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Abstract: The angiotensin type 2 receptor (AT2R) and the receptor MAS are receptors within 

the renin–angiotensin system, which mediate tissue-protective actions such as anti-inflammation, 

antifibrosis, and antiapoptosis. In recent years, several programs have been launched in order 

to develop drugs that act as agonists on the AT2R or MAS to take therapeutic advantage of 

the protective and regenerative properties of these receptors. This review article will focus on 

recent data obtained in preclinical animal and in vitro models with new AT2R-agonistic mole-

cules (Compound 21 and β-amino acid substituted angiotensin II) and with relevance for blood 

pressure (BP) regulation or hypertensive end-organ damage. These data will include studies on 

vasodilation/vasoconstriction in isolated resistance arteries ex vivo, studies on kidney function, 

studies on vascular remodeling, and studies that measured the net effect of AT2R stimula-

tion on BP in vivo. Current data indicate that although AT2R stimulation causes vasodilation 

ex vivo and promotes natriuresis, it does not alter BP levels in vivo acutely – at least as long 

as there is no additional low-dose blockade of AT1R. However, AT2R stimulation alone is able 

to attenuate hypertension-induced vascular remodeling and reduce arterial stiffening, which in 

more chronic settings and together with the natriuretic effect may result in modest lowering 

of BP. We conclude from these preclinical data that AT2R agonists are not suitable for antihy-

pertensive monotherapy, but that this new future drug class may be beneficial in combination 

with established antihypertensives for the treatment of hypertension with improved protection 

from end-organ damage.

Keywords: renin–angiotensin system, AT2-receptor, vasodilation, blood pressure, kidney 

function, vascular remodeling

Introduction
The renin–angiotensin system (RAS) is essentially involved in the control of blood 

pressure (BP) and body volume.1 Angiotensin II (Ang II), acting via the angiotensin 

type 1 receptor (AT1R), causes vasoconstriction as well as sodium and water retention.2 

Furthermore, it is involved in the pathogenesis of hypertensive and diabetic end-organ 

damage by promoting inflammation and fibrosis. Pharmacological interference with 

the RAS by direct renin inhibitors, angiotensin-converting enzyme (ACE) inhibitors, 

or AT1R blockers (ARB) is a common therapeutic approach for the treatment of 

hypertension.3 In addition, ACE inhibitors and ARBs are standard treatment for heart 

failure and diabetic nephropathy.

In the recent past, research on potential new drug targets within the RAS and the 

development of respective novel drugs have gained significant momentum.4–6 These 

current efforts mainly aim at making therapeutic use of the so-called protective RAS, 
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which comprises the AT2R and the ACE2-angiotensin-(1-7) 

(Ang-[1-7])-MAS axis. Both the AT2R and the receptor MAS 

mediate a broad array of tissue-protective effects, including 

anti-inflammation, antifibrosis, antiapoptosis, neuropro-

tection, favorable metabolic effects, and  vasodilation. In 

particular, their ability to counteract vasoconstriction, inflam-

mation, and fibrosis makes the AT2R and MAS potential 

drug targets for the treatment of hypertension and related 

end-organ damage. Interestingly, there seems to be a positive 

feedback loop within the protective RAS because, as has been 

published very recently, the expression of ACE2, Ang-(1-7), 

and MAS, as well as ACE2 activity, were increased in the 

kidneys of obese Zucker rats treated for 2 weeks with the 

AT2R agonist CGP 42112A.7

Regarding the AT2R, there are currently three types 

of new agonistic molecules with the potential for drug 

 development: 1) the nonpeptide small molecule agonist 

Compound 21 (C21; Vicore Pharma, Gothenburg,  Sweden, 

www.vicorepharma.com),8 2) the cyclic Ang II deriva-

tive (one amino acid exchanged for another, unknown 

 [unpublished] amino acid) LP2-3 (Lanthio Pharma, 

Groningen, the Netherlands, www.lanthiopep.nl),9 and 3) 

a group of Ang II derivatives in which individual amino 

acids in the sequence of native Ang II are substituted by the 

respective β-amino acid.10 C21 is currently in the final stage 

of preclinical development and is expected to enter clinical 

testing in 2014, the status of LP2-3 is unknown, and the 

β-amino acid substituted molecules are currently used only 

for academic purposes.

This review article will discuss physiology and potential 

therapeutic use of the AT2R with a focus on its role in BP 

regulation and hypertensive end-organ damage.

Vasodilation and blood pressure
Stimulation of the AT2R has been shown to act in a vasodila-

tory way in various species and multiple vascular beds such as 

mesenteric,11–15 renal,16–18 coronary,19 cerebral,20 cutaneous,21 

and uterine arteries.22,23 In addition, AT2R knockout mice 

exhibit higher basal BP levels than wild-type mice, and they 

react with a stronger increase in BP to infusion of Ang II.24,25 

Conversely, in mice overexpressing AT2Rs in the vasculature, 

the pressor response to Ang II is markedly impaired.26

Vasodilation was also shown for more recently developed 

AT2R agonists such as the first nonpeptide agonist C218 or for 

the new peptide agonists generated by substituting individual 

amino acids in the sequence of native Ang II by the respective 

β-amino acid (Table 1).9 Vasodilation in response to these 

new ligands at concentrations between 10−11 and 10−6 M was 

observed in aorta from normotensive mice or hypertensive 

rats and in mouse mesenteric arteries in an AT2R-dependent 

manner, because these effects could be blocked by the AT2R 

antagonist PD 123319.10,27  Vasodilation in response to C21 was 

also reported by Verdonk et al28 in coronary, iliac, and mesen-

teric arteries of rats and mice; however, only at concentrations 

between 10−6 and 10−3 M. This vasodilatory response of C21 

was unrelated to the AT2R because it could not be blocked 

by the AT2R antagonist PD 123319, which with 1 µmol/L, 

however, was underdosed for most tested concentrations of 

C21, and because it was absent in AT2R-deficient mice. The 

mechanism of AT2R-unrelated vasodilation in response to 

C21 is still unknown but may involve blockade of calcium 

transport into the cell. Vasodilation caused by very high 

concentrations of C21 was preceded by a short vasoconstric-

tion, which was obviously due to AT1R stimulation, because 

it could be blocked by AT1R antagonists.28 This observation 

was not surprising, as Bosnyak et al27 had previously described 

that C21 stimulates the AT1R at very high concentrations, 

resulting in a rise in BP. In general, most small molecule 

drugs lose specificity at concentrations .1 µM or even 

lower. Well-known examples are β2-receptor mimetics used 

for the treatment of asthma, or β1-receptor blockers used 

for the treatment of hypertension, both of which bind to the 

respective other receptor subtype at high concentrations. For 

example, the Ki of the β2-receptor mimetic salmeterol, which 

possesses the highest selectivity of this drug class, is 24.6 nM 

for the β2-receptor and 1,600 nM for the β1-receptor; the 

 selective β1-receptor blocker metoprolol has a Ki of 47 nM for 

the β1-receptor and of 2.960 nM for the β2-receptor.29,30 With 

a Ki for the AT2R of 0.4 nM (2 nM for the human receptor) 

and .10,000 mM for the AT1R, the selectivity of C21 is not 

any worse than selectivity of so-called selective β-blockers 

or β2-receptor mimetics.

It seems logical that a hormone or drug that is able to cause 

vasodilation in isolated blood vessels would also be able to lower 

BP in animals and/or humans, as the vascular tone in resistance 

arteries is a major determinant of systolic BP. However, for the 

AT2R, this seems not to be the case (Table 2). Several studies 

using peptide or nonpeptide AT2R agonists, including the new 

molecules discussed previously, demonstrated that an AT2R-

mediated decrease in BP occurred only when there was a con-

comitant low-dose blockade of AT1Rs. For example, this was 

shown by the Carey et al31 in conscious, normotensive Sprague 

Dawley rats and by Barber et al32 in conscious, normotensive 

Wistar Kyoto and spontaneously hypertensive rats (SHR) in a 

PD 123319-reversible manner.10,27 The only exceptions were BP 

measurements in anesthetized rats, which were part of the first 
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description of design and synthesis of C21.8 In this study, C21 

caused a fall in BP of up to 25 mmHg. However, it has to be 

noted that anesthesia probably caused unphysiological effects 

of this pharmacological intervention with the RAS, which is 

activated by anesthesia.33

The observation that AT2R stimulation lowers BP only in 

the presence of low-level AT1R blockade indicates that in vivo a 

continuous angiotensinergic tone mediated via the AT1R seems 

dominant over any vasodilatory effect of AT2Rs. Consequently, 

AT2R agonists will most likely not become antihypertensive 

drugs suitable for monotherapy. However, due to their tissue-

protective effects discussed as follows, the combination of 

established antihypertensives with AT2R agonists may result 

in better long-term prevention of hypertensive end-organ dam-

age. Moreover, long-term therapy with AT2R agonists may 

have a modest BP-lowering effect due to structural changes of 

the vessel walls (see paragraph about “Vascular remodeling” 

below) and due to a recently described diuretic effect (see 

paragraph about “AT2 receptor activation in renal physiology 

and disease” below).34–36 AT2R stimulation may further act 

antihypertensive by CNS related mechanisms that become 

apparent only if C21, which crosses the blood–brain barrier 

only very poorly, is applied intracerebroventricularly.37

Normal pregnancy and preeclampsia are conditions 

 during which expression of components of the RAS is altered 

in a way that the peripheral and tissue RAS are activated.38 

In preeclampsia in patients or in respective animal models, 

the ratio of expression of AT1R and AT2R changes is favor 

of the AT1R in placental and uterine tissue and arteries.39–41 

The AT2R has been described to act in a vasodilatory man-

ner and to counteract the enhanced vasoconstrictive effect 

of Ang II via the AT1R during pregnancy.22 Thus, it can 

Table 1 effects of new AT2R agonists on vascular tone ex vivo

AT2 agonist Type of vessel Species Effective concentration Result Reference

β-substituted  
Ang peptides

Aorta Mouse 10−12 to 10−6 M vasodilation in presence of AT1R 
blocker

8

β-substituted  
Ang peptides

Aorta Mouse 10−12 to 10−6 M vasodilation in absence of AT1R 
blocker

8

C21 Aorta Mouse 10−10 to 10−6 M vasodilation in presence of AT1R 
blocker

14

C21 Aorta SHR 10−11 to 10−6 M vasodilation in presence of AT1R 
blocker

14

C21 Mesenteric artery Mouse 10−10 to 10−6 M vasodilation in presence of AT1R 
blocker

14

C21 Aorta Mouse 10−09 to 10−6 M vasodilation in absence of AT1R 
blocker

14

C21 Coronary  
microartery

Human 10−06 to 10−4 M vasodilation in absence of AT1R 
blocker

15

C21 Iliac artery wistar rat 10−07 to 10−4 M vasodilation in absence of AT1R 
blocker

15

C21 Mesenteric artery wistar rat 10−07 to 10−4 M vasodilation in absence of AT1R 
blocker

15

C21 Mesenteric artery SHR 10−08 to 10−4 M vasodilation in absence of AT1R 
blocker

15

C21 Iliac artery wistar rat 10−10 to 10−4 M No effect 15

C21 Iliac artery SHR 10−05 to 10−4 M vasoconstriction 15

C21 Iliac artery Mouse 10−07 to 10−4 M vasodilation in absence of AT1R 
blocker

15

C21 Iliac artery AT2-KO 10−07 to 10−4 M vasodilation in absence of AT1R 
blocker

15

C21 Coronary arteries wistar rat 10−04 to 10−3 M Initial inhibition of coronary flow 15

C21 Coronary arteries wistar rat 10−3 M Increase in coronary flow 15

C21 Coronary arteries SHR 10−05 to 10−3 M Initial inhibition of coronary flow 15

C21 Coronary arteries SHR 10−04 to 10−3 M Increase in coronary flow 15

C21 Coronary arteries Mouse (wild-type  
and AT2-KO)

10−10 to 10−3 M No effect 15

C21 Mesenteric  
arteries

SHR 10−10 to 10−5 M vasodilation in presence of AT1R 
blocker

32

Abbreviations: AT2R, angiotensin type 2 receptor; KO, knockout; SHR, spontaneously hypertensive rats; AT1R, angiotensin type 1 receptor.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Integrated Blood Pressure Control 2013:6submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

156

Danyel et al

be speculated that the relative deficiency in AT2R during 

preeclampsia may contribute to the development of hyper-

tension. In a recent study, Hladunewich et al42 could, in fact, 

demonstrate that there is a strong correlation between AT1R/

AT2R ratio and the change in BP (the higher the ratio, the 

stronger the increase in BP; r=0.54) in women with previous 

severe preeclampsia who received a graded infusion of Ang 

II (1–3 ng/kg/min). The importance of the role of the AT2R 

for the development of preeclampsia still needs confirmation, 

but if it should turn out to really be of importance, AT2R 

agonists may be a treatment option of interest, although under 

“normal” conditions they do not lower BP.

Vascular remodeling
Chronically elevated BP causes an inflammatory response 

followed by excess synthesis and accumulation of extracel-

lular matrix mainly in the left cardiac ventricle, the kidneys, 

and the vascular wall. This fibrotic response to hypertension 

leads to deteriorated organ function and manifests as heart 

failure, renal disease, or vascular stiffening, the latter two 

of which reinforce the development of hypertension, thus 

establishing a vicious circle.43

Early studies on the role of AT2R stimulation on vascular 

remodeling could show that the beneficial effects of ARBs 

were, at least in part, due to indirect AT2R stimulation (use 

of ARBs leads to an increase in renin release and thus a rise 

in angiotensin II levels, which, in turn, stimulates the unop-

posed AT2Rs; ARB-induced Ang II levels are, however, 

much lower than pharmacological AT2 agonist levels), as 

these effects could be reversed by blockade of AT2Rs.44,45 

Further indirect evidence for a favorable role of AT2Rs 

in vascular remodeling is coming from studies in AT2R-

deficient mice, which responded with augmented vascular 

hypertrophy of coronary, aortic, and femoral arteries to 

chronically elevated BP.46–48

The impact of direct AT2R stimulation on hypertension-

induced vascular remodeling was studied recently in two 

studies in which C21 was applied orally to rats (Table 3).49,50 

Table 2 effects of new AT2R agonists on blood pressure

AT2 agonist Species/strain Dosage Result Reference

β-substituted  
Ang peptides

SHR 15 pmol/kg/min Iv MAP  only in presence of a low-dose  
AT1R blocker

8

C21 SHR 100/300 ng/kg/min Iv MAP  only in presence of a low-dose  
AT1R blocker; AT2-dependent

14

C21 SHR 1,000 ng/kg/min Iv MAP ; AT1R-dependent 14
C21 wistar–Kyoto rats 50–300 ng/kg/min Iv No effect 14
C21 Sprague Dawley rats 100–300 ng/kg/min Iv No effect 22
C21 Obese Zucker rats 1 µg/kg/min Iv No effect 23
C21 Sprague Dawley rats 0.5 µg/µl/h ICv MAP  by central mechanisms 24
C21 L-NAMe-induced hypertension 0.3 mg/kg Bw IP No effect 31
C21 SHR 1 mg/kg Bw PO Increase after 1 week; no effect  

in weeks 2–5
32

C21 2K1C hypertension 0.3 mg/kg Bw IP No effect 39
C21 SHR-SP 10 mg/kg/day extended release  

from 0.5% Na-carboxymethylcellulose
No effect 40

C21 wistar rats 0.03/0.3 mg/kg Bw IP No effect 59
C21 C57Bl-6 1/3/10 µg/kg Bw IP No effect 60
C21 Obese Zucker rats 300 µg/kg/day IP No effect 61
C21 KK-Ay mice 10 µg/kg Bw IP No effect 62

Abbreviations: 2K1C, two-kidney, one-clip rat model; AT2R, angiotensin type 2 receptor; Bw, body weight; ICv, intracerebroventricularly; IP, intraperitoneally; Iv, 
intravenously; L-NAMe, Nω-nitro-L-arginine methyl ester hydrochloride; PO, orally; SHR, spontaneously hypertensive rats; SP, stroke-prone; AT1R, angiotensin type 1 receptor; 
MAP, mean arterial pressure.

Table 3 effects of new AT2R agonists on vascular remodeling

AT2 agonist Species/model Dosage Result Reference

C21 L-NAMe-induced  
hypertension

0.3 mg/kg Bw IP Reduced aortic wall thickness and collagen content;  
lowered pulse wave velocity

31

C21 SHR 1 mg/kg Bw PO Reduced mesenteric artery stiffness; reduced aortic  
collagen and fibronectin content; lowered oxidative stress

32

Abbreviations: AT2R, angiotensin type 2 receptor; Bw, body weight; IP, intraperitoneally; L-NAMe, Nω-nitro-L-arginine methyl ester hydrochloride; PO, orally; SHR, 
spontaneously hypertensive rats.
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The authors of these studies used different models of 

hypertension: ie, stroke-prone spontaneously hypertensive 

rats (SHR-SP) in one study,50 and inhibition of endothelial 

nitric oxide synthase by application of Nω-nitro-L-arginine 

methyl ester hydrochloride (L-NAME) in the other study.49 In 

both studies, the effect of AT2R stimulation was compared 

with the effect of an ARB alone or the combination of both. 

The main finding of both studies was that treatment with an 

AT2R agonist widely prevented the development of vascu-

lar hypertrophy and fibrosis. Remarkably, this reversal of 

hypertension-induced pathology was achieved without any 

significant effect on BP: ie, although BP stayed elevated in 

C21-treated rats, vascular remodeling was almost completely 

prevented.49,50 The preventive effect of AT2R stimulation on 

vascular remodeling was shown in both studies to be related 

to a decrease in collagen deposition. Moreover, in our study 

in L-NAME-induced hypertension in rats, we measured 

pulse wave velocity, a marker for arterial stiffness and 

independent predictor of cardiovascular risk in patients, and 

we could again show that this indicator of vascular remod-

eling, which was increased in vehicle-treated hypertensive 

animals, was significantly attenuated in C21-treated, (still) 

hypertensive animals.49

BP in our study was not significantly changed by treat-

ment with C21, but there was a trend toward a reduction 

in BP, which may have been a result of reduced arterial 

stiffness.49

Kidney function
AT2-receptor deficiency in renal  
disease and injury
Considering the ubiquitous expression of the AT2R in fetal 

kidney, it may be surprising that AT2R knockout mice show 

no renal abnormalities in histology.24,51 However, obvious 

differences in disease progression in AT2R knockout mice 

when compared with wild-type mice were revealed in the 

renal ablation model of renal injury.51 Aggravated glomerular 

damage and impairment of renal function were shown in 

AT2R-deficient mice compared with wild-type mice, subse-

quently culminating in higher overall mortality.  Moreover, 

albuminuria in knockout mice was pronounced and renal 

macrophage infiltration of glomerulus and interstitium 

increased compared with wild-type mice. Benndorf et al51 

ruled out systolic BP differences, podocyte or basal mem-

brane damage, or upregulation of AT1Rs as possible causes 

for enhanced renal injury. Nonetheless, they elucidated one 

of the possible underlying mechanisms of disease progression 

in AT2R-deficient mice by showing a significant upregulation 

of asymmetric dimethylarginine, an endogenous inhibitor of 

nitric oxide synthase, in the knockout group, suggesting that 

the impairment in synthesis of nitric oxide may account for 

the aggravation of glomerular damage observed.

In accordance with these results, aggravated renal 

injury was observed in unilateral ureteral obstruction of 

AT2R-deficient mice, comprising severe interstitial fibrosis 

and greater abundance of fibroblasts and myofibroblasts in 

ipsilateral kidneys.52

Moreover, in a model of type 1 diabetes in mice, AT2R 

knockout animals exhibited accelerated development of 

diabetic nephropathy.53 Extracellular matrix (ECM) protein 

accumulation was measured by quantification of periodic 

acid–Schiff and Masson trichrome staining, as well as real-

time quantitative polymerase chain reaction analysis of 

renal collagen IV messenger ribonucleic acid expression. 

Terminal deoxynucleotidyl transferase dUTP nick end label-

ing assay was performed to semiquantify tubular apoptosis 

between groups. ECM accumulation and renal expression 

of collagen IV were significantly enhanced in nondiabetic 

AT2R knockout mice compared with nondiabetic controls. 

Additionally, tubular apoptosis was significantly increased 

in nondiabetic AT2R knockout mice. Accordingly, similar 

observations of increased ECM production and tubular 

apoptosis in AT2R-deficient animals were made in diabetic 

knockout animals when compared with wild-type mice, 

although values reached significance only for Masson 

trichrome staining arbitrary units. Chang et al53 proposed 

that an increase in Heme oxygenase 1 expression, observed 

in proximal tubule cells of AT2R knockout mice, enhances 

oxidative stress. Moreover, an elevated ACE/ACE2 ratio in 

knockout animals could account for aggravation of renal 

injury during diabetic nephropathy.

It is important to note that deterioration of renal injury 

in AT2R-deficient mice may result from a persistent but yet 

unnoticed impairment in renal function that evolved during 

fetal development, due to the absence of the AT2R, which 

is usually expressed in high density during fetal life, and 

may not represent missing counter-regulatory actions of the 

receptor itself in the adult organism.

AT2 receptor activation in renal 
physiology and disease
So far, studies investigating the role of the AT2R in renal 

disease were conducted under 1) AT1R blockade with subse-

quent Ang II administration, 2) using the peptide agonist CGP 

42112, or 3) under AT2R blockade achieved by administra-

tion of PD 123319. Findings in this regard have been recently 
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summarized and will not be further discussed in this review.54,55 

Interpretation of results, however, is confounded by possible 

antagonistic effects of CGP 42112 and by agonistic effects of 

PD 123319 on the AT1R or even the AT2R, depending on 

 timing and dosage.28,56 Since C21 became available for experi-

mental research, data about the role of the AT2R in kidney func-

tion have become more consistent and unequivocally strengthen 

the idea of a protective role of the AT2R in renal disease and 

of a natriuretic effect of AT2R stimulation (Table 4).

In Sprague Dawley rats, graded infusion of C21 (peak 

dosage: 300 ng/kg/min) significantly enhanced renal blood 

flow by simultaneously reducing renal vascular resistance 

in both female and male animals.35 In addition, urine flow, 

urinary sodium excretion, and fractional sodium excretion 

showed a significant increase when compared with vehicle-

treated groups. All effects observed were abolished by 

concomitant administration of PD 123319. Interestingly, 

glomerular filtration rate remained stable in the C21 group, 

albeit the presence of renal vasodilation suggesting that the 

C21-induced increase in natriuresis is altered due to an effect 

on tubular function, but not due to hemodynamic effects. All 

effects were BP independent, as there was no statistically 

significant difference in BP between vehicle- and C21-treated 

animals. However, there was a small but significant differ-

ence between the C21- and the C21 plus PD 123319-treated 

animals (BP in PD 123319-treated animals being lower), but 

from these data it cannot be decided whether this difference 

was due to an effect of C21 or of PD 123319 or of both.35

An AT2R-dependent but BP-independent natriuretic 

effect of C21 was further described recently in obese Zucker 

rats.36 In analogy to the study by Hillard et al,35 glomerular 

filtration rate remained unchanged in these animals, speaking 

again for a direct, tubular effect of C21.

In the two-kidney, one-clip rat model of hypertension 

(2K1C), Matavelli et al57 evaluated the effects of AT2R 

stimulation in early renal inflammation. In 2K1C rats, 

kidney perfusion is reduced by unilateral clipping of the 

renal artery. Inflammatory markers of the subsequently 

 developing ischemia were determined by in vivo recovery 

levels of renal intestinal fluid. Animals received vehicle, C21 

(0.3 mg/kg/day, intraperitoneally), PD 123319 (10 mg/kg/day, 

osmotic minipump), or C21 plus PD 123319 over the 4-day 

course of the study. Unilateral stricture of the renal artery led 

to a significant increase in AT2R protein expression, which 

was even further enhanced in the C21 group but abolished 

by administration of PD 123319. Expression of tumor necro-

sis factor (TNF)-α, transforming growth factor (TGF)-β1, 

and interleukin (IL)-6 messenger ribonucleic acid and their 

renal interstitial fluid (RIF) recovery rates were significantly 

elevated in 2K1C compared with sham-operated animals. In 

contrast, nitric oxide and cyclic guanosine monophosphate 

RIF recovery rates were significantly reduced. Treatment 

with C21 reduced TNFα, TGFβ1, and IL-6 expression and, 

moreover, increased RIF recovery rates for nitric oxide and 

cyclic guanosine monophosphate. Extensive inflammatory 

cell infiltration observed by histological (hematoxylin/eosin) 

staining of 2K1C renal cortex and medulla was significantly 

reduced with C21 treatment when compared with the vehicle 

group. These effects were only partially inhibited by the AT2R 

antagonist PD 123319.57

SHR-SPs represent an animal model of hypertension, 

characterized by the progressive development of renal 

damage and brain abnormality against the background of 

elevated Ang II blood levels. Oral treatment with C21 (peak 

dosage group: 10 mg/kg, suspended release from 0.5% 

sodium carboxymethylcellulose) significantly delayed the 

development of proteinuria and prevented the accumulation 

of high-molecular-weight proteins, which present markers 

of renal inflammation, in 24-hour urine electrophoresis.58 

Although plasma renin activity increased significantly in 

the vehicle group, plasma renin activity remained at basal 

levels in animals treated with C21. Finally, analysis of kidney 

histopathology revealed reduced renal lesions (attenuation 

of vascular lesions, tubular damage, luminal cast formation, 

glomerular sclerosis, inflammatory infiltrates) and attenu-

ated renal macrophage infiltration in rats treated with C21. 

Table 4 effects of new AT2R agonists on kidney function and pathology

AT2 agonist Species/strain Dosage Result Reference

C21 Sprague Dawley rats 100–300 ng/kg/min Iv Natriuresis, GFR unchanged 22
C21 Obese Zucker rats 5 µg/kg/min Iv Natriuresis, GFR unchanged 23
C21 2K1C hypertension 0.3 mg/kg Bw IP Attenuated renal inflammation 39
C21 SHR-SP 10 mg/kg/day in 0.5% carboxymethyl-cellulose Attenuation of albuminuria 40
C21 SHR-SP 10 mg/kg/day in 0.5% carboxymethyl-cellulose Attenuated renal fibrosis and inflammation 40
C21 Obese Zucker rats 300 µg/kg/day IP Attenuated renal inflammation 61

Abbreviations: 2K1C, two-kidney, one-clip rat model; AT2R, angiotensin type 2 receptor; BW, body weight; GFR, glomerular filtration rate; IP, intraperitoneally; IV, 
intravenously; SHR, spontaneously hypertensive rats; SP, stroke-prone.
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Furthermore neoexpression of vimentin, a marker of 

tubulointestinal injury, was completely prevented by AT2R 

stimulation with C21.58

Summary and conclusion
AT2R stimulation elicits effects on several physiological 

mechanisms, which contribute to the regulation of BP. 

 Specifically, AT2R agonists induce vasodilation in iso-

lated vessels ex vivo and they enhance natriuresis in vivo. 

 Furthermore, in hypertensive rats, AT2R stimulation attenu-

ates arterial stiffening. Nevertheless, in vivo BP is not altered 

acutely and only modestly chronically, the latter usually 

not reaching statistical significance. The lack of acute 

effect is probably due to some kind of counter-regulatory 

mechanism(s), which has not been characterized yet, but may 

involve activation of the “classic” RAS (increased levels of 

Ang II acting on the AT1R) or of the sympathetic nervous 

system. The trend toward a reduction in BP in more chronic 

settings seems likely due to secondary mechanisms such as 

natriuresis leading to volume reduction or attenuated vascular 

remodeling, resulting in lower peripheral resistance.

According to these reviewed data from preclinical animal 

or in vitro/ex vivo studies, it is likely that AT2R agonists 

will be unsuitable as antihypertensive monotherapeutics in 

clinical use. However, they may enhance the effectiveness of 

other, established antihypertensives, and they may provide 

additive benefit in respect of protection from hypertensive 

end-organ damage. However, these assumptions need to 

be verified in future clinical studies.
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