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Abstract: Lung cancer treatment has rapidly changed in the last few years thanks to novel 

insights into cancer biology. Several biomarkers and signaling pathways have been recognized 

as conceivable targets for treatment, and among them is the mesenchymal–epithelial transition/

hepatocyte growth factor (c-MET/HGF) axis. Alterations in the c-MET gene and aberrations 

of MET and HGF expression impact on lung cancer prognosis and are involved in resistance 

to epidermal growth factor receptor (EGFR) inhibitors in non-small cell lung cancer (NSCLC) 

patients harboring activating EGFR mutations. Several anti-MET and anti-HGF strategies are 

currently under investigation, including monoclonal antibodies. Ficlatuzumab is a monoclonal 

antibody directed against HGF that is currently under investigation in NSCLC. The aim of the 

present review is to critically review available data on HGF and ficlatuzumab in NSCLC.

Keywords: non-small cell lung cancer, MET, hepatocyte growth factor, ficlatuzumab, 

AV-299

Introduction
Lung cancer is a big killer in oncology, accounting for 1.3  million deaths per year 

worldwide.1 This disease includes two major histologic categories: small-cell lung cancer 

(SCLC, 15%–20% of cases) and non-small cell lung cancer (NSCLC, 80%–85% of 

cases) including adenocarcinoma, squamous cell carcinoma and large cell carcinoma. 

Beyond histologic aspects, lung cancer differs by the molecular aberration at the base 

of its pathogenesis and sustenance. Several oncogenic alterations in the genetic code 

and protein expression have so far been identified as conceivable targets for treatment. 

These molecular aberrations define subsets of patients with specific prognosis and out-

come following treatment. Epidermal growth factor receptor (EGFR) gene mutations 

can be detected in 10%–15% of Caucasians and in up to 40% of Asian NSCLC patients. 

Soon after their discovery in 2004, they were recognized as the principal biomarker in 

lung adenocarcinoma predicting response to treatment with the EGFR tyrosine kinase 

inhibitors (TKI).2 Seven phase III trials including thousands of patients treated with 

gefitinib, erlotinib, or afatinib, clearly demonstrated that EGFR TKI are the best option 

as first-line therapy for EGFR mutated NSCLC.3–9 Disease control can be reached 

in up to 90% of mutant individuals, but none of them can be definitively cured and 

progression of disease inevitably occurs. Moreover, a consistent proportion of patients 

show primary resistance to EGFR inhibitors, even in the presence of EGFR activating 

mutations. Resistance is usually determined by secondary genomic alterations in the 

target kinase altering the physical or biochemical properties of the receptor and by the 
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activation of collateral pathways. In 50% of cases a secondary 

gatekeeper mutation in the EGFR gene (T790M, D761Y) is 

responsible for acquired resistance.11–13 An additional 20% of 

refractory patients harbor overexpression of another tyrosine 

kinase receptor, the mesenchymal–epithelial transition (MET) 

receptor, which allows inhibition of the EGFR pathway to be 

bypassed.14,15 Some preclinical studies described a correla-

tion between EGFR TKI resistance and overexpression of 

the c-MET ligand, hepatocyte growth factor (HGF).16 Several 

strategies to overcome resistance to EGFR TKI are being 

explored in preclinical and clinical trials. In case of a secondary 

mutation, irreversible TKI,9 heat shock protein 90 inhibitors,17 

or combined treatment with anti-EGFR antibodies18 are under 

evaluation. Several MET inhibitors have so far been devel-

oped including monoclonal antibodies (ornatuzumab) and 

small molecule inhibitors (crizotinib, foretinib, cabozantinib, 

GCD265, tivantinib).19–24 Another possible strategy under 

evaluation is the blockade of HGF by competitive antagonists 

(NK4) or specific antibodies (AMG102/rilotumumab, AV-299/

ficlatuzumab).25,26 In this review we will describe the c-MET/

HGF signaling pathway in NSCLC, HGF expression as a 

resistance mechanism to EGFR TKI, and the possible role 

of HGF inhibition in the treatment of lung cancer patients, 

focusing specifically on ficlatuzumab.

c-MET/hepatocyte growth factor 
axis and lung cancer
The c-MET oncogene was first identified in the mid 1980s. It 

encodes a member of the receptor tyrosine kinase family and 

is structurally distinct from other components of the family. 

The receptor is a heterodimer composed of two subunits, 

the α- and β-chain (Figure 1).27,28 The α-chain is completely 

extracellular and is linked to the β-chain by a disulphide 

bond. The β-chain includes three domains: an extracellular 

portion, a transmembrane domain, and a cytoplasmic one. 

The intracellular domain contains a juxtamembrane portion, 

a tyrosine kinase domain, and a carboxy-terminal tail.27,28

Shortly after the discovery of MET, its physiological 

ligand, HGF or scatter factor, was identified.29 It is a platelet-

derived mitogen for hepatocytes and other normal cell types 

and a fibroblast-derived factor for epithelial cell scattering, 

ie, it induces random movement in epithelial cells.29–31 HGF is 

a morphogen that induces transition of epithelial cells into a 

mesenchymal morphology. Both tumor and stromal cells have 

been identified as potential sources of HGF.32 Co-culture stud-

ies investigating tumor–stromal interaction demonstrated that 

fibroblast-dependent carcinoma cell growth and invasion is 

inhibited by anti-HGF antibodies, highlighting the importance 

of stroma-derived HGF in tumor sustenance and progression.33 
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Figure 1 c-MET/HGF pathway. 
Abbreviations: HGF, hepatocyte growth factor; PI3K, phosphoinositide 3-kinase; mTOR, mammalian target of rapamycin; Gab1; GRB-associated binding protein 1; STAT3, 
signal transducer and activator of transcription 3; SRC, sarcoma; Grb2, growth factor receptor-bound protein 2; SOS, son of sevenless; FAK, focal adhesion kinase-1; Pxn, 
paxillin; RAS, rat sarcoma; RAF, rapidly accelerated fibrosarcoma; MEK 1/2, MAPK/ERK kinase; ERK, extracellular signal regulated kinase.
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It is synthesized in an inactive form and then converted into a 

two chain heterodimer, including an amino-terminal domain 

(N), four Kringle domains (K1–K4), and a serine protease 

homology domain. The N-K1 portion is responsible for MET 

binding and dimerization or multimerization. The joining of 

two or more c-MET receptors leads to phosphorylation of 

the tyrosine residues Y1234 and Y1235 in the tyrosine kinase 

domain, and phosphorylation of the residues Y1349 and Y1356 

near the carboxy-terminal tail.34 The phosphorylation of the 

carboxy-terminal tail forms a multifunctional docking site that 

recruits intracellular adapters and substrates such as STAT3, 

Grb2, Gab1, PI3K, Shc, Src, Shp2, and Shp1.35 Thus, several 

pathways involved in proliferation, survival, cell motility, 

invasion, and metastasis are activated. Interestingly, c-MET 

activation leads to the recruitment of effectors involved in 

the epithelial–mesenchymal transition through RAS/MAPK 

signaling and the FAK/paxillin complex (Figure 1).

Deregulation of c-MET/HGF signaling may result in 

carcinogenesis in several solid tumors.36,37 The most com-

mon mechanism of activation is c-MET protein expression 

due to transcriptional upregulation in the absence of gene 

amplification.38 Receptor overexpression can also be deter-

mined by gene amplification.39 Another rare mechanism of 

activation of the axis is by mutation of the c-MET gene.38 

Kinase activation may be ligand independent, but in cancer 

it is mainly caused by binding of the ligand. Even in the case 

of c-MET activating mutations, HGF is needed to start the 

catalytic activity of the receptor.40 HGF plays a fundamen-

tal role in the c-MET axis in cancer as it can act either as a 

paracrine factor, causing positive feedback leading to c-MET 

transcription,41 or act by an autocrine mechanism.42,43

c-MET gene amplification and overexpression have 

been associated with poor patient outcome in several 

studies.44,45 The concentration of HGF in serum or cancer 

tissue was associated with progression of disease in many 

cancer types including breast,43,46,47 gastric,48 bladder,49 

colorectal,50 SCLC,51 and myeloma.52 Several studies on 

NSCLC reported intratumoral and plasma HGF levels to be 

prognostic indicators.53–56 Two research groups analyzed the 

intratumoral levels of HGF in 56 and 183 resected NSCLC 

respectively and found an inverse correlation between HGF 

levels and overall survival, ie, individuals with high levels of 

intratumoral HGF were likely to have a worse prognosis.53,54 

More recently, Hosoda et al55 studied plasma HGF levels in 

25 resected NSCLC, revealing a better outcome in terms of 

both disease free survival (P = 0.032) and overall survival 

(P = 0.020) for patients with lower levels of HGF. In a similar 

study by Ujiie et al,56 HGF plasma levels were a negative 

prognostic factor only for survival (P = 0.016) in a cohort 

of 109 surgically treated NSCLC patients.

Role of HGF in EGFR TKI resistance 
and rationale for its blockade
Other than a prognostic indicator, HGF seems to be involved 

in resistance to agents targeting the EGFR family, not only 

in lung cancer but also in other malignancies. Recently, our 

group investigated the role of MET and HGF gene copy 

number in a large population of metastatic breast cancer 

patients treated with trastuzumab, an anti-HER2 antibody, 

and we showed that high MET and HGF gene copy numbers 

associated with an increased risk of resistance to the anti-

HER2 therapy.57 In lung cancer, HGF can independently 

activate both PI3K/AKT and ERK signaling leading to 

drug resistance in the presence of EGFR TKI. Unlike MET 

amplified resistant cancers, HGF-mediated resistance occurs 

through Gab1 and does not involve HER3.58 In 2008, a 

Japanese group administered HGF to an adenocarcinoma 

cell line harboring a sensitizing EGFR gene exon 19 dele-

tion and found that HGF induced resistance in a dose-

dependent manner.59 Higher levels of HGF can be detected 

in tumor specimens from NSCLC patients that are clinically 

resistant to gefitinib or erlotinib compared to pretreatment 

tumor specimens. Yano et al60 analyzed HGF expression in 

paraffin-embedded specimens from 93 EGFR mutant lung 

cancer patients and found a higher level of HGF expression 

in tumors with intrinsic and acquired resistance to EGFR 

TKI. In another study, Turke et al58 compared HGF levels 

in 16  NSCLC patients for which pre- and post-treatment 

specimens were available and found that HGF expression was 

significantly higher in the TKI resistant specimens than in 

the pretreatment specimens, supporting a role for HGF alone 

in promoting drug resistance. Both these research groups 

postulated that HGF may induce EGFR TKI resistance by 

selection of clones with MET gene amplification.58,60 Recently 

some researchers investigated whether HGF levels in blood 

may predict response to EGFR TKI treatment. Several studies 

analyzed HGF levels in serum from NSCLC patients treated 

with an EGFR TKI and not selected according to their EGFR 

mutational status, finding a strong correlation between serum 

HGF levels and outcome of treatment.61,63

Considering its properties and role as a determinant or 

promoter of resistance to EGFR TKI, HGF may represent 

a perfect candidate as a target for treatment. The growth 

factor is able to induce MET protein  overexpression and its 

blockade may consequently avoid the development of this 

resistance mechanism in a consistent proportion of patients. 
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Moreover, HGF can convert cancer cells from an epithelial to 

a mesenchymal phenotype and it is known that lung cancers 

expressing mesenchymal markers are more resistant to EGFR 

TKI treatment than tumors with an epithelial phenotype.64,65 

A prominent question for all resistance mechanisms is 

whether they occur as a consequence of treatment or if they 

exist prior to treatment and are selected under therapy pres-

sure. Growing evidence indicates that resistance mechanisms 

are already present in small clones of tumor cells, as in the 

case of secondary EGFR mutations58 and MET amplifica-

tion.66 Therefore, treatment with a combination of an EGFR 

TKI and an anti-HGF or anti-MET agent, particularly in 

patients with evidence of MET amplification or HGF overex-

pression, could be more effective than an EGFR TKI alone. 

In addition, HGF and its receptor are clearly involved in the 

processes of invasion and metastasis and preclinical data 

suggest a synergistic effect of EGFR TKI and anti-MET 

agents, even in EGFR wild-type models.67 For all the listed 

reasons, anti-MET and anti-HGF strategies are currently 

under development in NSCLC and other malignancies.

Preclinical data suggested that HGF inhibition could be 

potentially effective against lung cancer. Okamoto et  al68 

examined the effects of adding an anti-HGF antibody 

(TAK-701) to gefitinib treatment in an EGFR mutant cell 

line engineered to stably express HGF. The combination 

suppressed cell growth by inhibition of phosphorylation of 

MET and of the downstream effectors of the EGFR pathway 

(EGFR, ERK, and AKT), indicating that autocrine c-MET/

HGF signaling contributes to gefitinib resistance. In athymic 

nude mice, the combination therapy of TAK-701 and gefitinib 

inhibited tumor growth in vivo. In another study, a different 

anti-HGF antibody (L2G7) was used in combination with 

gefitinib in HGF expressing mice in which lung tumors were 

induced by exposure to a carcinogen.69 The mean tumor 

number in the group treated with the combination of L2G7 

and gefitinib was significantly lower than with single agents. 

Apoptosis was significantly higher in the group treated with 

combination therapy (17-fold) compared to a single agent 

(7.9- and 3.5-fold for L2G7 and gefitinib, respectively).

Ficlatuzumab: current status  
and future directions
Ficlatuzumab (SCH 900105 or AV-299, Aveo Pharmaceu-

ticals, Inc, Cambridge, MA, USA) is a humanized IgG1 

antibody that binds the HGF ligand with high affinity and 

specificity, thus inhibiting c-MET/HGF biological activities. 

Its pharmacokinetic profile is characterized by a dose-

proportional drug exposure with a low systemic clearance 

and a terminal half-life of 7–10 days.70 In a phase I trial, 

ficlatuzumab monotherapy resulted in decreases of phospho-

MET, phospho-ERK, phospho-AKT, and Ki67.71 The anti-

tumor efficacy of ficlatuzumab was evaluated in paracrine 

models of a HGF-dependent NSCLC cell line xenografted into 

SCID mice engineered to produce human HGF. Ficlatuzumab 

monotherapy decreased tumor growth in a dose-dependent 

manner and led to significant reductions in phospho-c-MET 

and phospho-AKT levels, but produced a concurrent increase 

in phospho-EGFR levels. Therefore, ficlatuzumab was stud-

ied in combination with erlotinib or cetuximab, and the two 

combination treatments showed increased antitumor activity 

when compared to the single agents.71 The potent antitumor 

activity of the combination with EGFR inhibitors observed in 

preclinical models supported further development in NSCLC 

patients. In a phase I trial, ficlatuzumab was administered both 

as a single agent (in 24 patients) and in combination with 

erlotinib 150 mg daily (in 13 patients) in 37 patients with 

solid tumors, and was well tolerated up to the maximum tested 

dose of 20 mg/kg every two weeks.72 The most common tox-

icities of ficlatuzumab monotherapy were fatigue, peripheral 

edema, headache, and diarrhea; skin rash and diarrhea were 

the major side effects of the combination treatment. Another 

phase Ib trial studied ficlatuzumab in association with gefitinib 

in 15 molecularly unselected Asian NSCLC patients.25 The 

recommended phase II dose was 20 mg/kg every two weeks 

for ficlatuzumab and 250 mg daily for gefitinib. Among the 

twelve patients treated in the 20 mg/kg arm, five were EGFR 

TKI naïve and all of them reached a partial response. In the 

same treatment arm, stabilization of disease was observed in 

four cases and progression in three cases.

Recently, Mok et al presented the results of a randomized 

phase II trial comparing gefitinib as single agent versus the 

combination of gefitinib and ficlatuzumab.73 The study enrolled 

188 Asian treatment naïve patients with lung adenocarcinoma 

not selected for EGFR mutational status, even if the study popu-

lation had clinical characteristics frequently associated with the 

presence of EGFR mutations. The primary endpoint of the study 

was to compare the overall response rate between treatment 

arms. In the overall population there was no statistical differ-

ence in response rate (40% for gefitinib arm versus 43% for 

the combination arm) or progression free survival (4.7 months 

versus 5.6 months in the gefitinib arm versus combination arm, 

respectively). Surprisingly, subgroup analyses showed that com-

bination therapy was more effective in patients with low MET 

expression. In particular, patients with activating mutations in 

the EGFR gene and low c-MET levels seemed to benefit more 

from the combination in terms of progression free survival, 
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indicating that c-MET/HGF inhibition may delay the rise of 

EGFR TKI resistance in this specific population of lung cancer 

patients. Nevertheless, the low number of patients included in 

the subgroup analyses precludes any firm conclusion.

The phase II trial with ficlatuzumab did not reach its 

primary endpoint but its exploratory biomarker analysis pro-

vided important directions for future studies with this agent. 

In our opinion, anti-MET agents should be explored mainly 

in three groups of NSCLC patients (Figure 2): (1) In EGFR 

TKI naïve patients harboring EGFR mutations in combina-

tion with EGFR TKI. Because MET amplification is one of 

the most relevant mechanisms involved in EGFR TKI resis-

tance,13,74 it is possible that combining an EGFR TKI with an 

anti-MET agent leads to a delay in tumor progression; (2) In 

EGFR wild-type patients with high MET expression or MET 

gene amplification. MET gene amplification is a rare event 

in NSCLC, occurring in approximately 5% of cases.75 Data 

with onartuzumab, another anti-MET antibody, suggested that 

this agent in combination with erlotinib is more effective than 

erlotinib alone in high MET expressing patients.18 In a phase 

II randomized trial, tivantinib, a small molecule MET inhibi-

tor, significantly delayed tumor progression when combined 

with erlotinib in MET amplified patients.23 Overall, data with 

anti-MET agents indicate that this class of drugs is potentially 

active in patients selected on the basis of MET expression or 

gene copy number; and (3) In patients with acquired resistance 

to EGFR TKI. Preclinical models showed that the combination 

of an irreversible EGFR TKI with an anti-MET agent is more 

effective than an anti-MET agent alone in NSCLC cell lines 

with acquired resistance to reversible EGFR TKI.12 Moreover, 

we observed that high levels of MET amplification, known to 

be associated with gefitinib resistance in vitro, rarely occurs 

in untreated NSCLC, irrespective of EGFR status, and that 

it may develop only under therapeutic pressure, leading to 

the conclusion that, in EGFR TKI naïve patients, the level 

of genomic gain for MET is not increased enough to impact 

response to TKI. This finding has clinical implications since 

support for anti-MET strategies should be focused particularly 

on EGFR TKI resistant patients, where MET gene gain is more 

frequently observed and can drive tumor resistance.75

Conclusion
The treatment of advanced NSCLC has deeply changed dur-

ing the last decade and is rapidly moving toward personalized 

medicine. Biomarker analysis is becoming more and more 

important for defining prognosis and for offering the best 

treatment to our patients. c-MET and HGF have emerged 

as important biomarkers in NSCLC and other malignancies. 

Ficlatuzumab is a monoclonal antibody directed against HGF 

with promising preclinical activity; so far it has not been con-

firmed in clinical trials. To date, only data from a phase II trial 

are available and additional studies are planned. Nevertheless, 

accurate patient selection is of crucial relevance for understand-

ing the real benefit produced by the drug and for offering our 

patients new therapies positively impacting on survival.
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