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Abstract: The analysis of dynamic contrast enhanced data using the classification of the time 

intensity curve (TIC) shape is widely employed both in its region of interest and pixel by pixel 

variants. While its application in breast imaging is established and documented by a large amount 

of scientific works, its use for other body parts is still scattered and there is no consensus as to 

whether the method can be used alone to perform differential diagnosis in cancer or in inflam-

matory diseases. In this review we evaluate all the literature which makes use of TIC shape 

analysis in tissues other than breast, discuss the results, highlight the possible shortcomings, 

and suggest directions for future research.
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Introduction
Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is an impor-

tant imaging technique used in radiology as an additional tool in oncology assess-

ment. Its safety, repeatability, high spatial resolution, and the fact that it can be 

performed on clinical magnetic resonance imaging (MRI) scanners with standard 

specifications allow its application in routine clinical and research settings. The 

additional value of this technique, with respect to conventional static MR imaging 

sequences, lies in its ability to identify changes in tissue physiology when changes in 

the anatomy are not yet visible. In the last two decades it has become an established 

method, and it is now often performed as part of a routine MRI protocol.

Technically, DCE-MRI consists of a series of fast MRI scans, commonly avail-

able on all clinical scanners, which are acquired for a duration of 3 to 10 minutes 

while a gadolinium (Gd)-based contrast agent is injected intravenously. As the 

contrast medium flows from the blood pool into the tissue, the signal intensity on 

a T1-weighted image during and after the injection varies according to a pattern 

which is dependent on the vascularization and on the viability of the tissue to the 

contrast agent. This time dependent signal intensity or time intensity curve (TIC) 

in the tissues is recorded and further analyzed to provide several parameters useful 

for diagnosis.

The analysis of data generated by DCE-MRI is not fully standardized yet, and can 

roughly be divided into three general approaches: visual assessment of the TIC curves, 

parametric analysis of the time dependent MRI signal, and quantitative analysis using 

pharmacokinetic models (PKM).
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Visual TIC shape assessment
A common approach in the analysis of DCE-MRI is to look 

at the dynamic data by selecting a region of interest (ROI) 

in the lesion and to observe how the average signal intensity 

of the ROI varies with time. Based on this observation, the 

radiologist can spot areas of vascular disruption, which 

are characterized by a quick signal uptake. This approach, 

although operator dependent, is widely used in routine 

clinical practice, especially in breast imaging. The visual 

assessment of the shape of the original TIC has some obvious 

advantages: it is easy to perform and it can be easily applied 

in daily clinical routine.

Parametric analysis of the signal 
enhancement
Parametric analysis involves the generation of parameters 

describing the original DCE-MRI signal intensities, such as 

the maximum enhancement (ME), rate of enhancement, time 

to peak, initial area under the curve, etc. It can be calculated 

on a pixel by pixel (or more strictly speaking, voxel by voxel) 

basis and rendered in parametric images. Several commer-

cially available software packages allow this type of analysis. 

Unfortunately, the calculated parameters are dependent on 

the MRI protocol chosen and are not quantitative, ie, they 

are not a measure of intrinsic physiological properties. The 

parameters used in the T1-w MR sequence, eg, the repetition 

time (TR) and flip angle, significantly affect the relationship 

between the amount of contrast agent in the tissue and the 

signal intensity change. As a result, the same amount of Gd 

uptake in the tissue might result in significantly varying rela-

tive signal change in differently weighted MR sequences, as 

nicely exemplified by Evelhoch.1 The technique is, therefore, 

not suited to comparing disease activity across patients in 

clinical studies.

PKM
Quantification of the DCE-MRI data can be achieved by 

means of PKM based analysis.2 The application of the theo-

retical PKM to the DCE-MRI data (through parameter fitting) 

permits the extraction of physiologically relevant quantities 

that reflect intrinsic properties of the tissue, such as v
e
 (the 

extracellular extravascular space), Ktrans (the forward transfer 

coefficient of Gd between plasma and v
e
), and v

i
 (the vascular 

volume). Nowadays, this is an established method which has 

gained trust and popularity among scientists for its ability to 

grade cancer, and to assess neoangiogenesis and the effect of 

drugs.3,4 Unlike most MRI based techniques, it is (or it strives 

to be) quantitative, ie, it measures intrinsic properties of the 

tissue. However, the very complex implementation of PKM, 

as well as its considerable propensity for errors, has made 

it very challenging to apply it in clinical practice. Examples 

of these challenges include the fact that the model requires 

the knowledge of the absolute tissue contrast agent concen-

tration, whose calculation requires the measurement of the 

native T1 maps, as well as knowledge of the arterial input 

function (AIF), a fundamental input of the model. Moreover, 

the accurate sampling of the vascular signal used to generate 

the AIF puts some strict constraints on the minimal temporal 

resolution of the dynamic scan.5

In this review we will concentrate on the methods based 

on (or derived from) the first of these three aforementioned 

analysis approaches, and we refer to that as the “TIC shape 

analysis.”

TIC shape analysis
Since the introduction of DCE-MRI in breast imaging,6 

radiologists have observed and classified a number of 

enhancement shape types in various pathologies (Figure 1). 

In DCE-MRI of the breast, the dynamic scan consists of a 

few dynamic scans (usually three), each scan being repeated 

every 90 seconds.7 The difference between the various shapes 

is found in the different slopes of the line connecting the 

three points in the image (Figure 1A). In other body parts, 

the dynamic scans are usually acquired with a higher tem-

poral resolution, and the shapes of the TIC can vary across 

a wider range of patterns (Figure 1).8,9 The TICs are usually 

obtained from a selected ROI, encompassing the whole or 

a part of the lesion.

Although not an absolute measure of permeability, the 

shape of the uptake curve of a dynamic scan is a reflec-

tion of the tissue viability and permeability to the contrast 

agent; the rise in contrast enhancement reflects (indirectly) 

the transfer of the contrast agent from the capillary to the 

extravascular space, from which the agent is later reabsorbed 

by the blood pool, resulting, eventually, in a signal decrease. 

This increasing–decreasing pattern reflecting higher capillary 

permeability can be observed within the typical duration of 

the DCE-MRI scan (5–10 minutes). Areas of lower perfusion 

and permeability tend to enhance in a much slower fashion, 

and the signal does not decrease until after the end of the 

DCE-MRI scan. The use of these features to make clinical 

decisions has led many authors to identify TIC shapes (up to 

seven) in the analyzed tissues and to investigate their value 

as a potential diagnostic feature.9–11

This straightforward approach, sometimes described as 

heuristic (ie, obtained by exploration of possibilities rather 
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than by following set rules) might lack precision and not be 

a quantitative measure of physiological properties, yet the 

number of articles using the TIC shape as a potential mir-

ror of disease seems indeed to have grown in recent years, 

although predominantly in breast imaging.

Furthermore, in the last 6 years, a new line of research 

has taken root, ie, redeveloping the heuristic shape analysis 

method into something more robust, less user dependent, less 

MRI protocol dependent, and image-wise, enough advance-

ment to compete with other more quantitative methods.

Instead of an ROI dependent evaluation of averaged TICs, 

the TICs are analyzed in a pixel by pixel (or voxel by voxel) 

fashion, in every single voxel acquired by the DCE-MRI 

scan sequence.8,12,13 This method is proposed to overcome 

the intrinsic insensitivity to spatial heterogeneity of the 

ROI based analysis. As large lesions, whether cancerous or 

inflammatory, are not homogeneous, sampling and averaging 

signals from the ROIs to look at the dynamic course of the 

TIC misses important characteristics of the lesion. The pixel 

by pixel computer assisted analysis is done using different 

algorithms and its results are rendered in a color coded map 

(Figure 2). Tissue heterogeneity is more adequately assessed 

using this pixel by pixel analysis due to its higher sensitivity 

to spatial changes in TIC shapes.

It is the purpose of this review to present the results of 

works using the TIC shape as an endpoint parameter for the 

determination of disease. Studies where the TIC is described 

but not used as the main decision making tool have been 

omitted. Studies have been selected with a similar DCE-MRI 
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Figure 1 Different classification of the time intensity curve shape.
Notes: (A) Color coding scheme of the three time point method in breast. The initial rates of enhancement in the time interval between the precontrast image at time =0 (t0)  
and the postcontrast image at time 2 (t2) are coded by color intensity (hue). (B) SI curves: S1–S5. (C) Time intensity curve enhancement types. (A) Reprinted from Clinical 
Imaging, 30(3), Hauth EA, Stockamp C, Maderwald S, et al, Evaluation of the three-time-point method for diagnosis of breast lesions in contrast-enhanced MR mammography, 
160–165, Copyright 2006, with permission from Elsevier. (B) Reprinted from Academic Radiology, 14, Kubassova O, Boyle R, Radjenovic A, Quantitative analysis of dynamic 
contrast enhanced MRI datasets of the metacarpophalangeal joints, 1189–1200, Copyright 2007, with permission from Elsevier. (C) Reprinted from Skeletal Radiology, 30(1), 
van Rijswijk CS, Hogendoorn PC, Taminiau AH, et al, Synovial sarcoma: dynamic contrast-enhanced MR imaging features, 25–30, Copyright 2001, with kind permission from 
Springer Science and Business Media.
Abbreviations: S, shape; i, intensity; T, time; SI, signal intensity.

Figure 2 Pixel by pixel analysis and color rendering of the time intensity curve 
shape analysis.12

Note: Reprinted from Magnetic Resonance Imaging, 25, Lavini C, de Jonge MC, 
van de Sande MG, et al, Pixel-by-pixel analysis of DCE MRI curve patterns and an 
illustration of its application to the imaging of the musculoskeletal system, 604-612, 
Copyright 2007, with permission from Elsevier.
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protocol in terms of scan duration and acquisition frequency. 

Because the shape does depend on the time window used 

(all the TICs will present with a washin and washout phase 

if scanning time is long enough), we limited the analysis to 

protocols with a minimum acquisition time of 2.5 minutes, 

and a maximum interval between the dynamic scans of 

30 seconds.

Furthermore, although the literature about TIC shape in 

breast MRI is very extensive (breast was the first application 

of TIC shape analysis in DCE-MRI6) and outnumbers by far 

the literature of TIC shape analysis in other pathologies, the 

largest part of the literature refers to dynamic data acquired 

with a low temporal sampling rate (the three point measure-

ment7,14–17 where only three time points are acquired to favor 

spatial resolution). For this reason, in this review they are 

excluded from the analysis. A good overview of DCE-MRI 

methods in the breast can be found in Turnbull.18

Review of clinical applications
An overview of the articles making use of TIC shape analysis 

and their results is shown in Table 1. The articles reviewed 

were first selected using broad search term queries in PubMed 

(search term [all fields]: DCE-MRI). Exclusion criteria 

were: breast DCE-MRI, use of PKM, use of quantitative or 

semiquantitative analysis methods, and time resolution of the 

DCE-MRI scan .30 seconds. Articles were further selected 

by manually searching if the authors presented a TIC shape 

type focused analysis.

Applications of the technique encompass a large range 

of diseases and anatomy, from tumors to arthritis, from 

brain to musculoskeletal, rectum, liver, brain, parotid 

glands, etc.

A problem when comparing literature describing TIC 

shapes is that almost all studies use their own classification and 

naming of TIC shapes (see Figure 1B and C for examples).

As the number of classes (varying from 2 to 7) and clas-

sification names are not consistent across publications (see 

Figure 1), to simplify reading, we will use in this review the 

following two letter nomenclature, in which the first and 

second letter represents, respectively, the initial and the final 

behavior of the DCE-MRI uptake curve, and where upper 

and lower case letter represent, respectively, a growing and 

a decreasing pattern (S or s = slow, F or f = fast, P = plateau, 

O = absence of uptake) (Figure 3).

In some articles, type Ff is (sub) divided into two groups, 

depending on the velocity of the upslope. In this review 

we will call them Ff1 and Ff2 (Ff1  =  slower washin and 

Ff2 = faster washin).

Regarding the choice of classes, from the overview in 

Table 1, it can be seen that TIC types SS and Ff are used in 

most studies (26 and 28 of 29 studies, respectively), followed 

by FP which is found in 21 of 29 studies. In 19 of 29 studies, 

type  O (nonenhancing) is used, and 15 of 29  studies use 

type FS. Type X (enhancing but with unidentified shape) is only 

used by Lavini et al.12,23 Type V is identified by Lavini et al12,23 

and Eida et al.26 However, Eida et al26 describes the shape, but 

does not attribute it to a vascular signal. In Figure 2, this shape 

as identified by Eida et al,26 has been described as Ff2. Also, 

Yabuuchi et al27 and Sasaki et al24 differentiate between fast 

and slow washout type Ff TICs (Ff1 and Ff2). Eida et al,26 

classified as type O (as in their TIC shape illustration) every-

thing which is not classified as SS, Ff, and V. The overview 

shows, on the one hand, the wide application of this technique 

in terms of pathologies, but also at the same time, the plethora 

of different classification types and conclusions.

TIC analysis methods: ROI versus  
pixel by pixel
Early works using TIC shape analysis were ROI based: a 

ROI was drawn by the radiologist on a suspected area, and 

the TIC derived from an averaged signal. Despite the general 

expectation that most malignant lesions tended to present 

a fast enhancing TIC (whereas benign lesions enhance 

slowly), a large overlap on the shape types across lesions was 

observed,19 suggesting a poor positive and negative predictive 

value of the TICs.

This lack of reproducibility could be attributed to vari-

ous reasons. The fact that the analysis is based on an ROI, 

arbitrarily chosen by a radiologist on the basis of a native 

T1-w or postcontrast T1-w image, could result not only in 

subjectivity in the ROI choice, but also in signal averaging 

over the ROI. The information on the heterogeneity of the 

lesion in terms of TIC shapes was, therefore, lost.

To overcome these limitations, a new approach was 

proposed independently by Kubassova et al8 and by Lavini 

et al12 where the TICs were analyzed on a pixel by pixel basis. 

Other similar approaches have been proposed by others, such 

as Eida et al26 and Yuan et al13, who added the ME informa-

tion by means of a color hue in a fashion similar to that used 

for breast imaging by Preim et al17 and by Sasaki et al.24 In 

these works, every single pixel is assigned to a specific TIC 

shape (according to some predefined classes) by means of 

a computer aided pattern recognition (PR) method and the 

result rendered in color coded maps. The classification is 

usually done by using thresholds on the various features 

identified to describe the TIC shape, such as the initial slope, 
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the peak time, and the washout slope.12,24 Less user dependent 

methods such as principal component analysis (PCA) have 

also been used, although these methods do not rely on the use 

of some predefined classes (or TIC shapes) but identify the 

classes directly from the data.43 Because these classes cannot 

easily be compared with the predefined classes as described 

in the articles in Table 1, articles making use of component 

analysis were therefore not included in this review.

In the studies where a pixel by pixel approach was used, 

it became apparent that lesions are typically characterized by 

more than one TIC type,23 something that the ROI approach 

was not able to highlight.

Besides adding the spatial information and therefore also the 

visual rendering of the tissue heterogeneity in terms of dynamic 

behavior, the results of the pixel-by-pixel analysis lend well to 

the analysis of the statistical distribution of the classes. In Lavini 

et al23 and van der Leij et al36 the ratio between the different 

types of shapes is used as a possible clinical diagnostic tool. 

Yuan et al13 propose a classification method for which tissues 

are classified on the basis of the predominance of a certain 

shape. Tissues were then categorized as belonging to any of 

eight “grades” (0 to 8) according to the predominance of a 

certain shape, or, conversely, on the tendency to have evenly 

distributed class types.

Clinical findings
The studies presented in the review (Table 1) vary greatly 

in set up, purpose, and size of the cohort. Some articles 

presented extensive patient cohorts4,5,18,23,25 and others con-

centrated on one single pathology.3,19,29,34,35

The majority of the studies presented in Table 1 applied the 

TIC shape analysis to try and differentiate between different 

tumors and tumor grading, others used it to investigate the 

activity of inflammatory processes,36,40 and others to assess the 

effect of drugs.25,32,41 The majority of the studies were done in 

the musculoskeletal (MSK) system investigating bone tumors, 

soft tissue tumors, and inflammatory processes (rheumatoid 

arthritis, synovitis). Other studies included one brain study 

(glioma),23 one study in prostate,34 two in liver,31,32 five in the 

abdomen,27,39–42 three in lungs,28–30 two in parotid/salivary 

glands,26,27 and two in the head and neck region.13,24

The conclusions presented are spread across a range of 

findings: some find the technique valuable in differentiating 

disease and some draw negative conclusions. Because of the 

large range of pathologies studied, it is not possible to pool 

the results. Moreover, each tumor/inflammatory process works 

differently and it is not easy to generalize one type of behavior 

in one tissue to the behavior in another tissue. Nevertheless, 

in the overview in Table 1, it can be seen that all 18 studies 

investigating cancerous lesions associated a malignant lesion 

with type Ff, and six of 18 associated it with type FP.9,20–23,25 

Five of 18 studies9,20,23,25,32 reported the presence of type FS in 

malignant lesions, and four of 18 studies reported the presence 

of type SS,9,23,25,31 although these were either not predominant, 

or only seen in a minority of patients. Type O was found to 

occur in malignancy only in two studies.22,24

Of the 14 studies investigating benign tumors, twelwe 

described either the presence or a prevalence of type SS. 

The studies that did not associate benign tumors with 

type SS were describing giant cell tumors (GCT), which 

were associated with type Ff and FS in three studies.10,11,22 

Other benign lesions (besides GCT) were also associated 

with type Ff and/or FP in, respectively, five10,11,20,22 and 

six10,12,21,28,29,34 of eleven cases. Interestingly, both studies 

investigating the (benign) Warthin tumors26,27 reported a 

type Ff2, making them indistinguishable from malignant 

lymphomas. Type O was found to occur in benign tumors 

in four studies.20,22,27,31

Metastasis was investigated in two studies,13,21 both 

reporting the presence of more TIC shapes (FP, Ff, FS) in 

various metastatic nodes. In one study,33 the correlation 

between the shape type and microvessel density (MVD) was 

presented, with the results showing that type Ff correlates 

with high MVD.

In one article,21 a patient with osteoporosis was presented 

and the resulting TIC shape assigned to type FP. Nine papers 

SS

Ss

V

FP

FS

Ff2 Ff1

O

Figure 3 Proposed classification naming.
Notes: ∇ Type O = no uptake; � Type SS: slowly growing; � Type Ss: slowly 
growing, late wash out phase; � Type FS: fast initial uptake, then slowly growing;  
⊗  Type FP: fast initial uptake, then plateauing; � Type Ff1 fast initial uptake, fast 
wash out (slower); � Type Ff2 fast initial uptake, fast wash out (faster); * Type V: 
Vessel (arterial/venous) Enhancement; Type X = other (not shown).
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report findings in inflammatory processes: arthritis,12,35–38 

Crohn’s disease,39,40 and fistulas.41,42

As shown in Table 1, while TIC shape analysis has been 

applied in a wide range of diseases, it seems to have found more 

impact in various MSK diseases, where it was widely tested in 

tumors and arthritis. The most convincing results seem to come 

from the differentiation of active (rheumatoid) arthritis from 

controls or from other types of inflammatory processes.36,37

Results from a brain study25 have shown that most of the 

types of shapes occurred in most gliomas, but that the TIC 

shape analysis, in contrast to PKM analysis, was not able 

to highlight the effect of antiangiogenic treatment on high 

grade glioma. This is one of the few examples of work where 

the TIC shape analysis has been applied in the follow-up of 

patient treatment. Authors investigating the effect of therapy, 

ie, Wang et al32 (antiangiogenic treatment in liver hepatocel-

lular carcinoma), Lavini et al,25 and Ziech et al41 (antitumor 

necrosis factor-alpha in fistulas) agree that the TIC shape does 

not highlight the effect of the antiangiongenic drugs.

In one other article using TIC analysis, but not using the 

TIC shape as a diagnostic tool, a change in TIC shape was 

mentioned.44 The authors, who use the steepest slope to moni-

tor response to preoperative chemotherapy in MSK tumors, 

conclude that steepest slope is not useful for discrimination 

between benign and malignant tumors due to excessive over-

lap, but that the TICs they present for two example patients 

change from a type Ff into a type FS after chemotherapy in 

one patient, and show a clear type SS in a patient responding 

well to chemotherapy.

Discussion
Literature using TIC shape analysis is growing, but it is still 

fragmented. Unlike its (twin) application in breast imag-

ing, where authors seem to have agreed on a classification 

standardization using the three points method,14 the TIC 

shape analysis in other parts of the body seems to present a 

diversity which makes it extremely challenging to compare 

the results of the different studies. Nevertheless, a common 

thread can be found in this diversity: in most publications, 

malignant processes seem to present, in one way or the other 

(prevalence or simple occurrence), with a type shape Ff, 

and most benign lesions present with a prevalence of type 

SS. Unfortunately, however, the opposite has been observed 

in certain tumor types where the TIC shape analysis does 

not yet show enough sensitivity and specificity. Part of this 

problem has been addressed by adding spatial resolution 

through the pixel by pixel analysis. In this way, by changing 

the results derived from a single averaged TIC to mentioning 

the prevalence or relative ratio of a certain shape and 

observing the heterogeneity of the distribution,23,45 it was 

seen that malignant lesions (chondrosarcoma), which would 

have been classified as type SS on an ROI based approach, 

presented indeed a significant Ff component.23

Most recent studies use the pixel by pixel method, and it 

is expected that this will soon completely replace the ROI 

analysis, also as software to perform TIC shape analysis 

becomes more available.46,47 Only in this way will it be 

possible to approach the sensitivity and specificity of other 

quantitative techniques, such as PKM.

Certainly another problem has to be addressed, ie, the 

number of classes used by each study. It is still difficult on 

the basis of the published studies to assess which classes are 

truly necessary, or whether there are classes that could be 

removed. Conversely, it is possible that more classes might 

have to be added. Works on automatic detection of the 

classes that “naturally” occur in DCE-MRI datasets are still 

in progress, for example the work using PCA.48

Limitations of the TIC shape analysis  
and dependence on MRI scan parameters
The TIC shape analysis does not provide absolute measures. It 

is dependent, although only slightly, on the protocol chosen: the 

length of the DCE-MRI scan, the time resolution, and the scan 

parameters (TR/flip angle) can all influence the final shape. 

Because the T1 weighting of the sequence determines the 

relationship between signal and contrast agent concentration,1 

situations where signal saturation occurs due to high contrast 

agent concentrations should be avoided. If signal saturation 

occurs (for example due to insufficient T1 weighting), part of 

the enhancement curve might reach a plateau (type FP) instead 

of showing an increasing–decreasing pattern (type Fs). This 

can have an effect on the shape classification, resulting in the 

same tissue possibly being classified differently when using 

different protocols. Reproducibility studies in this field would 

be very welcome.

Partial volume is also a problem in DCE-MRI protocols 

that privilege time resolution over spatial resolution (voxels 

can be of the order of 1.5 to 3 millimeters [in plane] and 3 to 

6 millimeters in the “slice” direction). The coarse resolution 

might result in voxels hosting different TIC shape types. 

As an example, voxels with mixed type V (vessel) and type 

SS might result in an averaged type Ff. This could be the 

case in, among others, the synovial membrane which is fed 

by a neighboring artery. In this case, it is still difficult to 

discriminate between voxels originating purely from intra- 

and extravascular compartments.
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Other problems involve the temporal resolution. If insuf-

ficient, the arterial/venous type V which is characterized 

by an early steep slope followed by fast washout might not 

be recognized at all. Typically, when the contrast agent is 

injected as a short bolus, the initial peak typically lasts less 

than 40  seconds.49,50 It is to be expected, therefore, that a 

temporal resolution of less than 40 seconds will not be able 

to identify the initial enhancement in the vessel.

Despite the advantages of the pixel by pixel approach in 

terms of sensitivity to spatial heterogeneity, the technique 

suffers more from the lower signal to noise ratio, as well as 

from patient movement. The dependence of the automatic 

classification on pixel size has not been investigated yet. 

Motion correction has only been used in one article40 where 

the TIC shape analysis (pixel by pixel) was applied in the 

bowel. The usefulness of motion correction in improving 

the TIC shape analysis has not been addressed in any of the 

studies presented here. Furthermore, the dependence of the 

classification on the particular Gd-based contrast agent has 

also not been investigated.

Comparison with pharmacokinetic  
(PK) analysis
When compared to the quantitative PK analysis, the 

advantage of the TIC shape analysis lies predominantly in 

its simplicity and accessibility. Although PKM has been 

acknowledged to provide the best MR endpoint for assessing 

solid tumors, neoangiogenesis, and response to antiangio-

genic therapy,4 its difficult implementation, involving the 

extra measurement of the native T1, the calculation of the 

absolute contrast agent concentrations, as well as an AIF has 

put off many clinically oriented researchers who still prefer 

the more heuristic, but more accessible, TIC shape analysis 

approach. Furthermore, although a correctly implemented 

PKM analysis can add significant information to the tissue 

physiology, the chance to implement it incorrectly is not 

negligible. It is widely acknowledged that a small error in the 

AIF can propagate in the resulting Ktrans and v
e
 parameters of 

the PKM in a significant way. In the same way any inaccuracy 

in the value of the relaxivity and of the T1 will also severely 

affect the final Ktrans.51 The robustness and reproducibility of 

the method, therefore, suffers. The TIC shape analysis, on the 

contrary, is not dependent on any assumption; it only relies 

on the observation and classification of the raw data.

Future directions
The quest to assess the clinical value of the TIC shape is still 

open. Although the number of applications has grown, there 

is a need for more focused studies and for a more general 

consensus on the protocols to be used.

It has been shown that the TIC shape analysis alone 

might not be able to highlight some effects, such as the 

antiangiogenic effects of drugs,25 and the method might need 

to be refined to improve its sensitivity.

The necessity of devising a new quantitative non-PKM 

based analysis method has been widely recognized and new 

model-free methods continue to appear. Among those, there 

are methods that continue to rely on the classifications of TIC 

shapes or on parameters which are derived from them.43,48 

Guo and Reddick52 describe a way of redefining shapes and 

extracting descriptive parameters from them. They proposed 

a method called curve pattern analysis (CPA) which is used to 

generate some “quantitative” CPA parameters, eg, K, beta1, 

beta2, and beta3, which quantify in some way the TIC shape. 

These parameters were tested in pediatric osteosarcomas.

Moreover, pure TIC shape analysis has been approached 

with different image analysis techniques, more indepen-

dent of operator chosen thresholds. In the last year, a 

large amount of literature has appeared that makes use of 

PR techniques to classify DCE-MRI data. PR techniques 

involve automatic recognition of certain enhancement pat-

terns based on a statistical classifier, which is responsible 

for decision making to assign a certain pattern to a certain 

class. Many types of classifiers exist and the literature 

describes the use of various classifiers for the analysis of 

DCE-MRI data. Artificial neural networks are used by Kale 

et al,53 Lucht et al,54 and Nattkemper et al,55 and support 

vector machines by Levman et  al.56 A good overview of 

the methods applied to DCE-MRI can be found in Eyal 

and Degani.43 Most of these works have been carried out 

in breast lesions.

It is beyond the scope of this review to dwell on the PR 

techniques and their methodology. Still, it is worth mention-

ing that significant advances have been made in this field 

toward an improvement of the classification of DCE-MRI 

data. Importantly, DCE-MRI generated TIC shapes can be 

combined with other features, arising for example from 

anatomical structure, to produce an automatic classification 

of tissues into malignant and benign. Especially in the field 

of breast imaging, the works using combined features have 

reached an advanced stage. New and interesting methods have 

been proposed, such as textural kinetic analysis.57 It is desir-

able that the new developments in breast DCE-MRI analysis 

will soon be adapted to the data acquired with higher temporal 

resolution described in this review, and possibly applied in 

other diseases.
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Conclusion
Because not only the protocols differ greatly in terms of 

sequence and sequence parameters, and because the clas-

sification systems appear so diverse, standardization should 

eventually be proposed, in a way similar to that established 

for breast imaging. The effect of standardization will result in 

easier comparison between studies, and make meta-analysis 

possible. The key issue as to whether the TIC shape analysis 

alone can differentiate malignant from benign tumors, or 

differentiate between tumor grades, remains controversial. 

Besides the heterogeneous clinical results, the plethora of 

different names for the different shapes and lack of stan-

dardization contribute to the uncertainty. Nevertheless, from 

this overview we could find agreement that a prevalence of 

a rapidly growing, rapidly washing out TIC shape remains 

consistently a mirror of malignancy in tumors and of activity 

in rheumatoid arthritis, the latter being a pathology where 

TIC shape analysis seems to be particularly successful. The 

few studies investigating the effect of drugs did not show 

the technique to be promising. It is to be hoped that an 

increase in the use of spatially resolved TIC shape analysis 

techniques will lead to more insight in the tissue behavior, 

and that a combination with other analysis techniques might 

increase its sensitivity.
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