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Abstract: Intravascular catheter-related infections are still a major problem in health care 

and are associated with significant morbidity, mortality, and additional cost. The formation of 

microbial biofilm on catheters makes these infections particularly complicated, as microbial 

cells that detach from the biofilm can lead to infection, and because these microorganisms 

are highly resistant to many antimicrobial agents; thus, catheter removal is often required to 

successfully treat infection. To reduce the risks of catheter-related infections, many strategies 

have been applied, such as improvements in aseptic insertion and post-insertion care practices, 

implantation techniques, and antibiotic coated or impregnated materials. However, despite 

significant advances in using these methods, it has not been possible to completely eradicate 

biofilm infections. Currently, nanotechnology approaches seem to be among the most promising 

for preventing biofilm formation and resultant catheter-related bloodstream infection (especially 

with multi-resistant bacterial strains). In this review, current knowledge about catheter technology 

and design, the mechanisms of catheter-related bloodstream infection, and the insertion and care 

practices performed by medical staff, are discussed, along with novel, achievable approaches to 

infection prevention, based on nanotechnology.
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Introduction
Intravascular catheter- (IVC-) related infections lead to high morbidity and mortality 

for patients, and increase costs of health care.1 Infections develop when microorgan-

isms adhere to catheter surfaces and produce extracellular substances that facilitate 

adhesion (and provide a structural matrix) for forming biofilms.2 Following biofilm 

development, microbial cells from the biofilm maturate and can periodically disperse 

into the bloodstream, causing serious infections.2 Biofilms are resistant to host defence 

mechanisms and antibiotic agents, making the treatment of catheter-related infections 

more challenging. In order to prevent catheter-related infections, a large number of 

strategies and approaches have been developed, including strict hygienic procedures 

during catheter insertion and use; total or partial (tunneling) implantation of long-term 

catheters; surface modification of catheter biomaterials with antimicrobial coatings or 

impregnation; and antibiotic or antimicrobial locking solutions.2 However, it remains 

impossible to achieve a completely anti-adhesive catheter material since catheter sur-

faces can be rapidly covered by plasma and matrix proteins, on which bacteria display 

specific adhesions. The challenge of biofilm-related infections remains. Nanotechnolo-

gies, especially nanomaterials, are one of the more promising new strategies that aim 

to prevent biofilm infections in patients with IVCs.
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This review will summarize current knowledge about 

catheter-related bloodstream infections (CRBSIs), as well as 

the nanotechnologies in use, or in development, to prevent 

catheter-related infections occurring due to colonization and/

or biofilm formation on catheter surfaces. We also discuss 

the knowledge gained from microbial research in other 

medical and non-medical applications that may be helpful 

to understanding the IVC context. In addition, published 

theories and data regarding microbial colonization and bio-

film development, specifically related to IVCs, are reviewed. 

This review aims to provide baseline information for the 

future development of new and effective strategies to prevent 

catheter-related infections.

Catheter technologies  
and catheter design
Intravenous catheters have evolved considerably, from the 

early prototypes of goose quill, silver, glass, and steel tubes, 

to modern day polyurethane- and silicone-based models. 

The ideal catheter exhibits a high tensile strength, is soft 

and pliable, inherently chemical-resistant, biocompatible, 

and meets flow requirements. Common catheter materials 

include polyurethane, silicone, polyethylene and Teflon®. 

A comparison of the relevant characteristics of these catheter 

materials is shown in Table 1. Polyurethane catheters are 

now often the preferred material. They are highly biocom-

patible (therefore, well-tolerated by patients), compatible 

with the majority of drugs, and resistant to many chemi-

cals.3 Nevertheless, the repeated application of alcohol-

based cleaning agents potentially can perish the catheter. 

Polyurethane is thromboresistant, and softens within the 

body. Therefore, mechanical trauma and irritation within 

the vein are reduced, compared against harder materials.4 

Other advantages of polyurethane are its tensile strength, 

multiple lumens, and smaller external diameters, which 

maximize blood flow in a vessel with catheter. Modern 

polyurethane catheters are now available as semirigid yet 

flexible materials, often used for short-term catheter access. 

They are sufficiently stiff for percutaneous insertion over a 

wire without splitting the sheath, yet soften in the body after 

insertion. Silicone catheters are also biocompatible and com-

patible with most drugs, as well as alcohol-based cleaning 

solutions, although they can be damaged by peroxide and 

some povidone-iodine solutions. Silicone is soft, pliable, and 

thromboresistant,4 but it has limited tensile strength, result-

ing in easy rupture, and it requires a restricted infusion flow 

pressure.5 Silicone catheters need insertion through a sheath 

or cannula. Other IVC materials such as polyethylene and 

Teflon® (tetrafluoroethylene-hexafluoropropylene) are less 

favorable catheter materials, and have nearly been replaced 

by polyurethane and silicone, since they are less biocompat-

ible, stiffer, and have poor flexibility.4 Teflon has also been 

shown to have higher infection rates, compared against the 

other three catheter materials.6

There are numerous types of IVC, with varying designs, 

for different functional requirements and durations of use. 

Short-term central venous catheters are usually made of 

polyurethane.7 They are relatively short tapered, open-ended 

mutilumen catheters, used for 3–10 days. Long-term central 

venous catheters may be used for months or years, and have 

a catheter portion “tunneled” or “cuffed” under the skin. 

Alternatively, totally implanted “ports” may be implanted 

into a central vein, and periodically accessed using a needle, 

for long-term therapy. Small, peripheral venous or arterial 

catheters are single lumen, and are also commonly made of 

polyurethane. Midline catheters are single or dual lumen, 

predominantly composed of silicone, and are used for 

2–4 weeks.8 Peripherally-inserted central catheters (PICCs) 

can be made of polyurethane or silicone, with single to 

triple lumen types available. They are recommended for 

mid-term therapy: from 6 weeks to 1 year.9 PICCs can be 

valved or non-valved. Non-valved PICCs are open-ended 

and require regular positive flushing after use, to prevent 

blood backflow causing occlusion.10 Valved PICCs contain 

a pressure-sensitive valve at the side of the distal end, which 

allows both fluid infusion and blood aspiration;10 therefore, 

Table 1 Comparison of catheter material characteristics

Polyurethane Silicone Polyethylene Teflon®

Biocompatiblity Excellent Excellent Fair Fair
Stiffness Softens in body Soft Stiff Stiff
Ease of insertion Difficult Fair Easy Easy
Ease of modifying Fair Easy Difficult Difficult
Tensile strength Excellent Fair Excellent Excellent
Flexibility Fair Excellent Poor Poor
Coefficient of friction Excellent Fair Good Excellent
Infection rate Low Fair High High
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heparinized flushes are not required. Hemodialysis catheters 

are composed of silicone or polyurethane and can be cuffed, 

or non-cuffed, depending on the duration of usage. These 

catheters have large bores and relatively stiff constructions, 

to avoid wall collapse under negative pressure from pumped 

systems.11 The lumen has one end-hole and multiple side 

holes, to improve flows and mixing of blood. Two function-

ally separate catheters can be inserted in parallel, their tips 

lying slightly separated, in the same vein.11 Alternatively, 

a combined dual or triple lumen catheter can be used, which 

has a staggered design: one lumen positioned 3–5 cm above 

the other, to prevent recirculation of treated blood. To prevent 

thrombotic events occurring within this type of catheter, 

heparin locks are essential. Late catheter malfunction is often 

the consequence of fibrin deposition around the catheter tip – 

an unpredictable process, but one that occurs more frequently 

in some patients and less frequently in others.11

Catheter-related bloodstream 
infection
The use of IVCs is essential for the successful management 

of critically and chronically ill patients.12 However, CRB-

SIs have become a leading cause of health care-associated 

bloodstream infections, and are associated with substantial 

morbidity and mortality.13 More than 250,000 CRBSIs occur 

annually in the USA, with an attributable mortality ranging 

from 12%–25% in critically ill patients, and with an added 

cost ranging from US$4,000–$56,000.14,15

CRBSI is defined as 1) fever and other clinical manifes-

tations of bloodstream infection in a patient with an IVC; 

2) the presence of positive simultaneous quantitative blood 

cultures from the IVC and the peripheral vein, yielding the 

same organism; 3) no apparent source for the bloodstream 

infection, other than the catheter; and 4) positive semi-

quantitative catheter tip cultures with 15 colony forming 

units (CFUs) of the same microorganisms as isolated from 

the blood cultures. Alternatively, CRBSI can be diagnosed 

through simultaneous quantitative blood cultures, whereby 

the number of colonies isolated from the blood drawn through 

the IVC is at least three times greater (ratio: $3:1) than the 

number of colonies isolated from blood drawn via a periph-

eral vein, or from one of two different lumen-drawn blood 

cultures from multi-lumen catheters (“possible CRBSI”).1 

The differential between time-to-positivity of peripherally-

drawn blood cultures of $2 hours growth, and simultaneously 

drawn peripheral venous blood cultures, is also diagnostic 

of CRBSI.1

CRBSI most frequently develops in seriously ill patients 

admitted to hematology-oncology and intensive care units 

(ICUs) of acute care hospitals. The most commonly reported 

causative pathogens for CRBSI are coagulase-negative staph-

ylococci, Staphylococcus aureus, enterococci, and Candida 

spp. (Table 2).16,17 According to the US Centers for Disease 

Control and Prevention’s database, approximately 19% of 

CRBSI cases involve gram-negative bacilli.18 Antimicrobial 

resistance is a concern with all pathogens responsible for 

CRBSIs. It has been demonstrated that methicillin-resistant 

S. aureus (MRSA) accounts for more than 50% of all S. 

aureus isolated in ICUs – although the incidence of CRBSI 

caused by skin organisms (particularly MRSA) in ICUs 

has decreased in recent years, due to coordinated efforts in 

many countries to improve sterile insertion procedures to 

prevent insertion-related contamination of central venous 

catheters.16,17 By contrast, with regard to gram-negative rods, 

Table 2 Incidence rates of most commonly isolated pathogens from MNBSIs, and associated crude mortality rates, for patients in ICU 
and non-ICU wards 17

Pathogen CRBSI per 10,000  
admissions

Percentage of CRBSI Crude mortality (%)

Total 
(n=20,978)

ICU 
(n=10,515)

Non-ICU ward 
(n=10,442)

Total ICU Non-ICU 
ward

Coagulase-negative  
Staphylococcus

15.8 31.3 35.9 26.6 20.7 25.7 13.8

S. aureus 10.3 20.2 16.8 23.7 25.4 34.4 18.9
Enterococcus spp. 4.8 9.4 9.8 9.0 33.9 43.0 24.0
Candida spp. 4.6 9.0 10.1 7.9 39.2 47.1 29.0
Escherichia coli 2.8 5.6 3.7 7.6 22.4 33.9 16.9
Klebsiella spp. 2.4 4.8 4.0 5.5 27.6 37.4 20.3
Pseudomonas aeruginosa 2.1 4.3 4.7 3.8 38.7 47.9 27.6
Enterobacter spp. 1.9 3.9 4.7 3.1 26.7 32.5 18.0
Serratia spp. 0.9 1.7 2.1 1.3 27.4 33.9 17.1
Acinetobacter baumannii 0.6 1.3 1.6 0.9 34.0 43.4 16.3

Abbreviations: MNBSI, monomicrobial nosocomial blood stream infection; ICU, intensive care unit; CRBSI, catheter-related bloodstream infection. 
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the incidence of antimicrobial resistance to third-generation 

cephalosporins among Klebsiella pneumonia and Escherichia 

coli is increasing significantly, along with imepenem and 

ceftazidine reistance among Pseudomonas aeruginosa.18

It is believed that there are four pathways for bacteria to 

enter into the sterile bloodstream and cause catheter-related 

infections.16 The first is extraluminal contamination of the 

catheter with skin organisms, occurring during insertion, 

or migration of such organisms down the catheter tract 

while it is in place. This is the most common infection route 

for short-term catheters. The second route is intraluminal, 

involving contamination of catheter hubs and connectors 

through contact with the hands of hospital staff who use the 

catheter to install medicine or take blood. The third route is 

direct contamination of the catheter by bacteria circulating 

in the bloodstream; for example, following translocation of 

gastrointestinal flora through the intestinal wall. The fourth 

pathway is through contaminated infusate, which may occur 

at the manufacturing stage (intrinsic contamination), or 

during manipulation by health care staff when preparing or 

administering fluids (extrinsic contamination).

If contamination occurs, the initial microbial attach-

ment of bacteria onto the inner and outer surfaces of IVCs 

is almost inevitably followed by biofilm development and 

maturation, which is followed by dispersion of microbial 

cells from the biofilm into the bloodstream, causing CRBSI. 

Microorganisms embedded in biofilms typically present 

phenotypic and genotypic characteristics different to those 

grown planktonically.19 They are able to obtain and concen-

trate a number of different nutrients from the environment.19 

They are resistant to a number of antimicrobial agents, not 

only because the antimicrobials cannot penetrate into all the 

biofilm layers, but also because the organisms grow slowly 

and may then be resistant to immune defence mechanisms.20 

The biofilm mode can also facilitate dissemination of 

organisms. Furthermore, microorganisms may exhibit dif-

ferent virulence phenotypes when growing within a biofilm; 

these phenotypes may not have been detected from IVCs in 

the past, because traditional hospital diagnostic tests, such 

as the semiquantitative roll-plate technique, used to culture 

catheter tip segments, involve growth of organisms on 

rich nutrient media, under planktonic conditions.21 Rather 

than being amorphous aggregates, biofilms are complex, 

structured communities in which physiological conditions, 

such as nutrient and oxygen availability, vary at differ-

ent depths.22 Therefore, the microorganisms at different 

depths are phenotypically, morphologically, and function-

ally different. Once biofilm infection occurs, the host will 

establish an immune response to antigens released from the 

biofilm. However, not only may the host’s immune system 

fail to eradicate the biofilm, it may also result in damage to 

surrounding tissues.

The pathogenesis of fibrin sheath formation from bio-

films is still not understood. After biofilm formation, fibrin 

and many other molecules, such as laminin, collagen, and 

even muscle cells, convert the biofilm to a mature sheath.23 

Metallic cations, such as magnesium, calcium, and iron, may 

stabilize the biofilm and facilitate biofilm development and 

bacterial growth.24 Catheter thrombosis on the fibrin sheath 

may be facilitated by platelet activation, decreased levels of 

protein C and antithrombin III, hyperfibrinogenemia, and 

homocysteine elevation. It has been demonstrated that the 

presence of catheter-related thrombosis increases the risk 

of CRBSI.25,26 Many patients require long- term IVCs, and 

attempts have been made to treat CRBSI without removing 

the IVC, with variable results. However, as understand-

ing of biofilm structure and function develops, it is clear 

why often the only solution to an infected IVC is catheter 

removal, which brings increased hospital costs, additional 

painful invasive procedures for patients, and interruption to 

medical therapy.

There are numerous recommended preventive strategies 

for clinicians to avoid CRBSIs, and these are supported by 

varying levels of evidence for their effectiveness. Strategies 

include issues of education, training, and staffing among 

health care providers who insert and maintain IVCs; selection 

of catheters and sites; hand hygiene and aseptic technique; 

maximal sterile barrier precautions on insertion; pre-

insertion skin preparation; catheter site dressing regimens; 

patient cleansing (bathing); catheter securement devices; 

antimicrobial/antiseptic impregnated catheters (for .5 day 

catheters, if other education-based interventions have not 

been effective); antibiotic/antimicrobial ointments for dialy-

sis catheter sites; antimicrobial lock solutions for patients 

with repeated CRBSI and long-term IVCs; at least weekly 

replacement of IV infusion tubing; disinfection of needle-

less connectors prior to use; and replacement of connectors 

at least every 72 hours.16

The majority of recommended CRBSI prevention strate-

gies target improved clinical practices among hospital staff, 

rather than technological approaches. The most successful 

development in recent years has been the implementation 

of central venous catheter “care bundles”, which are qual-

ity campaigns targeting CRBSI in ICUs. Such initiatives 

comprise simultaneous implementation, and focus on con-

sistent use of, five best practice procedures, in the context 
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of key stakeholder championship, with ongoing audit and 

feedback of infection rates to staff. Numerous national and 

international campaigns have been launched, stemming 

from the successful Keystone ICU Project in Michigan, 

USA.27 The bundles focus predominantly on the insertion 

procedure, including hand hygiene and maximal sterile bar-

rier precautions by the inserter; decontamination of the skin 

site pre-insertion (with 2% chlorhexidine gluconate in 70% 

alcohol); avoidance of the femoral insertion site, if possible; 

and removal of unnecessary IVCs. It is widely agreed that 

such campaigns have greatly reduced, but not eliminated, 

CRBSIs, particularly those stemming from extra-luminal 

contamination, occurring during the insertion procedure.16 

There is a resultant need to now focus on maintaining those 

successful infection-prevention practices, and extending 

them outside of the ICU setting, while adding improvements 

in post-insertion care, to focus on intraluminal colonization-

related infections.28

Nanotechnology
The foundation material of the IVC can also be coated or 

impregnated with antibiotic or antiseptic agents, to reduce 

the risk of CRBSIs. Despite significantly higher initial 

purchase costs, such catheters have been associated with an 

overall decrease in hospital costs associated with treating 

CRBSIs. Comparing infection rates of non-impregnated 

and impregnated catheters, results indicate that impregna-

tion could reduce catheter-related infection rates in various 

settings and countries (Table 3). However, concerns exist 

about the potential for development of antimicrobial/anti-

biotic resistance. Currently, antiseptic/antibiotic catheters 

are only recommended for short-term use if the CRBSI 

rate does not decrease, despite adherence to basic preven-

tion measures.29 While antiseptic/antibiotic-impregnated 

intravascular catheters have been shown to decrease the 

rate of CRBSI in patients with short-term catheters, the 

benefit in patients with long-term catheters remains unclear. 

There is additional concern about the potential to generate 

multidrug-resistant organisms. In all, none of these strate-

gies seems able to totally prevent CRBSIs; nanotechnology 

might bring new hope.

The use of antimicrobial agents was extended to IVC 

dressing. In one randomized multicenter assessor-blind 

trial, 1,636 patients with catheter dressings, with or 

without chlorhexidine-impregnated sponges as part of 

the standard, transparent, semipermeable polyurethane 

IVC dressing, were evaluated.30 A total of 3,778 catheters 

were enrolled (28,931 catheter-days). The chlorhexidine- 

impregnated sponge dressings decreased rates of major 

catheter-related infections (0.6 per thousand catheter-days 

versus [vs] 1.4 per thousand catheter-days; hazard ratio 

[HR], 0.39; 95% confidence interval [CI], 0.17–0.93 

Table 3 Rates of catheter-related colonization and bloodstream infection associated with non-impregnated and antiseptic/antibiotic-
impregnated intravascular catheters

Catheter type Study Country Setting Number Catheter  
colonization

Catheter-related  
bloodstream  
infection

Non-impregnated Hanna et al37 USA Single center 174 n/a 14 (8.0%)a

Ostendorf et al34 Germany Single center 94 31 (33%) 7 (7%)b

Jaeger et al102 Germany Single center 55 9 (16.4%) 8 (14.5%)c

Sheng et al103 Taiwan Single center 122 25 (20.5%) 2 (1.6%)d

Lorente et al104 Spain Single center 287 n/a 12 (4.18%)e

Impregnated with
  Silver sulfadiazine/chlorhexidine Walder et al33 Switzerland Multiple centers 1,544 n/a 65 (4.2%)

Ostendorf et al34 Germany Single center 90 11 (12%) 3 (3%)b

Jaeger et al102 Germany Single center 51 5 (9.8%) 1 (1.96%)c

Darouiche et al36 USA Multiple centers 382 87 (22.8%) 13 (3.4%)f

  Minocycline/rifampin Darouiche et al36 USA Multiple centers 356 28 (7.9%) 1 (0.3%)f

Hanna et al37 USA Single center 182 n/a 3 (1.65%)a

Sheng et al103,d Taiwan Single center 113 9 (7.1%) 1 (0.9%)d

Lorente et al104 Spain Single center 238 n/a 0e

Notes: aOdds ratio for CRBSI (catheter-related bloodstream infection): 0.1 for minocycline/rifampin, compared against non-impregnated catheters; P,0.001; bodds ratio 
for colonization: 0.36 silver sulfadiazine/chlorhexidine-impregnated, compared against non-impregnated catheters; P=0.01. No significant differences for CRBSI; codds ratio 
for colonization: 0.46 silver sulfadiazine/chlorhexidine-impregnated, compared against non-impregnated catheters; P=0.035. Odds ratio for CRBSI: 0.12 silver sulfadiazine/
chlorhexidine-impregnated, compared against non-impregnated catheters, P=0.02; dodds ratio for colonization: 0.34 silver sulfadiazine/chlorhexidine-impregnated, compared 
against non-impregnated catheters; P=0.006. No significant differences for CRBSI; eodds ratio for CRBSI: 0.13 for minocycline/rifampin, compared against non-impregnated 
catheters; P,0.05; fodds ratio for colonization: 0.31 for minocycline/rifampin, compared against silver-sulfadiazine/chlorhexidine impregnated catheters; P,0.001. Odds ratio 
for CRBSI: 0.08 for minocycline/rifampin, compared against silver-sulfadiazine/chlorhexidine impregnated catheters; P,0.0001.
Abbreviation: n/a, not available.
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per thousand catheter-days; P=0.03) and CRBSIs (0.40 

per thousand catheter-days vs 1.3 per thousand catheter-

days; HR, 0.24;CI, 0.09–0.65 per thousand catheter-days; 

P,0.001).30 A randomized controlled study of a chlorhex-

idine-impregnated sponge dressing in 74 children showed 

that it could reduce the rates of catheter colonization (HR, 

0.61; CI, 0.3716–1.023; P=0.0446), but there was no 

statistical difference in CRBSIs when compared with no 

antimicrobial dressings.31 One possible reason is that the 

study was underpowered to detect these differences.

Catheters whose outer surfaces are impregnated with 

chlorhexidine and silver sulfadiazine have been confirmed to 

reduce the risks of CRBSIs.32 They remained effective when the 

median duration of insertion time was less than 7 days (median, 

6 days; interquartile range [IQR] 5.2–7.5 days) compared 

with control catheters (median 12 days; IQR 7.8–20 days).33 

Second-generation catheters are manufactured with chlor-

hexidine coating on the internal surfaces, extending into the 

extension set and hubs, while the external luminal surface is 

coated with chlorhexidine and silver sulfadiazine.34,35 Although 

it has been shown that second-generation catheters can reduce 

catheter colonization, a significant decrease of the CRBSI rate 

was not detected.34,35 Catheters impregnated with minocycline 

and rifampin on external and internal surfaces were associated 

with lower risks of CRBSI, compared against catheters with 

external coating of chlorhexidine and silver sulfadiazine.36 

Silicone catheters impregnated in both the external and internal 

surfaces with a combination of minocycline and rifampin can 

decrease the rate of CRBSIs, compared against controls, even 

with an average dwell time of 60 days.37 No correlation has 

been shown between the usage of minocycline- and rifampin-

impregnated catheters and the development of antimicrobial 

resistance, or the selection of resistant flora.

Thrombus proteins can also increase bacterial attachment 

on IVCs, and have been associated with CRBSIs. It has been 

shown that the formation of a fibrin sheath around the catheter 

greatly increases catheter colonization.38 Heparin-coated 

catheters were reported to be able to decrease thrombosis, 

and the risks of CRBSIs.39 However, the potential benefits 

of heparin, or heparin-coated catheters, must be balanced 

against the small, but important, risk of heparin-induced 

thrombocytopenia. Because heparin solutions contain pre-

servatives with antimicrobial activity, it is unknown whether 

a decrease in the CRBSI rate is due to decreased thrombus 

formation, or due to the preservative.

Many metal ions have antimicrobial activity. Among 

these, silver has the highest level of toxicity for microor-

ganisms and the lowest toxicity for animal cells.40 Silver 

nanoparticles are clusters of silver atoms that exhibit strong 

bactericidal activity, against both gram-positive and gram-

negative bacteria.41 Silver ions can inhibit replication of 

bacteria (through binding to the microbial DNA) and/or 

switch off important enzymes, leading to microbial death 

(Figure 1).42 It has also been suggested that silver nanopar-

ticles could prevent biofilm formation, since they have an 

affinity for proteinaceous compounds, where they combine 

with the sulfhydryl group, inducing protein denaturation 

and corresponding enzyme inactivation.43 As yet, silver 

nanoparticles have not been shown to cause microbial resis-

tance, in contrast to increasing microbial resistance towards 

many traditional antimicrobial agents, and the consequent 

development of resistant strains. A possible explanation is 

Bacterium

Bacterium takes up Ag+
Bacterium damaged

Bacterium destroyed

Figure 1 Mechanisms of silver ions against bacterium.
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that silver nanoparticles do not only exert their antibacterial 

effects at a particular site, but at several locations, such as 

the bacterial wall, during proteosynthesis, and in DNA.41 

Silver nanoparticle-coatings could exert their antimicrobial 

properties in vivo, by slowly releasing silver ions.44 Silver 

nanoparticles enable a constant local supply of silver ions at 

the coating–tissue interface, and also allow improved contact 

with the microorganisms.45 Therefore, the prevention of 

microbial adhesion and biofilm formation is more prolonged 

than with other antimicrobial approaches. Thus, IVC coating 

with silver nanoparticles could protect both outer and inner 

surfaces of catheters through continuous release of silver 

ions, to provide antimicrobial activity.

In addition to use in catheters, nanotechnology offers 

promise in reducing post-insertion intraluminal IVC coloni-

zation related to staff handling of IVC needleless connectors. 

Needleless connectors are used to cap off IVCs temporarily 

not in use, to connect infusion administration sets to the 

catheter, and to provide an access point for administration 

of medicines and withdrawal of blood specimens. Recently, 

connector devices have increasingly attracted the attention 

of commercial manufacturers and researchers alike.46 Many 

such devices have recently entered the market, with a variety 

of internal engineering. Some needleless connectors incor-

porate a valve, to prevent backflow of blood and intravenous 

fluids into the connector, which aims to prevent catheter 

occlusion or thrombosis.47,48 However, many studies suggest 

that some valved needleless connectors actually increase the 

risk of CRBSI. Jarvis et al compared split septum needleless 

connectors against mechanical valve-type needleless connec-

tors, and demonstrated that mechanical valve needleless con-

nectors have higher CRBSI rates, despite similar bloodstream 

infection surveillance, definitions, and prevention strategies.49 

One investigation found CRBSIs increased after a switch 

from a negative fluid displacement to a positive displacement 

mechanical valve.50 However, in another observational study, 

a switch from a negative displacement mechanical valve to 

a different, luer-activated positive displacement mechanical 

valve led to a significant decrease in CRBSIs.51 Definitive 

reasons for these sometimes conflicting results with different 

types of needleless connectors are still unknown. Regardless 

of their make, frequent handling, and accessing of catheter 

hubs by staff, needleless connectors and injection ports have 

great potential to put patients at risk of primary bloodstream 

infections, since they facilitate entry of bacteria into the con-

nector and fluid path.52 Research from Donlan et al showed 

a high incidence of biofilm formation on the interior surface 

of valved connectors that had been used clinically.53

As a consequence, increasing numbers of studies are 

being added to the literature on reducing CRBSIs, related to 

use of needleless connectors. It has been shown that exter-

nal disinfection of the devices with chlorhexidine/alcohol, 

rather than alcohol alone, can reduce IVC colonization.47,54 

In addition, the time spent on applying the disinfectant is 

important. Results from one study suggest that wiping the 

connector with 70% isopropyl alcohol for 3–5 seconds did 

not adequately disinfect the septal surface.55 Many studies 

have also shown that conventional disinfection may not be 

able to prevent entry of microorganisms, if significant con-

tamination of the membranous septum is present prior to the 

injection or infusion of fluids.56,57

A novel silver nanoparticle-coated connector has been 

introduced recently. Designed as a single use, disposable 

valved connector, it is constructed of polycarbonate. However, 

with the exception of the silicone membranous septum, the 

entire surface of the connector, including the entirety of the 

internal fluid path and the external casing, has a silver nano-

particle coating.46 Silver nanoparticles are stably imbedded 

in the polycarbonate matrix, and release minute quantities of 

bactericidal ionic silver from the surface, into the fluid path.46 

Simulation studies have shown that the total amount of ionic 

silver eluted into the fluid pathway (with continuous infusion), 

and infused into the patient, is far less than the level of silver 

exposure considered to pose a risk to human health.58,59 Most 

of the silver absorbed is excreted in feces and urine. Therefore, 

silver nanoparticle coating might be safely applied, to prevent 

contamination and the formation of biofilm on the internal 

surface IVCs. This has great potential to reduce the risk of 

CRBSI, but has not yet been studied in clinical trials. In 2010, 

Maki examined the efficiency of a silver nanoparticle-coated 

connector, compared against non-medicated connectors, in 

reducing fluid path colonization, by filling these connectors 

with six bacteria: Staphylococcus epidermidis, methicillin-

resistant Staphylococcus aureus, vancomycin-resistant 

Enterococcus, Enterobacter cloacae, Pseudomonas aerugi-

nosa, amd Candida albicans.46 After 24 hours and 72 hours 

of incubation, the remaining viable microorganisms were 

quantified, and compared with concentrations in control 

connectors. The biofilm formation of Enterobacter cloacae 

on silver nanoparticle-coated connectors was also examined, 

concluding that more than 99% of bacteria were killed and 

biofilm formation was also completely suppressed.46 However, 

human bodies are much more complex than the models used 

in these studies, and large clinical trials are required to assess 

the clinical efficacy and safety of silver nanoparticle-coated 

connectors for preventing CRBSIs.
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Another advance could be in the use of liposomes, which 

are artificially prepared vesicles, made of a lipid biolayer, 

that can be used as drug carriers, especially against coloniz-

ing microorganisms. Liposomes can target the matrix (or 

biofilm) by specific attachment, allowing drugs to be released 

in the vicinity of the microorganisms (although, in the case 

of microbial cell adhesion to human cells, there is a need for 

further knowledge regarding the ability of this system to pre-

vent microbial adhesion but not affect adhered native cells).60 

Therefore, this nanotechnology is a promising research area, 

but it requires more research to fully understand the mecha-

nism behind the antimicrobial activity. However, several 

non-clinical studies have been performed on the interaction 

between liposomes and bacterial biofilms. Halwani et  al 

showed that liposomes were very effective in eradicating 

antibiotic-resistant P. aeruginosa isolates growing in a 

planktonic or biofilm community.61 DiTizio et al developed 

a liposomal hydrogel system that significantly reduced bacte-

rial adhesion to silicone catheters. The system consists of a 

polyethylene glycol–gelatin hydrogel, in which liposomes 

containing the antibiotic ciprofloxacin are sequestered.62 

Liposomal antimicrobial lock therapy can potentially be 

considered as a possible alternative to catheter removal.63 

This technique opens new perspectives for the development 

of novel antimicrobial catheters.64

Polymer drug delivery systems are based on nanocarriers 

that are formed by mixing polymeric chemical compounds 

with drugs, to form large and complex molecules that carry 

the drug across physiological barriers.65 Polymeric micro-

spheres, polymer micelles, and hydrogel-type materials have 

been shown to be effective nanocarriers, for enhancing drug 

targeting specificity, lowering systemic drug toxicity, improv-

ing treatment absorption rates, and providing protection for 

the pharmaceuticals against biochemical degradation.66 In 

addition, this system has the possibility to add a pore-forming 

polymer, which can increase the amount of drug able to be 

loaded into the carrier.67 It has been shown that polymeric 

matrices can be mixed with different antimicrobial agents 

to prevent bacterial colonization and biofilm formation on 

medical devices.65 This system possesses features that are 

potentially amenable to the manufacture of antimicrobial 

medical devices, including IVCs.68 However, in vivo studies 

are yet to be performed, to test the efficacy of this antibiotic 

delivery carrier system in reducing bacterial colonization 

and biofilm formation on catheters.

The use of bacteriophages to control CRBSIs caused by 

biofilms has advantages over treatment with other conven-

tional antimicrobial agents, since phages have very strong 

bactericidal activity and can replicate at the site of infection.69 

It was reported that a progeny phage could treat a biofilm 

formation, due to its ability to propagate radially throughout 

a biofilm phage, to infect adjacent cells, and degrade the bio-

film matrix (Figure 2).70 In addition, it has been demonstrated 

that some phages are able to produce enzymes that hydrolyze 

and degrade the extracellular polymeric matrix of biofilms 

(Figure 2).70 A phage active against S. epidermidis, incor-

porated into a hydrogel coating on a catheter, significantly 

reduced biofilm formation on catheter surfaces.71 Recently, 

Fu et al studied the effect (in vitro) of pre-treating hydrogel-

coated catheters with P. aeruginosa phages, and observed 

a significant reduction of biofilm formation.72 This shows 

that the combination of two nanotechnological approaches 

can further reduce IVC biofilm formation72. However, prior 

to the use of a phage in humans, there are other aspects to 

be considered, such as, bacterial resistance to phage, phage 

inactivation by the human immune system, endotoxins in 

impure phage, and virulence genes encoded by the phage 

that can be incorporated into the host bacterial genome.70 The 

application of phage mixtures, or engineered phages, might 

provide better solutions for these problems.

The bioelectric effect is an approach that uses electri-

cal current to prevent biofilm formation and to enhance the 

activity of antimicrobials against established biofilms.73 The 

activity of antimicrobial agents against biofilm microorgan-

isms is enhanced through a relatively weak and continuous 

electrical current.73 However, there are few published in 

vivo studies on using electrical current to prevent medical 

device-related infection. Del Pozo et  al introduced a new 

concept – the electricidal effect – by demonstrating dose- and 

time-dependent killing of S. epidermidis biofilms after pro-

longed exposure to low-intensity direct electrical current.74 

The electricidal effect was also tested in vivo, in a rabbit 

model of S. epidermidis chronic foreign body osteomyelitis, 

which confirmed the bactericidal activity of low amperage 

electrical current against bacterial biofilms.75 These results 

highlight the possibility of applying this therapy to different 

medical devices, including IVCs.

Safety and tolerability
The fundamental safety of health care technology is estab-

lished by the manufacturer, and certified by the relevant 

national regulatory body for medical drugs and devices (eg, 

Australian Therapeutic Goods Administration, US Food and 

Drug Administration, UK Medicines and Healthcare products 

Regulatory Agency). Efficacy in the clinical setting is tested 

in trials, as described earlier in this paper. However, the safety 
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of any device in the clinical setting also relies on adherence 

to the manufacturer’s guidelines, and competency of the end 

user: the clinician. Sadly, a plethora of research has identified 

a common, large variability in clinical practice and outcomes, 

when it comes to IVC insertion and aftercare.76–80

Improved patient outcomes for IVC insertion have been 

associated with dedicated IVC teams, and clinicians with 

improved skills and increased competencies, as a conse-

quence of effective training and procedural volume.81–84 

In addition, research has demonstrated that clinicians with 

minimal experience of inserting central venous catheters have 

a higher risk of complications arising.85 Improving and stan-

dardizing IVC practices, using multi-modal interventions, 

has demonstrated a significant reduction in infection rates 

(2.7 per thousand catheter-days reduced to 0 per thousand 

catheter-days, at 3  months post-intervention; P#0.002) 

(7.7 per thousand catheter-days reduced to 1.4 per thousand 

catheter-days, at 18 months post-intervention; P#0.002).27 

Furthermore, the results of a prepost study of a post-insertion 

bundle of evidence-based cares, such as appropriate dress-

A

B

Pretreatment

Post-treatment

Phage

Bacterial cell

Cell lysis and
release of progeny

phage

Cell lysis and
release of progeny

phage
Detached 

biofilm cells

Hydrolysis of 
biofilm EPS by

phage-produced
deploymerase

Catheter

Biofilm EPS

Hydrogel
containing

phage

Biofilm treated with phage

Catheter

Figure 2 Mechanisms of hydrogel catheter coated with phage on (A) prevention of bacterial attachment on its surfaces, and (B) treatment of existing biofilm on catheter 
surfaces.
Note: Reprinted from Trends Microbiol, 17, Donlan RM, Preventing biofilms of clinically relevant organisms using bacteriophage, 66–72, Copyright (2009), with permission 
from Elsevier.70 
Abbreviation: EPS, extracellular polymeric substance.
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ings, suggested a reduction in CRBSI from 5.7 per thousand 

catheter-days to 1.1 per thousand catheter-days.28 Another 

study, on the impact of the introduction of evidence based 

guidelines on peripheral venous catheter practice, was also 

associated with a reduction in infection rates, as well as with 

other improvements, including: completed insertion records 

(76% vs 58%; P,0.01), correct and sterile fixation localized 

(92% vs 80%; P,0.05), and catheter complications (4% vs 

15%; P,0.01).86

The significance of these studies is that they demon-

strate the positive impact of evidence-based “best prac-

tice” principles and systems, in guiding the insertion and 

care of IVCs. However, ensuring clinician understanding, 

acceptance, and adherence to recommended practice is 

challenging beyond the trial research setting. It involves 

a careful and strategic combination of staff education and 

the implementation of systems that promote best practice. 

Staff need to be educated not only about the clinical prob-

lem and related risks, but also about research methodol-

ogy and levels of evidence. However, in acknowledging 

the difficulty of achieving adequate compliance levels in 

practice, and understanding the fallibility of humans, we 

need to minimize risk and harm through forced decision 

making systems, or use of technology and equipment 

that negate clinician choice, and error (eg, central venous 

catheter insertion trolleys, or pre-filled flush syringes) 

and protect the patient (eg, impregnated catheters and 

nanotechnology).

Some clinicians, and even academics, believe that 

increased use of guidelines or standardized systems reduces 

and devalues clinical judgment. But, accompanying the 

freedom of clinical judgments is the risk of inappropriate 

judgment and error.87,88 Clinical judgment is not adequately 

accounted for in a systems analysis approach that may 

oversimplify health professionals’ choices, and so, within 

clinical practice. a tradeoff exists between forced choice and 

free-thinking design.89

Patient-focused perspectives
The financial cost of treating CRBSI is well documented. 

The US Institute for Healthcare Improvement has quanti-

fied the extra cost associated with each CRBSI episode at 

US$25,000–$55,000,  which included an extension of the 

admission by 7  days, on average. The CRBSI-associated 

mortality rate ranges between 12%–25%.90 However, the 

“cost” to patients is less well documented. What is the 

impact of extended hospital stay (sometimes in isolation), 

the discomfort associated with local and systemic infection 

and related treatment, including ongoing surveillance and 

laboratory and radiological examinations?

There is a paucity of research describing the impact of 

CRBSI on the individual patient. Studies that have explored 

patients’ experiences of being nursed in single room isolation, 

due to infection while in hospital, have identified adverse 

effects including boredom, lowered or disturbed mood, and 

feelings of stigma, along with anxiety about passing the infec-

tions to relatives and carers.91–94 An integrated review of nine-

teen studies that explored patients’ experiences of infection 

and/or isolation identified some key common themes. These 

included a perceived lack of consistent information about the 

infection, poor understanding of the infection by health care 

staff, associated fear and stigma, and isolation.95

One small, qualitative study explored the patients’ 

experiences of CRBSI.96 In this study patients (n=18) were 

somewhat confident about asking staff about health care-

associated infection and related infection control issues. But, 

on the whole, patients were reluctant to question or challenge 

staff, because they did not want to alienate themselves. Most 

patients stated that they received little or no information about 

their infection, until later in their admission, if at all. Patients 

believed that low staffing levels, the use of temporary (bank) 

nursing staff, and poor cleanliness were causes of infection. 

While some patients were resigned to the potential risk of 

acquiring an infection in hospital, others dreaded it. There 

was no discussion about how each patient experienced the 

infection itself, its treatment, and sequelae.

There are few studies also to have examined patient 

experience of intravenous (IV) therapy or devices. An 

older paper discussed the potential stress associated with 

IV therapy, and suggested a number of potential causes, 

using case studies as references.97 The author identified three 

principal sources of anxiety about IV therapy: fear of pain, 

fear of needles, and fear of confinement. Having identified 

these factors, the author proposed a range of strategies and 

approaches for minimizing the stress. These included projec-

tion of confidence and competence by the clinician inserting 

or caring for the IV device, and the use of diversion tactics, 

for some patients, or detailed explanations of the procedure, 

equipment, and implications of therapy, for others.

Other research about the patient experience of IV therapy 

and devices comes from the community setting.98–101 In a US 

study conducted using interviews, patients spoke positively 

about the independence and autonomy that home-based 

IV therapy afforded them, compared against regular in-

hospital treatment. They valued the expertise and support 

of clinicians associated with the service. But patients also 
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reflected on the inflexibility of some clinicians and/or guiding 

protocols, and (sometimes) the use of “blaming or accusatory 

language” by staff, such as “poor access” or “bad veins”.100 

An Australian study of home-based IV therapy patients 

echoed similar feelings of independence and liberation in 

patients who had formerly been required to attend hospital 

for IV therapy – of experiencing feelings of “getting their 

life back”. When it is well managed and well supported, 

infectious outcomes of home-based IV therapy and patient 

self-management of IVs have been shown to be equivalent 

to, if not better than, clinician-controlled care. The incidence 

of catheter-related infections was significantly reduced in the 

patient education group (2.55 per thousand catheter-days) 

compared against a control group, with standard care (5.91 

per thousand catheter-days) (P,0.01).101

The significance of these studies’ results is that they 

demonstrate patients’ acceptance of, and willingness to 

embrace, health care technology. Future, trial-based research 

should incorporate patient evaluation and satisfaction in 

study protocols.

Conclusion
Catheter-related infections remain a major problem in health 

care, being associated with significant morbidity, mortality, 

and additional medical cost. Microbial biofilm formation 

makes these infections more complicated, as microbial cells 

detached from the biofilm can lead to acute infection, and 

these microorganisms are highly resistant to a large number of 

antimicrobial agents. New nanotechnologies are being devel-

oped in order to overcome problems associated with bacterial 

or fungal biofilm formation. The nanotechnology approach 

seems to be one of the most promising research fields for 

preventing biofilm formation and catheter-related infection, 

especially against multiresistant strains. However, these will 

never completely eradicate CRBSI, without additional and 

ongoing efforts to ensure health professionals consistently 

adhere to infection prevention measures. In addition, the 

patient’s experience and acceptance of CRBSI avoidance 

strategies, including nanotechnologies, must be considered, 

to maximize the success of such prevention measures.
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