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Abstract: Despite our cognizance that diabetes can enhance the chances of heart failure, 

causes multiorgan failure,and contributes to morbidity and mortality, it is rapidly increasing 

menace worldwide. Less attention has been paid to alert prediabetics through determining the 

comprehensive predictors of diabetic cardiomyopathy (DCM) and ameliorating DCM using 

novel approaches. DCM is recognized as asymptomatic progressing structural and functional 

remodeling in the heart of diabetics, in the absence of coronary atherosclerosis and hypertension. 

The three major stages of DCM are: (1) early stage, where cellular and metabolic changes occur 

without obvious systolic dysfunction; (2) middle stage, which is characterized by increased 

apoptosis, a slight increase in left ventricular size, and diastolic dysfunction and where ejection 

fraction (EF) is ,50%; and (3) late stage, which is characterized by alteration in microvasculature 

compliance, an increase in left ventricular size, and a decrease in cardiac performance leading 

to heart failure. Recent investigations have revealed that DCM is multifactorial in nature 

and cellular, molecular, and metabolic perturbations predisposed and contributed to DCM. 

Differential expression of microRNA (miRNA), signaling molecules involved in glucose 

metabolism, hyperlipidemia, advanced glycogen end products, cardiac extracellular matrix 

remodeling, and alteration in survival and differentiation of resident cardiac stem cells are 

manifested in DCM. A sedentary lifestyle and high fat diet causes obesity and this leads to type 

2 diabetes and DCM. However, exercise training improves insulin sensitivity, contractility of 

cardiomyocytes, and cardiac performance in type 2 diabetes. These findings provide new clues 

to diagnose and mitigate DCM. This review embodies developments in the field of DCM with 

the aim of elucidating the future perspectives of predictors and prevention of DCM.
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Introduction
Diabetes mellitus (DM) is a metabolic disorder with multiple etiology and is one of 

the leading causes of morbidity and mortality worldwide.1–3 The prevalence of DM is 

increasing at an alarming rate and is predicted to occur in approximately 5% of the 

global population by 2025.4,5 There are two major types of DM: (a) type 1 diabetes (T1D) 

which is caused by deficiency or absence of insulin due to destruction of pancreatic 

beta cells and (b) type 2 diabetes (T2D) which is characterized by insulin insensitivity 

or intolerance. T1D is prevalent in the young (also called juvenile diabetes) and T2D 

is prevalent in adults.6 However, the number of both T1D and T2D patients is expected 

to increase 3–4 fold by 2050 in the United States.7 The progression from prediabetes to 

diabetes has also contributed to the rapid increase in the number of people diagnosed 

with diabetes. It is estimated that nearly 5%–10% of the global population per year 
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either progress to diabetes or improve reverting to normal 

glucose levels. However, the size of the prediabetic popula-

tion is increasing worldwide and it is estimated that nearly 

470 million people will have prediabetes by 2030.8

DM is associated with both microvascular (including 

retinopathy, nephropathy, and neuropathy) and macrovascular 

(including cardiovascular diseases) complications.8–12 Clinical 

studies suggest that the incidence of heart failure is 2–4 fold 

higher in diabetics when compared to nondiabetic patients.13,14 

Diabetic cardiomyopathy (DCM) is described as the structural 

and functional changes in the myocardium that are associated 

with diabetes in the absence of ischemic heart diseases, hyper-

tension, or other cardiac pathologies.2,3,15–19 Although it has 

been four decades since DCM was described, the pathogenesis 

and underlying mechanisms of the disease are not completely 

understood. Glucose has been considered as the main driving 

force for the development of DCM,16 however, recent clinical 

trials (UK Prospective Diabetes Study 33[UKPDS33], the 

Action to Control Cardiovascular Risk in Diabetes [ACCORD], 

the Action in Diabetes  and Vascular Disease  [ADVANCE] 

and the Veterans' Administration Diabetes [VADT])20 have 

revealed no significant effect of intensive glycemic control on 

mortality and amelioration of cardiovascular events.17 Hence, 

there is a dire need to understand the detailed mechanisms and 

factors associated with DCM. Additionally, novel approaches 

such as stem cell therapy, and micro-RNA (miRNA) may be a 

promising therapeutic target, for the treatment of DCM. This 

article embodies a brief overview of DCM, its predictors and 

preventative measures (at different stages of disease), and 

future perspectives of therapy.

DCM
Early studies have demonstrated that coronary artery disease 

(CAD) is the primary cause of cardiac death in diabetics.19,21 

However, this notion was challenged by findings that there 

was a modest increase in atherosclerotic disease in diabetics 

when compared with age- and sex-matched nondiabetic con-

trols,22 and absence of narrowing of the lumen in the intramu-

ral vessels in diabetics.23 These findings were enigmatic until 

1972 when DCM was identified as heart failure without any 

clear symptom of hypertension, CAD, or valvular disease.24 

DCM was corroborated by examination of left ventricular 

function and coronary angiogram in uncomplicated adult 

diabetics with a family history,25 where a significant reduction 

of stroke volume index and an elevation in end-diastolic pres-

sure were demonstrated in diabetics when compared with age-

matched controls. Although no difference in ejection fraction 

(EF) was recorded between diabetics and control, there was a 

significant increase in end-diastolic filling pressure to volume 

(indicator of end-diastolic wall stiffness) in diabetics.25 Based 

on these findings, DCM is defined as a distinct entity charac-

terized by the presence of abnormal myocardial performance 

or structure in the absence of epicardial CAD, hypertension, 

and significant valvular disease.15,26 Due to the multifactorial 

nature of diabetes, there are perturbations at both the cellular 

and molecular levels that predispose the heart to pathological 

structural and functional remodeling. These alterations may 

contribute to DCM; however, the detailed mechanism is not 

completely understood. Cardiomyopathy can be classified 

into two types: (1) primary cardiomyopathy where the car-

diomyopathy primarily affects the function of the heart and 

(2) secondary cardiomyopathy where cardiac performance is 

affected due to a systemic syndrome.27 Cardiomyopathy leads 

to heart failure which can be either systolic heart failure with 

reduced EF or diastolic heart failure with normal EF.28 The 

definition of DCM has been extended to DCM with normal 

EF and DCM with reduced EF, and includes all associated 

diabetic diseases affecting central hemodynamics.16

Risk factors for DCM
As diabetes is associated with DCM, elevated glucose level 

seems to be the major risk factor.16 However, the risk factors 

that contribute to diabetes or heart failure are also associated 

with DCM. These risk factors include a high fat diet/obesity, 

cardiovascular autonomic neuropathy (CAN), inflammation 

and elevated levels of free fatty acid (FFA), advanced glyca-

tion end products (AGEs) and their receptors, and reactive 

oxygen species (ROS). Recently, differential expression of 

miRNAs29,30 and stem cell survival and differentiation31 was 

associated with DCM (Figure 1).

Mechanism underlying DCM
The disturbances in metabolism that lead to hyperlipidemia, 

insulin insensitivity causing hyperinsulinemia, and deficiency 

of insulin due to pancreatic beta cell death causing hyper

glycemia, contribute to DCM.3 The metabolic disturbances 

is mainly due to an elevation in nonesterified fatty acids, also 

called free fatty acid (FFA).2,3,16 The heart has the potential 

to utilize both FFA and carbohydrate as a source of energy. 

However, the dominant source of energy is FFA, and this 

switches to carbohydrate with increased workload or starva-

tion.32 The switch from FFA to carbohydrate may be due to 

fetal gene reprogramming.33 In the heart of diabetics, energy 

production by glucose utilization may be decreased and FFA 

utilization is increased and this causes depletion of glucose 

transporter (GLUT)-1 and -4.34 The transgenic expression 

of GLUT-4  in diabetic mice restored cardiac metabolism 

and function, and this suggested that glucose metabolism 
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was associated with DCM.35 The elevated level of FFA is 

implicated in cellular insulin resistance3,16 One mechanism by 

which FFA induces insulin resistance is through the protein 

kinase C (PKC) pathway. PKC (a serine/threonine kinase) 

phosphorylates inhibitor of kappa light polypeptide gene 

enhancers B- cells (IkKB) kinase, and this in turn phosphory-

lates insulin receptor substrate-1 (IRS-1). Phosphorylation of 

IRS-1 inhibits its ability to bind to the p85 regulatory subunit 

of phosphatidylinositol 3-kinase, impairing insulin signal 

transduction in skeletal muscle.36 However, this signaling 

cascade is not demonstrated in the diabetic heart. Another 

mechanism of FFA-mediated insulin resistance is via peroxi-

some proliferator-activated receptor (PPAR)-γ. The activa-

tion of PPAR-γ is associated with increased FFA that in turn 

induces the expression of phosphatase and tensin homolog 

deleted on chromosome 10 (PTEN). PTEN dephosphorylates 

phosphatidylinositol-3, 4, 5-triphosphate and this prevents 

activation of Akt (serine/threonine kinase)-1.3,37 Increased 

levels of insulin induces cardiac hypertrophy by inhibiting 

glycogen synthase kinase-3β, which inhibits nuclear tran-

scription of the hypertrophic program through nuclear factor 

in activated lymphocytes.38,39 Elevated levels of insulin also 

upregulates Akt-1 and this induces mammalian target of 

rapamycin (mTOR) that in turn activates the p70 ribosomal 

subunit S6 kinase-1 and promotes protein synthesis contribut-

ing to cardiac hypertrophy.40–42

Peroxisome proliferator-activated receptor (PPAR-α) is 

also activated by FFA and its activation induces pyruvate 

dehydrogenase kinase-4 causing glucose oxidation and 

stimulating fatty acid uptake in the mitochondria. Along with 

an increase in long chain acyl carnitines, it promotes mito-

chondrial uncoupling of oxidative phospohorylation.43 

Mitochondrial uncoupling of oxidative phosphorylation 

results in decreased myocardial high energy reserves and 

contractile dysfunction.19 The elevated level of FFA abrogates 

pyruvate dehydrogenase and this induces accumulation of 

glycolytic intermediates and ceramides, which may promote 

apoptosis.44,45 The lipotoxicity due to toxic metabolites from 

FFA opens K-ATP channels46 and this impairs the ability of 

cardiomyocytes to regulate calcium use, causing contractile 

dysfunction.47–49 The induction of apoptosis, hypertrophy, and 

contractile dysfunction leads to DCM (Figure 2A).

Hyperglycemia also triggers ROS50–52 by inducing glu-

cose oxidation and generating mitochondrial superoxide.52–55 

ROS activates matrix metalloproteinases 9 (MMP9) which 

degrades extracellular matrix, increases matrix turnover, 

attenuates sarco-endoplasmic reticulum-calcium ATPase 2 

(SERCA2), and alters the expression of several miRNAs that 

leads to contractile dysfunction and ultimately DCM.31,55,56 

In diabetes, induction of MMP9 also increases inflamma-

tion by inducing pro-inflammatory tumor necrosis factor 

(TNF)-α and mitigating the anti-inflammatory interleukin 

(IL)-10 cytokine (unpublished data, 2013) which exacerbates 

DCM.55–60 Differential expression of several miRNAs also 

induces TNF-α, inhibits IL-10, and regulates inflamma-

tion.61–63 Several miRNAs (such as miR-155 and miR-223) 

are anti-inflammatory and cardioprotective.64,65 Diabetes-

mediated generation of superoxide also causes DNA dam-

age that triggers the reparative enzyme poly (ADP ribose) 

polymerase (PARP).50 The induction of PARP attenuates 

glyceraldehyde phosphate dehydrogenase and this diverts 

glucose from the glycolytic pathway into alternative pathways 

such as advanced glycation end products (AGEs) and the PKC 

pathway which downregulates the calcium regulating receptor 

and enzyme ryanodine receptor and SERCA2 respectively, 

impairing the contractility of cardiomyocytes, and inducing 

the ventricular stiffness that leads to DCM (Figure 2B).66–72

Diabetes cardiovascular autonomic neuropathy is mani-

fested in both T1D and T2D, and is diagnosed with abnormal 

variation in diurnal and nocturnal blood pressure, resting heart 

rate disorder, exercise intolerance, and prolongation of QT 

interval in ECG.72 The attenuations of beta-1 and -2 adrenergic 

receptors (which are part of sympathetic tone) is also associ-

ated with DCM.74–77 The alterations in myocardial autonomic 

neurotransmitters cause toxic effects on catecholamines and 

apoptosis19 which contributes to DCM. The microenviron-

ment (oxidative stress, myocardial stiffness, differential 

expression of miRNAs) of the myocardium is changed in 
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Figure 1 Different risk factors associated with diabetic cardiomyopathy.
Note: “↑” indicates increased levels.
Abbreviations: AGE, advanced glycation end product; DCM, diabetic 
cardiomyopathy; FFA, free fatty acid; miRNA, micro-RNA; RAGE, receptor for 
AGE; ROS, reactive oxygen species.
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Figure 2 (A) Different pathways associated with increased free fatty acid mediated diabetic cardiomyopathy and (B) different pathways associated with hyperglycemia 
mediated diabetic cardiomyopathy.
Notes: “↑” indicates increased levels and “↓” indicates decreased levels.
Abbreviations: AGE, advanced glycation end product; AKT-1, serine/threonine kinase; DCM, diabetic cardiomyopathy; ECM, extracellular matrix; FFA, free fatty acid; 
GAPDH, glyceraldehyde phosphate dehydrogenase; GLUT, glucose transporter; GSK-3β, glycogen synthase kinase-3β; K-ATP, ATP sensitive potassium channel; miRNA, 
micro-RNA; MMP9, matrix metalloprotinease 9; mTOR, mammalian target of rapamycin; PARP, poly(ADP ribose) polymerase; PKC, protein kinase C; PPAR, peroxisome 
proliferator-activated receptor; ROS, reactive oxygen species; RyR, ryanodine receptor; SERCA2, sarco-endoplasmic reticulum-calcium ATPase 2; TNF-α, tumor necrosis 
factor-α.
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the heart of diabetics, and this is implicated in defective 

cardiac progenitor cell growth and differentiation,16,31 which 

contributes to DCM.

Pathophysiology and remodeling  
in DCM
The high fat diet/obesity is associated with insulin resis-

tance, T1D and T2D. In T2D, high blood glucose levels 

trigger pancreatic beta cells to release insulin; however, due 

to insulin insensitivity, glucose levels remain high. These 

hyperglycemic signals continuously activate beta cells to 

release insulin leading to hyperinsulinemia. The beta cells, 

due to their continued workload, die and thus, in the long-

term, T2D leads to T1D (Figure 3). Diabetes is associated 

with structural (fibrosis,55,78 apoptosis,55,79,80 angiopathy81–83), 

functional (endothelium–myocytes uncoupling,55 impaired 
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contractility of cardiomyocytes,75 decreased survival and 

differentiation of cardiac stem cells,31 diastolic and systolic 

dysfunction55,75,84,85), and regulatory (alteration in the lev-

els of miRNAs29,30,86 and signaling molecules involved in 

glucose metabolism2,3,16,87) remodeling that leads to DCM 

(Figure 3).

There are three major stages of DCM: early stage, middle 

stage, and late stage. The early stage is asymptomatic, where 

the heart becomes hypertrophic and has diastolic dysfunction 

with normal EF.88 However, at the molecular level, increased 

levels of FFA, altered calcium homeostasis, and depletion of 

GLUT-1 and -4 are evident.2,16,34,89 The middle stage is rec-

ognized by increased left ventricle (LV) size, wall thickness, 

and mass, which is accompanied by diastolic dysfunction and 

a slight decrease in systolic function (EF , 50%). It is also 

accompanied by insulin resistance, AGE formation, increased 

levels of renin-angiotensin-aldosterone system (RAAS) and 

tumor growth factor-β1, reduced levels of insulin growth 

factor-1, apoptosis, necrosis, fibrosis, and mild CAN.2,16,17 

The progression from middle stage to late stage disease is 

associated with additional severities including microvascular 

changes, CAD, and CAN, which impairs both systolic and 

diastolic functions (Table 1).2,16,17

Predictors and prevention of DCM
The alarming increase in the number of diabetic patients 

with cardiomyopathy warrants the implementation of diag-

nostic strategies for DCM to identify the disease at its early 

stages. Currently, there is no well recognized method for 

early diagnosis of DCM. DCM induces changes in the heart 

structure (myocardial hypertrophy, fibrosis, and fat droplet 

deposition) and early changes in cardiac function are evident 

by the abnormal diastolic function that progresses to systolic 

dysfunction in the later stage of disease. These changes in 

patients with DCM can be diagnosed using the following 

methods:

Beta cell 
destruction
(T1D)

Insulin
resistance
(T2D)

High fat diet
or obesity

Fibrosis
Apoptosis

Angiopathy

E-M uncoupling
Impaired contractility
Altered function of
progenitor cell
Diastolic and/or 
systolic dysfunction

Differential
expression of 
miRNAs

Structural
remodeling

Functional
remodeling

Regulatory
dysfunction

DCM

Figure 3 Effect of high fat diet, type 1 diabetes, and type 2 diabetes on cardiac remodeling leading to diabetic cardiomyopathy.
Abbreviations: DCM, diabetic cardiomyopathy; E-M, endothelial-myocytes; T1D, type 1 diabetes; T2D, type 2 diabetes.

Table 1 The phenotype and functional impairment in different 
stages of diabetic cardiomyopathy

Stage Cellular 
mechanism

Structural 
change

Functional 
change

Early Increased FFA; 
altered Ca2+ 
homeostasis; 
depleted GLUT-1 
and GLUT-4

Slightly increased 
LV size, wall 
thickness, and 
mass

Possible diastolic 
dysfunction, 
normal ejection 
fraction

Middle Insulin resistance; 
AGE formation; 
increased RAAS 
and TGF-β1; 
reduced IGF-1; 
apoptosis; 
necrosis; fibrosis; 
mild CAN

Increased LV size, 
wall thickness, and 
mass, dilatation, 
fibrosis

Diastolic 
dysfunction, 
ejection fraction 
is ,50%

Late Hypertension; 
microvascular 
changes; 
severe CAN; 
CAD

Increased LV size, 
wall thickness, and 
mass, dilatation, 
fibrosis, micro- 
angiopathy

Systolic and 
diastolic 
dysfunction

Abbreviations: AGE, advanced glycation end product; CAN, cardiovascular 
autonomic neuropathy; CAD, coronary artery disease; FFA, free fatty acid; GLUT, 
glucose transporter; IGF-1, insulin growth factor-1; TGF-β1, transforming growth 
factor-β1; LV, left ventricle; RAAS, renin-angiotensin-aldosterone system.
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1.	 Echocardiography and Doppler imaging: In the early 

stage of DCM and in the majority (75%) of asymptomatic 

diabetic patients, diastolic dysfunction characterized with 

heart failure with normal EF is present.88 Diastolic dys-

function, mitral inflow patterns, mitral E/E′, transmitral 

E/A, cardiac stiffness, and dilatation of the LV can be 

assessed by echocardiography.16,90–92 Therefore, echocar-

diography and Doppler imaging can be utilized to evalu-

ate structural and functional remodeling in the heart of 

diabetics. However, numerous factors such as myocardial 

fibrosis, hypertrophy, and contractile asynchrony changes 

in calcium cycling are involved in altering the normal LV 

diastolic function.90 These changes are not confined to 

DCM but are also present in other cardiac diseases,15,91 

and therefore, other approaches are required for diagnos-

ing DCM.

2.	 Magnetic resonance imaging (MRI): MRI is a highly 

sensitive tool for detecting LV wall motion abnormalities, 

geometry, and cardiac hypertrophy.91,93–95 MRI is consid-

ered to be a favorable tool for the accurate measurement 

of LV mass, volume, and function.96–99. Additionally, it pro-

vides information on arrhythmia and cardiomyopathy.100

3.	 Serological biomarkers:

a. � High levels of glucose and hemoglobin A
1c

 are indica-

tors of diabetes.

b. � Increased levels of N-terminal pro-brain natriuretic peptide 

and brain natriuretic peptide are markers of heart failure.

c. � Troponin present in the plasma, is an indicator of 

necrosis.

d. � Elevated level of MMPs (especially MMP9) and 

decreased levels of tissue inhibitor of metalloprotei-

nases (TIMPs) are indicators of fibrosis.16

e. � Levels of the enzyme beta O-GlcNAc (o-linked 

N-acetylglucosamine) can also be used as a predictor 

of DCM as it is increased in hypertrophy and cardio-

vascular diseases.101–103

4.	 Heart catheterization and coronary angiography: 

Different stages of DCM can be diagnosed by left heart 

catheterization that assesses LV end diastolic pressure and 

right heart catheterization that measures mean pulmonary 

wedge pressure which is often associated with increases 

in mean pulmonary pressure.16 Coronary angiography 

determines stenosis in the coronary artery which is often 

present in late stages of DCM.15

MiRNA as a potential  
biomarker for DCM
MiRNA are small (∼22 nucleotide), conserved, non-coding 

RNA molecules that modulate gene expression either through 

mRNA degradation or translational repression.104 They are 

emerging as promising therapeutic targets for cardiovascular 

disease and diabetes.29,30 The levels of miRNAs are altered 

in the hearts of diabetics.105,106 Recently, circulating miRNAs 

were reported as biomarkers for cardiovascular disease.107–116 

Therefore, the differential expression of specific circulating 

miRNAs can be used to diagnose different stages of DCM 

(Table 2).

Prevention of DCM
Although tight regulation of glucose levels is thought to ame-

liorate DCM, recent clinical trials (UKPDS 33, ACCORD, 

ADVANCE, and VADT)21 have failed to support this.17 Based 

on the different stages of DCM, different preventative mea-

sures should be taken.

Early stage DCM: Changes in lifestyle and diet are the 

measurable factors that prevent DCM progression and may 

even cure the disease. A low fat and glucose diet, and physi-

cal exercise can mitigate early DCM.

Middle stage DCM: In addition to exercise and diet 

control, treatment with metformin for T2D, insulin for T1D, 

pioglitazone for ameliorating diastolic dysfunction, and beta-

blockers for reducing blood pressure may be required.

Late stage DCM: In addition to the above mentioned 

preventative measures for middle stage DCM, angioplasty 

is required to mitigate micro- and macro-angiopathy and for 

coronary stenosis (Table 2).

Antidiabetic drugs  
for treatment of DCM
Metformin (one of the most commonly prescribed drugs) 

improves peripheral sensitivity to insulin, promotes hypergly-

cemic control, and acts as an anti-inflammatory agent.92,117,118 

Glucagon-like peptide (GLP)-1 is an incretin hormone that 

stimulates postprandial insulin secretion and improves 

insulin sensitivity. Individuals treated with GLP-1 also have 

improved left ventricular ejection fraction.92

Other classes of drugs  
for treatment of DCM
The trials with statins and RAAS inhibitors also show positive 

results for mitigating DCM.91,92,119–125 Statins inhibit cholesterol 

biosynthesis, and have anti-inflammatory and anti-oxidative 

stress functions. They also improve LV function and reduce 

fibrosis that ameliorates DCM.92,119–125 RAAS inhibitors are 

also cardioprotective. Angiotensin-converting enzyme inhibi-

tors and angiotensin receptor blockers are commonly used 

to block the RAAS. Results based on clinical and experi-

mental studies suggest that RAAS inhibitors not only reduce 
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blood pressure but also help to improve insulin sensitivity 

and enhance blood glucose uptake. Diastolic dysfunction is 

ameliorated by RAAS inhibitor treatment.91 The use of beta-

blockers in diabetic patients is not common considering differ-

ent parameters such as blood glucose, insulin resistance, and 

dyslipidemia; however, recent meta-analyses suggest that the 

use of these beta-blockers improves glycemic levels and insulin 

resistance when compared with other antidiabetic drugs.91

Conclusions and future directions
Several hypotheses have been proposed to describe how DCM 

develops,3,16 however, DCM is still a valid challenge in medi-

cal science as the number of diabetics in the population is 

rapidly increasing. Although recent trials have revealed that 

tight glucose regulation is not as effective as first thought, 

control of hyperglycemia is essential to mitigate DCM. It is 

clear that DCM is regulated not only by high glucose levels; 

there are several other factors and mechanisms (Figures 1–3) 

that contribute to DCM. The role of high blood pressure, 

hyperlipidemia, and oxidative stress also contributes to, and 

exacerbates, DCM. Early diagnosis is essential for preventing 

and reverting DCM. For early diagnosis, serological markers, 

echocardiography, and MRI are important. Recent advances 

in the areas of miRNA and stem cell therapy provide a new 

dimension to explore DCM and its therapy. The levels of 

specific miRNA during early, middle, and late stage DCM can 

be used as a biomarker for different stages of DCM. The use 

of miRNA mimics and antagomiR (if a miRNA is attenuated 

and up regulated, respectively) can be exploited to mitigate 

DCM. Similarly, stem cells can be used for regenerating 

pancreatic beta cells and myocardium to improve glucose 

metabolism and cardiac function, respectively.
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Table 2 Predictors of and preventative measures for diabetic cardiomyopathy

Predictors Preventative measures

1. Serological markers Early DCM
  a. �I ncreased levels of N-terminal pro-brain natriuretic  

peptide (NT proBNP)
  b. �I ncreased levels of BNP
  c. � Hyperglycemia
  d. � Elevated Hb1c

  e. � Troponins infrequent or positive necrosis
  f. � Elevated MMPs (especially MMP9) 
  g. � Decreased TIMPs
  h. � Altered levels of circulating miRNAs
2.  Morphology
  a. � Hypertrophy
  b. � Dilatation
  c. � Micro- and macro-angiopathy
3.  Echocardiography
  a. � Mitral valve E/E′
  b. � Transmitral E/A ratio
  c. � % fractional shortening
4.  Magnetic resonance imaging
  a. � LV mass, volume and function
  b. � Systolic and diastolic dysfunction
5.  Heart catherisation
  a. � LV end diastolic pressure (.15 mmHg)
  b. � Mean pulmonary wedge pressure (.15 mmHg)
6. � Coronary angiography
  a. � Coronary artery stenosis: micro-angiopathy

Lifestyle modification 
a. � Exercise
b. � Controlled diet (less glucose)
Middle DCM 
1. � Lifestyle modification
  a. � Exercise
  b. � Diet with less glucose
2.  Treatments
  a. � Metformin (T2D)
  b. �I nsulin (T1D)
  c. � Pioglitazone (mitigates diastolic dysfunction)
  d. � Βeta-blocker (decreases hypertension)
Late DCM 
3.  Lifestyle modification
  a. � Exercise
  b. � Diet with less glucose
4.  Treatments
  a. � Metformin (T2D)
  b. �I nsulin (T1D)
  c. � Pioglitazone (mitigates diastolic dysfunction)
  d. � Βeta-blocker (decreases hypertension)
  e. � Angioplasty (for microangiopathy and coronary stenosis
  f. � miRNA treatment?
  g. � Stem cell therapy?

Abbreviations: BNP, B-type natriuretic peptide; DCM, diabetic cardiomyopathy; E/E′, ratio between mitral peak velocity of early filling (E) to early diastolic mitral annular 
velocity (E'); E/A, ratio between early (E) and late (atrial - A) ventricular filling velocity; Hb1c, glycosylated haemoglobin; LV, left ventricle; miRNA, micro-RNA; MMP, matrix 
metalloproteinase; TIMP, tissue inhibitor of metalloproteinase; T1D, type 1 diabetes; T2D, type 2 diabetes.
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