of small molecules. Later, Siepmann 

et al implemented a model coupling a Monte Carlo simula-

tor with sets of partial differential equations.16 The model 

described the chemical reactions and physical mass transport 

processes involved in erosion-controlled drug release from 

PLGA beads. Nevertheless, the predictability of classical 

models (empirical/semiempirical or mechanistic models) 

has not been thoroughly assessed in many studies and the 

versatility remains questionable.14–16 A recent study by Barat 

et al17 applied Göpferich’s theory15 on multi-agent systems. 

Good agreement between modeling and experimental results 

was obtained for polymer erosion coupled with a partial dif-

ferential equation model of lysozyme release profiles from 

PLGA spheres;17 however, to the authors’ best knowledge, 

there is no general model able to predict the release rate of the 

various macromolecules from PLGA systems. Therefore, 

the design of the PLGA microsphere formulations loaded 

with macromolecules depends heavily on the trial-and-error 

approach.

The objective of this work was to demonstrate the cooperative 

use of feature selection, artificial neural networks (ANNs), and 

genetic programming (GP) to create a simple predictive model 

of the macromolecule dissolution rate from the PLGA dosage 

form, based on the gathered literature data.

Materials and methods
Data set
Data were collected from the literature. After careful screening 

of about 200 publications, release rates of 68 PLGA formula-

tions from 18 publications were selected for data extraction 

(Supplementary material Table S1). Selected PLGA formula-

tions were prepared using four methods: 1) a double-emulsion 

water-in-oil-in-water solvent extraction process; 2) a solid-in-oil-

in-water emulsion method; 3) an oil-in-oil solvent evaporation 

technique; and 4) a spray-drying process. Formulations included 

14 model substances: bovine serum albumin; recombinant 

human erythropoietin; recombinant human epidermal growth 

factor; lysozyme; recombinant human growth hormone; hen 

ovalbumin; human serum albumin; beta-amyloid; insulin; 

recombinant human erythropoietin coupled with human serum 

albumin; L-asparaginase; bovine insulin; alpha-1 antitrypsin; 

and chymotrypsin. The release profiles presented in the literature 

were manually digitized, taking mean values of the observations 

if possible. Standard deviations and/or errors were not included 

due to the manual character of the digitization and lack of this 

information in some sources. Overall there were 745 data 

records with 320 variables (Supplementary material Table S2). 

The independent parameters contained 319 inputs covering the 

formulation characteristics (PLGA inherent viscosity, PLGA 

molecular weight, lactide-to-glycolide ratio, inner and outer 

phase Polyvinyl alcohol (PVA) concentration, PVA molecular 

weight, inner phase volume, encapsulation rate, mean particle 

size, and PLGA concentration); the experimental conditions 

(dissolution pH, number of dissolution additives, dissolution 

additive concentration and production method, and dissolution 

time); and the molecular descriptors of the macromolecules 

and excipients. The molecular descriptors were computed using 

Marvin cxcalc plugin, UK (version 5.11; ChemAxon, Budapest, 

Hungary) for the drug substance as well as the excipients.18 The 

amount of the drug substance released (Q) was the only depen-

dent variable. Prior to feature selection, the initially obtained 

319  inputs were further reduced to 300  inputs by removing 

all the null and missed input during the data set preprocessing 

procedure. The data set was then processed in several ways:

•	 Noise addition to prevent models from over-fitting. The 

noised data records were produced numerically with ±5% 

amplitude for each variable value and two times more 

records number (noted in the text as “rand”),

•	 Data set split according to the tenfold cross-validation 

scheme, with the aim of excluding all the data belonging to 
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the particular formulation, thus simulating the real application 

of the model forced to predict the behavior of the unknown 

formulation (noted in the text and tables as “10cv”),

•	 Linear scaling using either the output range of ,0.2, 0.8. 

or ,−0.8, 0.8., in order to match nonlinear activation 

functions domains were used for ANNs only (noted in 

text and tables as “scale”).

Feature selection
It is considered state of the art to implement the feature 

selection technique prior to the actual modeling stage when 

dealing with multidimensional data sets. Two variable selec-

tion techniques were used to reduce redundant or irrelevant 

information gathered during data set preparation: based on 

the methodology proposed by Żurada et  al19 with further 

modification by Mendyk and Jachowicz,20 which uses ANNs 

trained with the back propagation algorithm as the model-

ing tools; and feature ranking created by the fscaret pack-

age of the R environment (The R Foundation for Statistical 

Computing, Vienna, Austria).21,22

The main parameters of the applied techniques are listed 

in Table 1. The resulting feature rankings were then inspected 

on the substantial decrease of variable significance; two cut-

off points were chosen for each method.

ANNs
Based on reduced vectors of inputs, two types of ANN model 

were obtained, namely, multi-layer perceptron artificial 

neural networks (MLP-ANNs) and monotone multi-layer 

perceptron artificial neural networks (MON-MLP) networks. 

The tools used during modeling were the Nets2012 ANN23 

simulator (developed in-house, Aleksander Mendyk, 

Jagiellonian University, Krakow, Poland), and R environment 

with the monmlp24 package for MON-MLP networks.23,24 

MLP-ANNs and MON-MLP were trained on reduced vectors 

after feature selection procedure.

MLP-ANNs
MLP-ANNs used the backpropagation training algorithm 

and were tested with activation functions such as linear 

(“lin”), logistic (“sigma”), hyperbolic tangent (“tanh”), and 

logarithmic function (“fsr”). The architecture of MLP-ANNs 

comprised one to seven hidden layers. In addition to the 

MLP-ANNs, neuro-fuzzy systems (NFs) were employed by 

adapting the simplest Mamdani type and contained from five 

to 100 nodes in the hidden layer. All models were multiple 

input/single output (MISO) type.25 Considering a tenfold 

cross-validation, a total of 3,680 models were trained in a 

single run. Each model was trained up to 10,000,000 epochs 

with several stop points. The generalization error was assessed 

in order to find the most optimal training conditions. The stop 

points were selected as 100,000, 200,000, 500,000, 1,000,000, 

1,500,000, 2,000,000, 3,000,000, 5,000,000, and 10,000,000 

epochs. The epoch size was equal to 1. Other parameters were 

as follows:

•	 momentum technique, with the momentum factor 0.3,

•	 delta-bar-delta algorithm, with the initial learning factor 

0.65,

•	 jog-of-weights technique designed to prevent getting 

stuck in the local minima of the cost function; a simple 

noise addition to the weights was performed when the 

ANN was not improving its efficiency during the 100,000 

epochs (the patience criterion).

The root-mean-square error (RMSE) was used to mea-

sure the goodness of fit and was calculated according to 

Equation 1; additionally, relative RMSEs (relRMSEs) for 

each dissolution profile were calculated (Equation 2).

	 RMSE

pred obs

n

i i
i

n

= =

−( )∑
2

1 ,
	

[1]

where obs
i
, pred

i
 = observed and predicted values respec-

tively, i  =  data record number, and n  =  total number of 

records.

	 relRMSE
RMSE

Q Qi

i

max min

=
−

⋅100%, 	 [2]

where RMSE
i
  =  RMSE for formulation i and Q

max
 and 

Q
min

 = maximum and minimum percentage of released mol-

ecule, respectively.

Table 1 Feature selection parameters used in the assay 
according to applied methods for artificial neural networks and 
fscaret

ANNs fscaret

Feature selection technique applied
Whole data set. 
Trained and tested over  
170 ANN architectures.
5M iterations.
Final ensemble based on the  
goodness of fit criterion: up to  
200% of minimum error achieved.

Whole data set. 
Time-limiting function was set 
to 2 hours for single model 
development. 
“PreprocessData” function was  
off.
The feature ranking was created  
according to the results of  
58 models.

Abbreviations: M, millions; ANN, artificial neural network.
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MON-MLP
MON-MLP networks were created and trained by the 

“monmlp.fit” function of the monmlp R package.24 Bootstrap 

aggregation was used to avoid over-fitting of models. All 

models consisted of two hidden layers with three to 32 nodes 

per layer. Two transfer functions for hidden layer modifica-

tion of hyperbolic tangent (“tansig”) and for output layer 

linear function were applied in each model. The prepared 

ensemble system consisted of ten or 20 neural networks. 

Performance of the models was assessed using RMSE. Other 

parameters were as follows:

•	 “trials” function, set to 5, was used to avoid local minima 

in ensemble,

•	 Iteration number for learning models was set to 100, 500, 

1,000, or 2,000.

GP and symbolic regression
Mathematical equations were produced by means of GP and 

the symbolic regression mode available in the rgp package of 

the R environment.26 Direct mapping of the input and output 

variables was applied. GP was performed on reduced input 

vectors after the feature selection procedure.

The parameters of the function “symbolicRegression” of 

the rgp package were set as follows:

•	 “individualSizeLimit” (the chromosome length) varied 

from 10 to 300 and was the subject of the optimization 

in regard to the RMSE (Equation 1),

•	 “populationSize” was set to 10,000,

•	 “myfunctionSet,” a set of prototype functions, was restricted 

to the simplest arithmetic operators like addition, subtrac-

tion, multiplication, and division, together with power, 

natural logarithm, square root, and exponent function,

•	 the algorithm stop condition makeFitnessStopCondition 

(RMSE) was equal 1.0,

•	 “makeTimeStopCondition” was set to 1  hour for the 

indirect and 120 hours for the direct modeling mode.

The direct mapping approach applied GP on the origi-

nal data set to create functional relationships between the 

amount of the macromolecule released (Q) and the vector 

of parameters containing the time variable (t), formulation 

characteristics, and molecular descriptors.

Although GP provides the model with optimized values of its 

parameters, to achieve better generalization, the multivariate opti-

mization of equation parameters was applied using the optimx 

package (The R Foundation for Statistical Computing).27

Parameters used for the “optimx” function were:

•	 “par” – initial value for the parameters was set to 0.1,

•	 “all.methods” was set to “true”, which means that all 

available (and suitable) methods were used,

•	 “follow.on” was set to “false.” All optimization methods 

were used separately.

Fitting was performed in the mode of tenfold cross-

validation. The latter procedure was done with the same 

training/testing data sets as for MLP and MON-MLP ANNs 

in order to compare the two systems’ generalization abilities. 

The selection criterion for the parameters was the model 

goodness of fit expressed as the RMSE obtained on the 

training data set.

The outline of the workflow, in conjunction with some of 

the results of feature selection, is presented in Figure 1.

Hardware environment
All calculations were performed using 21 professional 

workstations equipped mainly with Xeon central process-

ing units (Intel Corporation, Santa Clara, CA, USA) with 

a total of 120 cores and at least 16 GB of RAM operating 

on the openSUSE 12.3 (x86_64) operating system (SUSE, 

Nürnberg, Germany).

Results and discussion
Feature selection
According to the feature ranking created by ANNs and 

fscaret, four reduced input vectors containing 21, 17, 16, and 

eleven independent variables were selected. The resulting 

input vectors for 17 and eleven independent variables, which 

yielded the best results for GP and ANNs, respectively, are 

shown in Tables 2 and 3. They originate from two different 

feature-ranking methods and gave the lowest RMSE when 

applied to ANNs and GP. Evaluation of the input vector was 

based on the generalization error (RMSE). A substantial 

reduction of RMSE from 22.8% (ANN models trained on 

tenfold cross-validation with all 300 inputs) to 15%–18% was 

obtained for all four reduced input vectors (Tables 4 and 5). 

Further attribute reduction applied to reduced vectors was 

unsuccessful, giving about 2%–3% higher generalization 

errors in each case.

Reduced input vectors mostly consisted of formulation char-

acteristics, which is consistent with previous publications stating 

that the method of preparation and parameters describing the 

particles, influence in great extent the drug dissolution rate from 

the PLGA particles.1,4,7 Sandor et al stated that the release rate of 

proteins is dependent on the protein molecular weight;28 however, 

distance-based geometry properties coded as hyper-Wiener index 

and Szeged index were not discussed in the literature.
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Original data

Noised data

GP symbolic
regression

ANNs
MLP and MON-MLP

Model(s)Equation(s)

10-fold
cross-

validation

11 16 17 21

Nets2012
MLP/NFs nets

368 architectures

fscaret package R-
environment

58 models (linear,
non-linear)

Input vector
reduction

Reduced input vectors

Database
•
•

745 data records
319 inputs (variables)

Literature survey
68 formulations

PLGA
microspheres

P
ha

se
 A

P
ha

se
 B

P
ha

se
 C

Macromolecules

Formulation
characteristics

Descriptors of
excipients calculated
in Marivin Chemaxon

ChemAxon

Figure 1 Schematic representation of the experimental setup. 
Notes: Data acquisition (Phase A). Data preprocessing (Phase B). Modeling (Phase C).
Abbreviations: ANNs, artificial neural networks; GP, genetic programming; MLP, multi-layer perceptron artificial neural networks; MON-MLP, monotone multi-layer 
perceptron artificial neural networks; NFs, neuro-fuzzy systems; PLGA, poly(lactic-co-glycolic acid).
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ANNs
The best result obtained using the ANN modeling tools had 

a relRMSE of 15.4% for MON-MLP networks with a vector 

consisting of eleven inputs (Tables 3 and 5).

Although the generalization error of the ANN models was 

about 15%–18%, the relRMSE (related to single formulation) 

of the best MON-MLP model range was from 1.75% to 36.03% 

between formulations, indicating that there is good potential 

for further improvements. To accomplish this task, the data set 

should be enriched with other crucial parameters influencing 

the dissolution, such as the porosity of particles, pore dia-

meters, chemical descriptors of polymer, and particle size of 

the excipients. Unfortunately, data were not available or scant 

in the selected publications, therefore not useful for systematic 

quantitative analysis. As a consequence, the model has inferior 

performance when compared to classical models, although it 

is important to note that all the predictive model generalization 

errors were a result of the tenfold cross-validation procedure, 

which is not the case in classical approaches.7–9,14,15 Moreover, 

our models are universal in terms of the drug encapsulated in 

PLGA microspheres, whereas most of the classical models are 

focused on a limited and/or predefined number of drugs.1,4,5,7,9

Symbolic regression
Obtained using GP classical equation, though complicated 

and derived from a database consisting of 17  inputs, not 

symbolic regression but equation yielded better generaliza-

tion error (14.3%) and narrower relRMSE, ranging from 

4.76% to 32.83% between formulations, in comparison to 

Table 2 Reduction to 17-variable input vector

Variable  
name

Description Group

In1 Hyper-Wiener index Macromolecule  
descriptorsIn2 Szeged index

In3 PLGA inherent viscosity (dL/g) Formulation  
characteristicIn4 PLGA molecular weight (Da)

In5 PVA inner phase concentration (%)
In6 PVA outer phase concentration (%)
In7 Encapsulation rate (%)
In8 Mean particle size (μm)
In9 PLGA-to-plasticizer ratio
In10 Dissolution pH
In11 Production method: 1) w/o/w;  

2) s/o/w; 3) s/o/o; 4) spray-dried

In12 Hyper-Wiener index Plasticizer  
descriptorsIn13 log D at pH 0

In14 log D at pH 1
In15 log D at pH 14
In16 Basic pKa1

In17 Time (days) Formulation  
characteristic

Q % of macromolecule dissolved Output

Abbreviations: PLGA, poly(lactic-co-glycolic acid); PVA, Poly(vinyl alcohol); s/o/o, 
oil-in-oil solvent; s/o/w, solid-in-oil-in-water; w/o/w, water-in-oil-in-water.

Table 3 Reduction to eleven-variable input vector

Variable  
name

Description Group

In1 Szeged index Macromolecule  
descriptorsIn2 pI

In3 Quaternary structure of  
macromolecule: 1) monomer; 2) dimer

In4 Lactide-to-glycolide in polymer ratio Formulation  
characteristicsIn5 PVA inner phase concentration (%)

In6 PVA outer phase concentration (%)
In7 Encapsulation rate (%)
In8 Mean particle size (μm)
In9 Dissolution pH
In10 Production method: 1) w/o/w;  

2) s/o/w; 3) s/o/o; 4) spray-dried
In11 Time (days)

Q % of macromolecule dissolved Output

Abbreviations: PVA, Poly(vinyl alcohol); s/o/o, oil-in-oil solvent; s/o/w, solid-in-oil-
in-water; w/o/w, water-in-oil-in-water; pI, isoelectric point.

Table 4 Artificial neural network–MLP results, according to the 
lowest root-mean-square error SE obtained

Input  
vector

Architecture Iterations Relative  
RMSE (%)

21in 120_50_30_20_10_tanh_scale 3,000,000 16.9
17in 7_5_3_fsr_rand_scale 10,000,000 18.0
16in 200_80_40_20_tanh_rand 3,000,000 17.9
11in 60_20_8_tanh_rand 5,000,000 16.2

Abbreviation: MLP, multi-layer perceptron; RMSE, root-mean-square error.

Table 5 MON-MLP results, according to the lowest root-mean-
square error SE obtained

Input  
vector

Architecture Ensemble Iterations Relative  
RMSE (%)

21in 8_6_trials_5_orig 20 1,000 17.7
17in 12_6_trials_5_orig 20 2,000 17.1
16in 12_6_trials_5_orig 10 2,000 16.4
11in 8_6_trials_5_orig 20 500 15.4

Abbreviations: MON-MLP, monotone multi-layer perceptron artificial neural 
networks; RMSE, root-mean-square error.

Table 6 The results of the formulation-to-formulation relRMSE (%)

Descriptive  
statistics

relRMSE (%)

MON-MLP model GP model (Eq 3)

Min 1.75 4.76
Max 36.03 32.83
Mean 14.39 13.75

Abbreviations: GP, genetic programming; MLP, multi-layer perceptron artificial 
neural networks; MON-MLP, monotone multi-layer perceptron artifical neural 
networks; relRMSE, relative root-mean-square error.
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Figure 2 Comparison of predicted versus observed values for two best models (MON-MLP and classical equation).
Note: Data from the gathered database (Table S2).
Abbreviations: GP, genetic programming; MLP, multi-layer perceptron artifical neural networks; MON-MLP, monotone multi-layer perceptron neural networks; relRMSE, 
relative root-mean-square error.
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the MON-MLP model. The equation was characterized by 

four parameters (Equation 3). Moreover, during the evolution 

process, the GP algorithm further reduced the number of 

necessary variables by eliminating input numbers 2, 4, 9, 10, 

12, 13, 15, and 16. The simplified mathematical model still 

retained all the types of input variables (with one exception 

of the production method), yet its predictive performance was 

comparable to the more complex MON-MLP model (Tables 6 

and Supplementary material Table S3 [full results]).

	

Q
In17

C2 C1
e

In7 In7 In17 In8 C4

I

In11 C3 eIn5
= +

+

+ +
4

ln 1

⋅

−
⋅ ( ) − ⋅ ⋅





4

nn11 e

In1 In8

In3 In6 In11 In6

In8 In14

⋅
+

⋅

⋅

( ) −ln

,

	 [3]

in which In1–In17 correspond to labels in Table  2 

and C1–C4  = constants .  Equat ion parameters : 

C1 =0.1382595046751, C2 =0.1063092562504, C3 

=4.3209748739209, and C4 =0.3010676275288.

Due to the lack of data, only 68 formulations and 

14 model substances were included. Nonetheless, since our 

model is based on the molecular descriptors, it is able to pre-

dict the behavior of a completely unknown drug substance. 

An example of such accurate prediction is formulation 54 

(MON-MLP model relRMSE 7.6%, GP relRMSE 10.2%, 

molecule recombinant human erythropoietin coupled with 

human serum albumin [Figure 2A]).

In general, when considering the relRMSE of formulations, 

almost 60% of the release profiles had a relRMSE less than 

15% when the MON-MLP model was applied. Moreover, the 

equation obtained by GP yielded 64% of profiles with a rel-

RMSE less than 15%. Formulation-to-formulation comparison 

indicates that ten formulations yielded a relRMSE below 10%. 

It is important to note that those formulations consisted of 

medium-to-large molecules with a molecular weight ranging 

from 14.2 kDa (lysozyme) to 66.5 kDa (bovine serum albumin). 

Formulations that have a relRMSE of more than 30% could 

be perceived as outliers, with two formulations consisting of a 

relatively small molecule of bovine insulin (5.8 kDa).

It has been observed that, in some cases, the GP model 

yielded better predictions than MON-MLP, and vice versa 

(Figure 2B and C). The GP model had over- or underes-

timated the initial burst of molecule release (Figure  2D 

and E) and the end-point release (Figure  2D), while the 

midpoints of release profiles were in good accordance with 

the observed data. In contrast, for the MON-MLP models, 

even if it yielded worse generalization error, the shapes of 

the predicted profiles were preserved for most formulations 

(Figure 2B–E).

Based on the exploratory analysis of the modeling 

results, it could be concluded that the GP models are 

inferior in the presence of recombinant human epidermal 

growth factor and human serum albumin, showing much 

higher errors (Supplementary material Tables S1 and S2), 

whereas the MON-MLP model responded poorly to the 

presence of beta-amyloid, L-asparaginase and bovine insulin 

(Figure 2C). Moreover, if the value of the variable “mean 

particle size” is above 20 µm, the GP model predictions 

are most likely poor (Figure  2B) and, in the case of the 

MON-MLP model, the values below 1 µm yielded worse 

predictions. The above presents limitations of our model, 

which will be a subject of its development in the future. 

Due to the heuristic nature of the models, it is difficult to 

explain all the unexpected behaviors of the models, such as 

the erratic profile seen in Figure 2E, where the MON-MLP 

model creates a completely opposite profile at the time of 

20 days. Thus we wanted to present our analysis of the mod-

els and their advantages (generic for the molecule) versus 

disadvantages (limitations of predictions) in order to allow 

every user to understand their applicability. The predicted 

versus observed release profiles of discussed formulations 

are presented in Figure 2, with the “observed” data derived 

from the literature.29–33

Conclusion
In this paper, a new approach was presented for modeling 

the dissolution of macromolecules from PLGA particles. It 

was also shown which aspects of the method of production 

coupled with molecular description of the formulation have 

the most impact on the release rate. Heuristic modeling tech-

niques showed their usefulness in the complex and still not 

fully understood process of dissolution from PLGA particles. 

Moreover, they led to the mathematical formula (Equation 3) 

describing the process with predictive efficiency comparable 

to the ANN models.

With predictive modeling, knowledge extraction was 

performed simultaneously as a part of the modeling pro-

tocol. The major procedure employed feature selection 

techniques for reduction of input vector. A successful 

reduction from an initial 300 to 17 and eleven provided both 

information about the analyzed problem and appropriate 

generalization ability of MON-MLP and mathematical 

model, avoiding the well-known problem of “curse of 

dimensionality.” Analysis of crucial variables confirmed 
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the dominating role of PLGA formulation characteristics; 

however, geometric characteristics of protein molecules and 

plasticizer ionic descriptor were also found to be impor-

tant features. Analysis of the selected variables is a direct 

source of knowledge and a possible hint for creating a more 

general theory of how macromolecules are released from 

the PLGA particles.

This work was possible thanks to the application of two 

key elements:

•	 Marvin, a cheminformatic tool, which allowed direct 

computation of macromolecule descriptors – an ability 

not present in every cheminformatic package;18 and

•	 heuristic modeling tools for feature selection and predic-

tive modeling integrating various types of information 

into the single model.

The resulting models are versatile in terms of prediction of 

the unknown macromolecule release profiles from the PLGA 

particles, thus it might be useful for the future development of 

PLGA microparticles as a decision support system.
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Table S2 Full data base used in the study

The full data base of macromolecules release from PLGA microparticles  
http://nigella.farmacja.cm-uj.krakow.pl/~kuba/Int_J_Nanomedicine/Supplementary_material_S2.xlsx

Supplementary material

Table S1 List of publications used in data extraction

  1.  Kang F, Singh J. Effect of additives on the release of a model protein from PLGA microspheres. AAPS PharmSciTech. 2001;2(4):30.
  2. � Zhou XL, He JT, Du HJ, et al. Pharmacokinetic and pharmacodynamic profiles of recombinant human erythropoietin-loaded poly(lactic-co-glycolic 

acid) microspheres in rats. Acta Pharmacol Sin. 2012;33(1):137–44.
  3. � Fan D, De Rosa E, Murphy MB, et al. Mesoporous silicon-PLGA composite microspheres for the double controlled release of biomolecules for 

orthopedic tissue engineering. Adv Funct Mater. 2012;22(2):282–293.
  4. � Kim TH, Lee H, Park TG. Pegylated recombinant human epidermal growth factor (rhEGF) for sustained release from biodegradable PLGA 

microspheres. Biomaterials. 2002;23(11):2311–2317.
  5. � Blanco D, Alonso MJ. Protein encapsulation and release from poly(lactide-co-glycolide) microspheres: effect of the protein and polymer 

properties and of the co-encapsulation of surfactants. Eur J Pharm Biopharm. 1998;45(3):285–294.
  6. � Mok H, Park TG. Water-free microencapsulation of proteins within PLGA microparticles by spray drying using PEG-assisted protein solubilization 

technique in organic solvent. Eur J Pharm Biopharm. 2008;70(1):137–144.
  7. � Buske J, König C, Bassarab S, Lamprecht A, Mühlau S, Wagner KG. Influence of PEG in PEG-PLGA microspheres on particle properties and 

protein release. Eur J Pharm Biopharm. 2012;81(1):57–63.
  8. C orrigan OI, Li X. Quantifying drug release from PLGA nanoparticulates. Eur J Pharm Sci. 2009;37(3–4):477–485. 
  9. � Puras G, Salvador A, Igartua M, Hernández RM, Pedraz JL. Encapsulation of Aβ(1–15) in PLGA microparticles enhances serum antibody response 

in mice immunized by subcutaneous and intranasal routes. Eur J Pharm Sci. 2011;44(3):200–206.
10. � Kim HK, Park TG. Microencapsulation of dissociable human growth hormone aggregates within poly(D,L-lactic-co-glycolic acid) microparticles 

for sustained release. Int J Pharm. 2001;229(1–2):107–116.
11. �H an Y, Tian H, He P, Chen X, Jing X. Insulin nanoparticle preparation and encapsulation into poly(lactic-co-glycolic acid) microspheres by using an 

anhydrous system. Int J Pharm. 2009;378(1–2):159–166.
12. �H e J, Feng M, Zhou X, et al. Stabilization and encapsulation of recombinant human erythropoietin into PLGA microspheres using human serum 

albumin as a stabilizer. Int J Pharm. 2011;416(1):69–76.
13. � Gasper MM, Blanco D, Cruz ME, Alonso MJ. Formulation of L-asparaginase-loaded poly(lactide-co-glycolide) nanoparticles: influence of polymer 

properties on enzyme loading, activity and in vitro release. J Control Release. 1998;52(1–2):53–62.
14. � Kawashima Y, Yamamoto H, Takeuchi H, Fujioka S, Hino T. Pulmonary delivery of insulin with nebulized DL-lactide/glycolide copolymer (PLGA) 

nanospheres to prolong hypoglycemic effect. J Control Release. 1999;62(1–2):279–287.
15. � Ungaro F, d’Emmanuele di Villa Bianca R, Giovino C, et al. Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization 

properties: in vivo deposition and hypoglycaemic activity after delivery to rat lungs. J Control Release. 2009;135(1):25–34.
16. � Jiang HL, Jin JF, Hu YQ, Zhu KJ. Improvement of protein loading and modulation of protein release from poly(lactide-co-glycolide) microspheres 

by complexation of proteins with polyanions. J Microencapsul. 2004;21(6):615–624.
17. � Pirooznia N, Hasannia S, Lotfi AS, Ghanei M. Encapsulation of alpha-1 antitrypsin in PLGA nanoparticles: in vitro characterization as an effective 

aerosol formulation in pulmonary diseases. J Nanobiotechnology. 2012;10:20.
18. �C astellanos IJ, Flores G, Griebenow K. Effect of cyclodextrins on alpha-chymotrypsin stability and loading in PLGA microspheres upon S/O/W 

encapsulation. J Pharm Sci. 2006;95(4):849–858.
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Table S3 The results of the formulation-to-formulation 
relRMSE (%)

Formulation  
no

relRMSE (%)

MON-MLP  
model

GP model  
(Equation 2)

1 9.56 14.43
2 10.29 11.70
3 22.14 18.00
4 2.56 11.74
5 22.63 14.75
6 12.01 19.47
7 10.72 13.99
8 10.12 13.87
9 11.42 12.84
10 20.92 21.92
11 17.73 5.25
12 7.48 8.78
13 17.47 8.94
14 12.79 23.37
15 3.12 5.35
16 1.75 9.75
17 16.10 6.76
18 13.47 8.76
19 1.83 5.27
20 4.31 8.38
21 12.97 15.05
22 3.87 7.57
23 6.26 12.34
24 6.55 6.99
25 5.35 12.21
26 25.05 13.12
27 14.48 8.83
28 17.05 14.67
29 11.20 9.26
30 15.05 7.01
31 36.03 27.25
32 34.23 26.38
33 8.21 10.49
34 26.99 25.33

(Continued)

Table S3 (Continued)

Formulation  
no

relRMSE (%)

MON-MLP  
model

GP model  
(Equation 2)

35 6.85 5.46
36 26.82 22.38
37 28.55 22.87
38 19.27 24.45
39 8.78 11.05
40 9.20 9.04
41 18.09 17.55
42 16.36 15.15
43 10.71 5.39
44 7.15 10.71
45 20.51 7.39
46 8.75 32.83
47 15.23 23.02
48 21.05 20.61
49 4.70 17.83
50 11.18 6.56
51 10.90 16.59
52 11.20 18.85
53 10.85 19.87
54 7.63 10.20

55 25.31 10.20
57 19.16 24.17
58 24.05 21.14
59 31.39 29.31
60 28.53 22.90
61 30.81 5.76
62 18.73 6.79
63 7.59 8.59
64 13.37 6.16
65 8.93 7.73
66 4.61 10.34
67 11.72 4.76
68 14.25 5.85
Min 1.75 4.76
Max 36.03 32.83
Mean 14.39 13.75
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