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Abstract: In the past two decades, more than 20 viruses with selective tropism for tumor cells 

have been developed as oncolytic viruses (OVs) for treatments of a variety of malignancies. Of 

these viruses, eleven have been tested in human ovarian cancer models in preclinical studies. So 

far, nine phase I or II clinical trials have been conducted or initiated using four different types 

of OVs in patients with recurrent ovarian cancers. In this article, we summarize the different 

OVs that are being assessed as therapeutics for ovarian cancer. We also present an overview 

of recent advances in identification of key genetic or immune-response pathways involved in 

tumorigenesis of ovarian cancer, which provides a better understanding of the tumor specifici-

ties and oncolytic properties of OVs. In addition, we discuss how next-generation OVs could 

be genetically modified or integrated into multimodality regimens to improve clinical outcomes 

based on recent advances in ovarian cancer biology.
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Introduction
Ovarian cancer is the sixth most prevalent cancer in women and the most lethal of the 

gynecologic malignancies.1,2 If caught at an early stage, the majority (approximately 90%) 

of ovarian cancer patients are cured. Approximately 90% of ovarian tumors are epithelial 

in origin, with the remainder being sex cord–stromal and germ cell tumors. These latter, 

rarer tumor types of the ovary and epithelial tumors that are confined to one or both 

ovaries (ie, stage 1A/B) are usually treated with surgery alone due to the early diagnosis 

and lower metastatic potential. Over three-quarters of ovarian tumors, however, are 

discovered at an advanced metastatic stage, when prognosis is poor.

Most other carcinomas follow a pathway of disease dissemination that involves 

intravasation into the bloodstream followed by extravasation at distant tissue sites, as 

well involvement of lymphatic spread.3 Metastasis of epithelial ovarian cancer is unique 

in that it typically spreads by direct dissemination or shedding of cancer cells from 

the primary tumor site into the ascites of the peritoneal space, followed by secondary 

tumor seeding by implantation onto the serosal surfaces of abdominal organs.4,5 This 

implies that there are likely molecular and cellular properties of ovarian tumor cells that 

dictate this pattern of metastasis; unique properties, perhaps, that could be exploited 

for more efficacious therapeutic strategies.

Heterogeneity of ovarian cancer
Epithelial ovarian cancer does not represent a single disease, but rather can be 

distinguished and characterized as distinct histological subtypes.6 The four most 
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common histotypes of epithelial ovarian cancer are serous, 

endometrioid, clear cell, and mucinous; these can also be 

subclassified based on grade, although clear cell is always 

considered high-grade. Further to this complexity, a sub-

stantial proportion of epithelial ovarian cancer cases will be 

of mixed histologies.

Over the last several years, genetics, genomics, and 

gene-expression analyses have demonstrated that there are 

common mutations and aberrant signaling pathways that 

typify these histologic subtypes. High-grade serous ovarian 

cancers almost universally harbor mutations in TP53, and 

these tumor cells are defined as being highly genomically 

unstable.7,8 In comparison, TP53 mutations and genomic 

instability are rare in low-grade serous ovarian cancers, 

but rather these tumor types commonly possess activating 

mutations in KRAS and BRAF. Gene-expression analyses 

have corroborated clinicopathologic definitions of these 

histologic subtypes, since each subtype has a characteristic 

gene-expression pattern resembling the normal cell/tissue 

type.9 Serous ovarian cancer is similar to fallopian tube 

epithelium, endometrioid, and clear cell to endometrial 

cells, and mucinous to gastrointestinal cells of the colon. 

This also reflects the argument that a subset of these ovarian 

malignancies may arise from origins alternative to the ovary. 

For example, a substantial amount of strong evidence directs 

the putative source of high-grade serous ovarian cancer in 

the secretory epithelial cells of fallopian tube fimbriae.10 

Endometriosis, a common pathologic condition seen in 

approximately 15% of all women, is also a potential source 

for endometrioid and clear cell cancers of the ovary.11 This 

heterogeneity in tumor types seen in epithelial ovarian 

cancer is clinically relevant, since it is well established that 

tumor aggressiveness, response to chemotherapy, and patient 

prognosis are correlated with tumor type.2 There is a trend 

towards rationally selecting patients for clinical trials using 

targeted therapeutics based on ovarian cancer histologic 

subtype;12 however, the majority of ovarian cancer patients 

with metastatic disease are treated with the standard regimen 

of combined carboplatin and paclitaxel. It remains to be seen 

if ovarian cancer will be a cancer type that can reap further 

benefits of personalized medicine through the targeting 

of histologic subtypes with their underlying genetic and 

biochemical defects.

Ovarian cancer–initiating cells
The cancer-initiating cell (CIC) theory maintains that a 

minority of cells within a primary tumor have the unique 

capacity to repopulate a heterogeneous tumor as well as 

self-renew.13 CICs are believed to commonly have a low 

mitotic rate as well as express factors that can promote their 

survival. Given this, CICs demonstrate resistance to chemo- 

and radiotherapy, thus serving as a potential source for 

cancer recurrence, since current chemotherapies commonly 

fail to eliminate CICs.14 CICs were originally defined within 

hematologic malignancies, but they have been identified in 

many different solid cancers over the past decade, including 

breast,15 prostate,16 colon,17,18 liver,19 pancreatic,20 brain,21 

melanoma,22 and ovarian.23–25

Ovarian CICs (OCICs) have been identified by several 

groups and have been isolated and characterized using a 

diverse set of markers and activities. Szotek and colleagues 

successfully isolated OCICs in mouse ovarian tumor cells 

and from human ovarian cancer cell lines and patient ascites 

by verapamil-sensitive Hoechst efflux side population (SP).24 

Fitting the definition of CICs, the SP cells represented , 1% 

of the origin population of cells, had more robust sphere-

forming and tumour-forming potential than non-SP cells, and 

repopulated a heterogeneous tumor of both SP and non-SP 

cells. Subsequent to this first report, other groups have 

selected OCICs from human ovarian tumors by sorting for 

cell surface coexpression of CD44+ and CD117+,25 CD44+ and 

MyD88+,26 or CD133+ and CD117+,27 although enrichment for 

stem-like cells has also been performed using CD133+28,29 or 

CD24+30 alone. More recently, groups have demonstrated that 

aldehyde dehydrogenase activity can define an OCIC popula-

tion in combination with CD13331,32 or CD44.33 A recent study 

tested 150 combinations of eight cancer stem cell markers 

and found that the combination of three – CD44, CD24, and 

epithelial cell adhesion molecule – exhibited the most robust 

enrichment of OCICs.34 Importantly, the OCICs that have 

been identified by these different methods are commonly less 

sensitive to standard chemotherapeutics used to treat ovarian 

cancer patients.26 Thus, if these cells are the main contribu-

tors to recurrence of resistant disease, then therapeutics that 

are more efficacious at targeting and killing these progenitor 

cells are of utmost importance.

Immune response in ovarian cancer
It is important to recognize and appreciate the antitumor 

immune response and subsequent immune evasion by 

late-stage metastatic cancers as a universal hallmark of 

malignancy.35,36 The immune system is thought to play an 

essential role in facilitating tumor regression in response to 

chemotherapy for ovarian cancer. The presence of tumor-

infiltrating lymphocytes in response to chemotherapy and 

even before chemotherapy is initiated is associated with 
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better prognosis for ovarian cancer patients.37,38 There have 

been numerous activities to generate anticancer vaccines for 

ovarian cancer,39 yet none have come to fruition. Interestingly, 

a recent report has targeted OCICs via fusion with dendritic 

cells as being a potential means for immunotherapy for 

ovarian cancer.40,41

Late-stage ovarian tumors are believed to grow in an 

immunosuppressive environment, with many key cytokines 

known to stimulate an antitumor response being significantly 

reduced in the hostile ascites environment during metastatic 

disease progression.42 For example, transforming growth 

factor-beta, which is a potent immunosuppressive factor 

known to promote late-stage human cancer progression,43 

is present in biologically relevant quantities in malignant 

ascites.44,45 Taken together, it implies that recruiting an active 

immune response is likely a critical component to effective 

therapy for ovarian cancer; however, significant pathobio-

logical hurdles would still have to be overcome.

Preclinical studies with oncolytic 
viruses in ovarian cancer
Debulking surgery followed by chemotherapy using a 

platinum/taxane-based regimen is the current standard of care 

for ovarian cancer. However, more than 65% of patients will 

eventually relapse.46 The overall 5-year survival rate for all 

stages of ovarian cancer is currently less than 50%, and for 

advanced ovarian cancer remains 15%–30%.1 New, more 

effective therapeutic approaches for treatment of recurrent or 

drug-resistant ovarian cancer remain an urgent unmet medi-

cal need. The emerging oncolytic virotherapy represents a 

unique strategy and holds great promise for cancer therapy. 

Oncolytic virotherapy is defined as the use of a class of non- 

or low-pathogenic viruses that is able to preferably replicate 

in cancer cells and eliminate them in situ; for example, via 

direct lysis or induction of apoptosis.47 Currently exploited 

oncolytic viruses (OVs) are either naturally occurring viruses 

(either human or nonhuman) that have little or no natural 

pathogenicity in humans, including reovirus, myxoma virus 

(MYXV), vaccinia virus (VV), measles virus (MV), vesicular 

stomatitis virus (VSV), sindbis virus (SV), Maraba virus 

(MRB), and echovirus type 1 (EV1), or comprise genetically 

engineered viruses, including adenoviruses (Ads), herpes 

simplex viruses (HSVs) or certain poxviruses. The OVs 

that are currently being developed to treat ovarian cancer 

are summarized in Table  1. Most recently, two related 

reviews on OVs for ovarian cancer have been published, one 

review outlining the current status of the clinical data from 

human trials and the other focusing on OVs for gynecologic 

malignancies.48,49 In this review, we attempt to provide more 

comprehensive and up-to-date summaries of the molecular 

biology of ovarian cancer and the results from preclinical 

and clinical studies using OVs for ovarian cancer.

General mechanisms of tumor  
selectivity of OVs
The development of malignancies, namely tumorigenesis, can 

be seen as an evolution of normal cells to acquire the capacity 

for uncontrolled cell division and invasive capabilities that 

mediate dissemination into normal organs and tissues. Dur-

ing this process, tumor cells acquire genetic mutations and 

cellular changes that progressively interfere with tumor 

cell recognition and clearance by host immune pathways. 

Coincidentally, these cellular and genetic changes of the 

tumor cells over normal cells also provide the molecular tar-

gets for OVs to selectively infect and replicate in tumor cells. 

There are at least five general mechanisms that determine 

the tumor selectivity of OVs.

Defective innate immune responses of tumor cells
The most important inducible innate antiviral defense system 

in normal cells is the interferon (IFN) signaling pathway. In 

normal somatic cells, virus invasion can be sensed by a vari-

ety of sentinel receptors, such as membrane-bound Toll-like 

receptors or cytoplasmic sensors like the nucleic acid helicases 

encoded by retinoic-acid inducible gene-I, melanoma differ-

entiation associated gene 5, and DNA-dependent activator of 

IFN regulatory factors.50 Viral infections trigger these sensor 

proteins to initiate signaling cascades that trigger IFN induc-

tion and secretion from most nontransformed mammalian 

cells. Secreted type I IFN then acts on both virus-infected and 

uninfected cells to upregulate the expression of many antiviral 

proteins. Over 200  such IFN-inducible host proteins have 

been described, including members whose primary function 

is to intercept the virus infection.51 One example of such an 

IFN-induced antiviral protein is protein kinase R (PKR). Once 

induced, PKR can then be activated by virus-derived dsRNA. 

Upon activation, PKR phosphorylates and inactivates eukary-

otic initiation factor 2 alpha (eIF2α), causing global inhibition 

of protein synthesis of both host and viral proteins.51 IFN also 

has tumor-suppression properties that are also mediated by 

PKR and other IFN-stimulated proteins. Genetic defects in 

the cellular IFN-response pathway, as well as other related 

innate immune responses (eg, TNF induction, apoptosis, etc) 

are also frequently seen in cancer cells, and these acquired sig-

naling defects may in fact be crucial for the proliferation and 

immune evasion of cancer cells.52,53 An indirect consequence 
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of these cellular defects is to frequently convert cancer cells 

to be more permissive to infection by a spectrum of OVs 

that are typically more efficiently suppressed in normal 

somatic cells. For example, one of the common mutations 

leading to inhibition of the IFN signaling response pathway 

is constitutive Ras activation caused by various mutations to 

this cellular oncogene (present in approximately 30% of all 

human cancers).54 Activated Ras signaling also inhibits PKR, 

likely through dephosphorylation of PKR, and this in turn 

promotes infection and oncolysis of Ras-activated cancer 

cells by reovirus.55

Overexpression of viral receptors on tumor cells
Many cancer-specific mutations result in elevated expression 

of certain cell surface molecules that facilitate tumorigenesis 

and/or metastasis. These molecules, often expressed at low 

levels or absent on normal cells, usually affect adherence 

or migration of cancer cells, but they can also serve as the 

cell-entry receptors for OVs. For instance, cancer-specific 

CD46,56 67-kD high affinity laminin receptor (LAMR),57 and 

integrin α
2
β

1
58 are utilized by the oncolytic MV Edmonston 

strain, SV, and EV1, respectively. Additionally, some OVs can 

be genetically modified to retarget recombinant viruses to 

cancer-specific receptors such as the integrins α
v
β

3
 and α

v
β

5
, 

α-folate receptor (FRα), or epidermal growth factor receptor 

(EGFR).59–62 All these cancer-specific surface proteins, for 

example, can be found on most ovarian cancer cells.

Dysregulation of the tumor cell cycle
Mutations in tumor suppressor genes, such as p53 and Rb, 

may lead to dysregulation of cell cycle and suppression of 

apoptosis, creating a cellular environment favoring continued 

Table 1 Oncolytic viruses in preclinical studies on ovarian cancer therapy

Oncolytic virus Genome and structure Genetic modification Tumor selectivity Refs

Adenovirus  
(serotype 5)

36-kb dsDNA  
nonenveloped

E1B 55-kD deletion Aberrant p53 pathway and  
aberrant mRNA transport

90, 91

E1A CR2 deletion Aberrant Rb pathway 92, 93
Tropism modification RGD motif insertion targeting  

TS integrins
59

Ad5/3 chimeric capsid targeting  
TS desmoglein-2

103, 104

TSP-driven E1A expression 68, 105–107
Herpes simplex  
virus 1 and 2

∼150-kb dsDNA  
enveloped

γ 34.5 gene deletion Aberrant PKR signaling or  
PI3K pathway

120, 121

ICP10 deletion Activated Ras-signaling pathway 127
Deletion of viral RR Upregulation of cellular RR 130

Vaccinia virus 190-kb dsDNA  
enveloped

TK gene deletion
VFG deletion

Upregulation of cellular TK
Activation of VEGF-signaling  
pathway

133
133

Natural attenuation Ras-signaling pathway,  
defective IFN pathway

136

Myxoma virus 160-kb dsDNA  
enveloped

None Defective TNF/IFN pathway,  
activated Akt

141, 142

Reovirus  
(serotype 3)

24-kb dsRNA  
nonenveloped

None Activated Ras-signaling pathway 55

Measles virus 16-kb ss(-) RNA  
enveloped

Attenuated vaccine
Tropism modification

Targeting TS CD46 receptor
Incorporation of signal-chain  
antibody retargeting 
TS FRα receptor

56
60

Mumps virus 15-kb ss(-) RNA  
enveloped

Attenuated vaccine Likely defective antiviral pathway 200

VSV 11-kb ss(-) RNA  
enveloped

None Defective IFN pathway 165

Maraba virus 11-kb ss(-) RNA  
enveloped

Attenuated strain Defective IFN pathway, and unknown,  
IFN- independent defects in cancer cells

174

Sindbis virus 12-kb ss(+) RNA  
enveloped

None Targeting TS LAMR, defective  
IFN pathway

57, 178

Echovirus type 1 7.5-kb ss(+) RNA  
nonenveloped

None Targeting TS integrin, defective  
IFN pathway

58, 201

Abbreviations: TSP, tumor-specific promoter; TS, tumor specific; TK, thymidine kinase; RR, ribonucleotide reductase; VEGF, vascular endothelial growth factor; 
IFN, interferon; PKR, protein kinase R; TNF, tumor necrosis factor; PI3K, phosphatidylinositol 3-kinase; LAMR, laminin receptor.
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proliferation of the cancer cells. Some OVs have been engi-

neered by deletion of essential viral genes involved in interac-

tion with cellular proliferation–regulatory proteins in normal 

cells, thus enabling selective replication of the OVs in tumor 

cells. For example, VV constructs that have been deleted in the 

viral thymidine kinase (TK) gene can only replicate efficiently 

in proliferating cancer cells that highly express cellular TK but 

less efficiently in normal noncycling cells with a low level of 

cellular TK.63 As another example, deletion mutation of the 

adenovirus E1A gene can preempt E1A interaction with Rb 

protein and thus restricts the replication of the mutant virus 

in cancer cells with missing or aberrant Rb.64

Tumor-specific promoter–controlled transcription
Restriction of OV replication in certain cancer cells can also 

be accomplished by insertion of a tumor cell–responsive 

tumor-specific promoter (TSP) that drives the expression 

of viral genes essential for virus replication. TSPs that have 

been tested in ovarian cancer cells include cyclooxygenase 2 

(COX2), vascular endothelial growth factor receptor (VEGF), 

mesothelin, midkine, survivin, the secretory leukoprotease 

inhibitor, and the C-X-C chemokine receptor type 4 

(CXCR4), and multidrug resistance gene 1 promoters.65–68

MicroRNA-regulated replication of OVs
The recent discovery that some specific microRNAs (miRNAs) 

are specifically dysregulated in cancer cells provides a new 

avenue for targeted replication of OVs in cancer cells. miRNAs 

are a class of small noncoding RNA molecules that regulate 

gene expression posttranscriptionally by binding to comple-

mentary sequence on mRNA targets and then blocking protein 

translation via the RNA-induced silencing complex. miRNAs 

whose expression is lost or greatly reduced in cancer cells have 

been used to control the expression of critical viral genes of 

several OVs, thereby confining OV replication to those cancer 

cells.69,70 To date, however, miRNA-regulated OVs have not 

yet been studied in ovarian cancer.

Ovarian cancer model systems
Established ovarian cancer cell lines have been generated 

and characterized throughout the ovarian cancer literature. 

Much is known regarding the genetic perturbations within 

many of these lines, particularly with the recent publication 

of data from genome-wide sequencing strategies.71,72 There 

are also well-defined data with respect to the tumorigenic 

capacity when implanted into immune-compromised mice 

with respect to take rate, tumor latency, route of injection, 

and combined administration of standard chemotherapeutics 

for ovarian cancer (ie, platinum agents and taxanes).73–75 

There are also concerted efforts by some groups to establish 

and use primary ovarian tumor cells directly from patients. 

For ovarian cancer, this not only entails growing cells from 

solid tumor biopsy specimens, but can be quite effectively 

performed by direct culturing of metastatic ovarian cancer 

cells from the malignant ascites fluid that accumulates in the 

majority of women with late-stage disease.76

The widely held belief is that epithelial ovarian cancer 

cells arise from lesions within the normal ovarian surface 

epithelial cells;77,78 however, more recently it has emerged 

that alternative origins likely exist as well. Historically, 

ovarian cancer cells are compared with either primary 

cultures of normal ovarian surface epithelial cells from 

oophorectomy specimens or – what has been more widely 

done – immortalized counterparts of these cells are used. 

Ovarian surface epithelial (OSE) cells immortalized with 

simian virus 40 (SV40) T antigen originally generated by 

Auersperg’s group have been commonly used,79,80 and since 

then human telomerase reverse transcriptase has also been 

applied.81 These immortal cell lines derived show no tumori-

genic characteristics in culture and in mice, but retain normal 

epithelial cell properties.81,82 Additional molecular events, 

such as coexpression of E-cadherin, are required for SV40 T 

antigen–immortalized human OSE to acquire tumor-forming 

potential.83 To address the putative fallopian tube origin of 

high-grade serous ovarian cancer, efforts have been initiated 

to generate fallopian tube secretory epithelial cell lines.84

Mouse models typically entail human ovarian tumor 

cell line xenografts into immune-compromised mice. For 

example, ES2 cells and A2780 cell lines are quite aggres-

sive and yield robust tumor and ascites growth within a short 

period.75,85 SKOV3ip1  cells are also useful for successful 

intraperitoneal (IP) injection and tumorigenesis studies.86 For 

using mouse models that possess an intact immune system, 

there has been the development of transgenic mouse lines that 

yield bilateral ovarian tumors due to SV40 T antigen expres-

sion targeted to the mouse ovarian surface epithelium.87 This 

contrasts with human OSE cells immortalized with SV40 T 

antigen alone, which is nontumorigenic in mice.82 In addi-

tion, there is the utility of using the ID8 transformed mouse 

OSE cell line, which can establish tumors when injected into 

syngeneic C57Bl/6 female mice.88

OV candidates for ovarian cancer
Adenovirus
Members of the Adenoviridae family are DNA viruses that 

commonly cause mild and self-recovered upper respiratory 
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tract and digestive tract infection in healthy people. There 

are 57 Ad serotypes identified in humans,89 of which Ad 

serotype 5 (Ad5) is most extensively studied and has been 

genetically modified into various recombinant conditionally 

replicative adenoviruses (CRAds) for treatment of cancer. 

CRAds possess specifically engineered elements in the 

viral genome that confer selective viral replication in cancer 

cells but disfavor replication in normal somatic cells. The 

best-known oncolytic CRAd is E1B 55-kDa gene-deleted 

Ad5 mutant dl1520 (also known as Onyx-015, developed 

by Onyx Pharmaceuticals).90 E1B 55 kDa protein has been 

shown in vitro to bind and inactivate the cellular tumor sup-

pressor p53 protein, thereby blocking p53-induced apoptosis. 

Originally, it was believed that prevention of p53-mediated 

apoptosis by E1B 55 kDa protein allowed wild-type (WT) 

Ads to replicate and propagate in normal cells, and hence 

Onyx-015 would only replicate in p53-defective cancer cells. 

However, E1B 55 kDa protein was subsequently found also to 

be involved in late viral RNA nuclear export, and this mecha-

nism, rather than p53 inhibition, is more likely to determine 

the tumor selectivity of Onyx-015.91 The effect of Onyx-015 

treatment on ovarian cancer was tested in nude mice bearing 

xenografted human ovarian cancer cells.92 It was shown that 

Onyx-015 was able to enhance survival of animals bearing 

human ovarian OVCAR3 or A2780/CP70 tumors. This find-

ing promoted Onyx-015 entrance into human clinical trials 

for ovarian cancer in early 2000.

Two other CRAds, containing a similar but not identi-

cal 24-bp deletion in the Rb-binding conserved region 2 

of the E1A gene that abrogates the binding of E1A to pRb, 

and designated dl922–947 and Ad5-∆24, respectively, 

were developed to target tumor cells defective in the Rb 

pathway.64,93 Binding of E1A to Rb is required for Ad to 

drive S-phase entry and cell cycle progression for optimal 

viral replication.94 Aberrant Rb pathway and consequent 

abnormal G1-S checkpoint, which can complement E1A 

with mutated conserved region 2 and permit the replication 

of Ad5-∆24 and dl922–947 in such tumor cells, are found 

in over 90% of human cancers, including ovarian cancer.95 

In vitro studies have shown that compared with WT Ad5 

and Onyx-015, dl922–947 induced greater cytotoxicity in 

IGROV1 and OVCAR4 ovarian cancer cells and certain 

other types of cancer cells.64,96 In the IGROV1 xenograft 

mouse model, dl922–947 displayed potent antiovarian 

tumor activity, comparable with WT Ad5.96 It has also been 

shown that dl922–947 improved antitumor activities in 

other cancer xenograft models, compared with Onyx-015 

and WT Ad.64

In addition to the genetic manipulation of the E1A and 

E1B genes, other approaches have also been exploited to 

optimize the oncolytic activity of CRAds for ovarian cancer, 

including tropism modification, TSP-controlled viral replica-

tion, arming Ads with therapeutic genes, chemotherapy–Ad 

combination therapy, and novel viral delivery methods.97

Tropism modification
The Coxsackie adenovirus receptor (CAR) is the main 

cellular receptor for Ad5. However, CAR is expressed on 

most normal human epithelial tissues and is often expressed 

at lower levels on ovarian and other primary cancer cells.98,99 

The large variation of CAR expression on tumor cells, at 

least in part, contributes to the oncolytic inconsistence often 

observed between preclinical and clinical studies using Onyx-

015 virus, eg, its relative ineffectiveness in the early clinical 

trials for ovarian cancer. To circumvent this CAR-dependent 

cell entry in order to better target tumor cells specifically, 

the Ad5 capsid was genetically modified to incorporate an 

RGD motif that binds to integrins α
v
β

3
 and α

v
β

5
, which are 

highly expressed on certain cancer cells, including most 

ovarian cancers.100–102 The derivative vector, Ad5-∆24-

RGD, replicated and killed several different human ovarian 

cancer cell lines (Hey, OV-4, and SKOV3) as efficiently 

as Ad5-WT E1A-RGD, and also replicated efficiently in 

ovarian cancer primary cell spheroids.59 Moreover, treatment 

of CB17 severe combined immunodeficiency (SCID) mice 

bearing xenografted OVCAR3 tumors showed potent 

antiovarian cancer therapeutic effects. Another strategy 

used to overcome the inherent CAR deficiency on most 

ovarian cancer cells was to replace the Ad5 CAR-binding 

motif with that from Ad3. This enabled the chimeric vector 

Ad5/3 to enter cells through a CAR-independent, Ad3 

receptor–dependent pathway. The Ad3 receptor, recently 

identified as the desmoglein-2 protein,103 is expressed at 

high levels on most ovarian cancer cells.104 When compared 

with Ad5lucRGD, the replication-incompetent luciferase 

(luc)-expressing Ad5/3 (Ad5/3luc) was more efficient in 

transduction of cultured ovarian cancer cell lines SKOV3.

ip1, Hey, and OV-4 as well as in human primary ovarian 

cancer cells isolated directly from patients.61 Both Ad5/3luc 

and Ad5lucRGD were superior to WT Ad5luc in infectivity 

in vitro and in a CD1 nude mice model with subcutaneous 

(SC) Hey tumor xenografts following intratumoral injection 

of viruses. Other in vitro studies also confirmed that 

Ad5/3 modification achieved higher infectivities in ovarian 

cancer cells than the mutant RGD variant.68,105 In another 

study, ovarian cancer retargeting was achieved by coating 
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Ads with receptor-binding antibody-conjugated polymer 

that was covalently linked to Ad capsid.62

TSP-controlled Ad viral replication
With CRAds, the tumor specificity was improved using TSPs 

to drive E1A expression, which allowed limited viral replica-

tion in normal cells but not in tumor cells, and reduced the 

host toxicity caused by CRAds. Several TSPs (as mentioned 

previously) have been tested in ovarian cancer cell lines and 

in human primary ovarian cancer cells isolated from patients. 

TSPs in combination with tropism modification (Ad5/3 or 

RGD) have shown to have greater oncolytic activity and 

significantly reduced liver toxicity in an in vitro and in vivo 

ovarian cancer xenograft model, compared with WT Ad5 or 

no-TSP control viruses.68,105–107

Armed CRAds
Candidate genes that have been engineered into CRAds 

potentially to augment oncolytic virotherapy include cell-

suicide genes, genes that modify tumor microenvironment 

for enhanced viral infectivity, and immunoregulatory genes. 

Onyx-015 armed with the HSV TK gene has been shown 

to suppress tumor growth in the presence or absence of the 

prodrug ganciclovir in the MDAH 2774 xenograft tumor 

model.108 Interestingly, ganciclovir appeared to inhibit Onyx-

015 and reduced its tumor suppression effects. Similar results 

were also seen using Ad5/3-∆24-TK virus.109 A CRAd was 

engineered to carry the CXCR-4 promoter and the tissue 

inhibitor of metalloproteinase 2 (TIMP2) gene that targets 

cellular metalloproteinases to inhibit tumor growth and 

dissemination. The resultant mutant virus, Ad5/3-CXCR4-

TIMP2, showed more efficient in vitro killing of ovarian 

cancer cells than the unarmed viruses.67 However, the in vivo 

antitumor activity of Ad5/3-CXCR4-TIMP2 remains to be 

investigated.

Chemotherapy–CRAd combination therapy
Accumulating evidence indicates that chemotherapeutic 

agents or radiotherapy can be combined with OVs such as 

the CRAds to significantly enhance therapeutic effects in 

the treatment of cancers compared with either treatment 

alone. For example, the combination of Ad5/3-∆24 with 

gemcitabine (a nucleoside analog), or epirubicin (a DNA-

intercalating anthracycline drug) resulted in greater therapeu-

tic efficacy than either agent alone in ovarian cancer xenograft 

models.110 Combination of dl922–947 with paclitaxel or 

combination of the survivin promoter–containing vector 

CRAd.S-RGD with cisplatin also had significantly greater 

therapeutic benefits than single-agent treatments in ovarian 

cancer xenograft models.111,112 It was suggested that cispla-

tin and gemcitabine might act to increase viral replication, 

whereas paclitaxel and dl922–947 together induced aberrant 

mitotic slippage and multinucleation, leading to a more 

efficient apoptotic cell death.

Enhancement of viral delivery
Ads commonly cause subclinical human infections that 

usually induce protective neutralizing antibody responses in 

virus-infected people. For example, approximately 40%–69% 

of the adult population in the US are seropositive to Ad5.113 

Preexisting anti-Ad5 antibodies in humans may reduce clini-

cal efficacy of intratumorally injected Ad5-based vectors and 

represents a serious hindrance to the clinical application 

of systemically administered CRAds. Furthermore, direct 

injection of Ads may also cause higher systemic toxicity 

responses in patients, especially in the liver. In order to 

overcome these barriers, two strategies have been developed 

to enhance the therapeutic effects of Ad delivery on ovarian 

cancer. The first strategy is to coat the viral particles with 

liposome polymers, which would shield the antibody-binding 

sites on Ad capsids from preexisting neutralizing antibodies 

and also reduce antiviral humoral responses as well as liver 

uptake of the virus.114,115 Using this method, liposome-coated 

Ad5 armed with the antiangiogenic agent endostatin had 

increased in vitro transfection capacity in SKOV3 cell lines 

and also had enhanced antitumor effects in a SC SKOV3 

xenograft nude mouse model when the virus was administered 

through intravenous (IV) administration.116 Another strategy 

for targeted delivery enhancement is to load mesenchymal 

stem cells (MSCs) with Ads before viral administration. One 

advantage of MSCs over other potential virus-carrier cells 

is that MSCs can be readily generated from patients’ own 

adipose tissues and grown to a large quantity. MSCs have 

been shown to display preferable homing to ovarian tumors 

after IP injection in an ovarian cancer xenograft model.117 

It has also been demonstrated that Ad5/3 and Ad-RGD 

viruses could efficiently infect MSCs without induction 

of severe cytopathic effects.117 When tested for antiovarian 

cancer effects, MSCs loaded with Ad5/3 or Ad5-D24-RGD 

induced cell killing of ovarian cancer cells and significantly 

suppressed tumor growth and prolonged survival in the 

SKOV3 xenograft animal model.117,118 MSCs loaded with 

Ad5-D24-RGD were as effective a strategy as administration 

of the virus alone, but showed a dramatic decrease in systemic 

spread of the virus, suggesting much less virus-associated 

systemic toxicity in the treated mice.118
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Herpes simplex viruses
Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are mem-

bers of Herpesviridae, a virus family of large, enveloped, 

dsDNA viruses. Both viruses infect most humans, with about 

two-thirds of the adult population being seropositive for one 

or both of the viruses.

HSV-1 and HSV-2 have been developed as oncolytic 

agents by genetically modifying the viral genomes for more 

targeted replication in cancer cells. For example, in the HSV-1 

vector Baco-1, both copies of the viral γ34.5 genes encoding 

the ICP34.5 neurovirulence factor were deleted and a green 

fluorescent protein (GFP)-expression cassette was inserted 

elsewhere in the viral genome.119 ICP34.5 recruits cellular 

protein phosphatase-1α to dephosphorylate eIF2α, thereby 

counteracting the PKR signaling pathway.120 ICP34.5 also 

interferes with the phosphatidylinositol 3-kinase (PI3K) 

pathway.121 HSV-1716, an attenuated HSV-1  mutant with 

deletion of a 759-bp DNA fragment and showing ICP34.5 

deficient phenotype,122 was among the first OVs to treat 

ovarian cancer in animal models.123 HSV-1716 treatment 

significantly suppressed tumor burden in SCID mice bear-

ing human ovarian SKOV3 or A2780 tumors. Moreover, 

treatments with PA-1 teratocarcinoma cells carrying HSV-

1716 showed greater antitumor activity compared with virus 

treatment alone. However, HSV-1716 and other similar 

HSV-1 vectors with deletion in γ34.5 genes, although show-

ing tumor cell–killing abilities in preclinical studies, did 

not significantly affect tumor growth or improve prognosis 

in early clinical trials.124,125 To improve the potency of this 

first generation of the HSV-1 vector Baco-1, a hyperfuso-

genic glycoprotein gene of the gibbon ape leukemia virus 

(GALV.fus) was inserted by replacing the GFP-expression 

cassette.126 When the resultant engineered HSV-1, called 

Synco-2D, was compared with Baco-1 for its induced 

cytopathic effects on human ovarian cancer cells Hey-8 

and SKOV3 in vitro, Synco-2D produced more pronounced 

syncytial formation and killed infected ovarian cancer cells 

more rapidly. In nude mice bearing IP Hey-8 xenografts, IP 

injection of Synco-2D resulted in 100% of mice surviving 

to the end of the experiment and 75% of the treated mice 

being tumor-free, whereas only 60% of Baco-1–treated mice 

survived and all bore large tumors. All mice died in the con-

trol mock-treated cohort. Another engineered HSV-2 based 

GALV.fus-expressing oncolytic vector was tested in ovarian 

cancer. This vector, named FusOn-H2, contains an additional 

modification, ie, deletion of the viral ICP10 gene. ICP10 

encodes in its N-terminus a serine/threonine protein kinase 

domain that can activate the Ras signaling pathway and is 

required for efficient HSV-2 replication in normal cells.127 It 

was also shown that FusOn-H2 had a greater ability to eradi-

cate tumors in nude mice bearing IP disseminated SKOV3 

xenografts (more than 80%) than Baco-1 (12%). These data 

suggest that oncolytic HSV armed with GALV.fus may provide 

a novel therapy for ovarian cancer.

In another recent study, it has been shown that carrier 

cell–based delivery of oncolytic HSV-1 mutants can improve 

antitumor effects against ovarian cancer through the ampli-

fication of the viral load and avoidance of neutralizing 

antibodies. This was tested using attenuated HSV-1 mutant, 

Hh101, and using human peritoneal mesothelial cells as cell 

carriers in a nude mice model xenografted with SKOV3 tumor 

cells.128 In this model, Hh101 carried in mesothelial cells 

significantly improved the antitumor activities of the virus 

compared with the Hh101 virus–alone treatment. Hh101 is 

an HSV-1 mutant isolated from Vero cells coinfected with 

HF10, a naturally attenuated virus derived from the HSV-1 

HF strain,129 and hrR3, an early generation of HSV-1 vector 

deleted in U
L
39 gene encoding ribonucleotide reductase.130 

Hh101 has also been shown to effectively treat disseminated 

peritoneal colon carcinoma in a BALB/c mouse model.131

The role of host immune responses in HSV-mediated 

oncolytic virotherapy has been studied. Using HSV-1716 

and a syngeneic mouse model of murine ID8 ovarian cancer 

cells expressing VEGF, it was demonstrated that IP injection 

of HSV-1716 led to the suppression of tumor growth and 

enhancement of mouse survival.132 Virus treatment–induced 

infiltration of monocytes and dendritic cells to the tumor and 

also upregulated the level of IFN-inducible chemokines, 

including monokine-induced gamma IFN protein (called 

MIG, now known as CXCL9) and IFN gamma-induced pro-

tein 10 (IP-10).132 Activated natural killer (NK) cells or CD8+ 

T cells were also recruited to the tumor microenvironment, 

likely mediated by MIG and IP-10. In addition, tumor cells 

infected with HSV-1716 expressed viral glycoproteins on 

the cell surface and were highly phagocytosed by dendritic 

cells, leading to induction of vaccination effects. These data 

indicated that HSV-1716, and possibly other oncolytic HSV 

vectors as well, exert their most oncolytic activities when 

they elicit both antitumor immune responses as well as direct 

killing of tumor cells.

Vaccinia virus
VV is a large enveloped dsDNA virus belonging to the 

Poxviridae family. Some strains of VV used as attenuated 

live-virus vaccines against smallpox have been studied as 

replicating OV agents. These VV vaccines can be further 
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attenuated to increase cancer selectivity by deletion of 

specific viral genes. Some of these genes include the viral 

TK and VV growth factor (VGF) genes.133,134 TK is critical 

for VV DNA synthesis, particularly to infect normal cells, 

where nucleotide pools are typically low. Deletion of the 

VGF gene renders the virus defective in its ability to stimu-

late cell proliferation of noncycling cells to prime them for 

VV infection.

The deleted TK gene is often replaced with ectopic 

reporter genes (eg, luc, Escherichia coli beta galactosidase 

gene lacZ, or GFP) or therapeutic genes (eg, granulocyte-

macrophage colony-stimulating factor [GM-CSF]) to 

facilitate monitoring virus spread or to improve antitumor 

activities, respectively. For example, rVV4 is a hyper-attenuated 

recombinant derivative of the vaccine strain Lister of VV, 

containing both lacZ and luc inserted into the TK gene.135 

rVV4 has shown oncolytic efficacy in both human ES-2 

ovarian cancer cells in nude mice (significant tumor reduc-

tion with no ascites accumulation and 100% of mice survived 

to 70 days posttreatment; controls survived to 28 days) and 

Defb29 Vegf mouse ovarian tumor cells in C57Bl/6 mice 

(infection led to significant tumor necrosis and cell death, 

and survival up to 63 days after treatment; controls survived 

to 42 days). Another TK-deletion VV construct, JX-594, was 

engineered from the Wyeth vaccine strain of VV. JX-594 also 

has insertions of lacZ or luc, and expresses human GM-CSF. 

This virus can infect and kill human ovarian cancer cells 

in vitro and specifically infect autochthonous ovarian tumors 

when injected IP into transgenic FVB/N mice expressing 

SV40 T antigen driven by the Müllerian inhibitory substance 

type II receptor promoter.87,136 In addition to singly TK-

deleted VV, the TK and VGF double-deleted virus (vvDD) 

has also been tested in ovarian cancer. vvDD has potent 

oncolytic activities in mouse MOSEC cells, human ovarian 

cancer cell line A2780, and human primary ovarian tumor 

cells in vitro, and in nude mice bearing IP A2780 tumors.137 

When vvDD was armed with a yeast cytosine deaminase 

(CD) gene that can been paired with prodrug 5-fluorouracil 

for enhanced chemotherapy, the resultant vvDD-CD virus in 

combination with 5-fluorouracil displayed higher antitumor 

activity than vvDD-CD alone in the syngeneic IP MOSEC 

C57Bl/6 mouse model.137

VV combined with other therapeutic agents can also aug-

ment its oncolytic activities. Recombinant VV as an oncolytic 

monotherapy requires repeated treatments; however, induced 

neutralizing antibodies can potentially limit the booster effect 

of subsequent inoculations, particularly in those who have 

been previously vaccinated against smallpox. To circumvent 

this, cotreatment with COX2 inhibitors reduces the genera-

tion of neutralizing antibodies due to VV administration.138 

Mouse ovarian tumor MOSEC cells expressing luciferase 

injected into C57Bl/6 mice and treated with COX2 inhibi-

tor exhibited higher viral titers when rechallenged with 

rVV4 with significantly fewer antibodies than control mice 

untreated with COX2 inhibitor. The doubly treated mice also 

showed reduced tumor growth and longer survival compared 

with rVV4 or COX2 treatments alone. Alternatively, 

limitation of repeated administration can be circumvented 

by using different OVs. It has been shown that VV injection 

followed by injection of another OV, the alphavirus Semliki 

Forest, or vice versa, induced longer survival than either virus 

alone in C57Bl/6  mice with MOSEC IP engraftments.139 

Moreover, sequential treatment of MOSEC tumor-bearing 

C57Bl/6 mice with VV expressing ovalbumin and Semliki 

Forest virus expressing ovalbumin induced higher CD8+ 

T-cell immune responses and longer animal survival than 

treatment with single virus alone. These results suggest that 

the efficacy of oncolytic virotherapy could be improved by 

employing different OVs and combining tumor antigen–

specific immunotherapy.

Myxoma virus
MYXV is a poxvirus with a very restrictive rabbit-specific 

tropism in nature but which is completely apathogenic and 

safe to all non-lagomorphs tested, including mice, rats, and 

humans. In vitro, MYXV has been shown to infect and kill a 

wide variety of human cancer cells.140 The tumor selectivity 

of MYXV depends in part on dysregulated intracellular 

signaling pathways in the cancer cells, specifically the PI3K 

pathway and the activation of Akt (p-AKT).141,142 An ankyrin 

repeat–containing host-range protein of MYXV termed 

M-T5 can directly bind to and induce the kinase activity of 

Akt, which allows more robust viral replication in cancer 

cells.135 Recently, MYXV has been shown to possess potent 

oncolytic activity against human epithelial ovarian cancers 

from both cell lines and ascites-derived primary patient cells. 

OVCAR3, OVCA429, SKOV3 human ovarian cancer cell 

lines, and ∼55% of patient samples tested demonstrated 

susceptibility to MYXV killing in monolayer.143 In an 

in vitro model of ovarian cancer metastasis, cells cultured 

in ultralow attachment plates to form multicellular spheroids 

(the hypothesized vehicles for ovarian cancer metastasis) 

were also infected by MYXV. Spheroids formed from both 

cell lines and ascites-derived patient samples that were 

infected with MYXV were killed and showed decreased 

reattachment upon reintroduction to adherent culture, 
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thus demonstrating the potential antimetastatic properties 

of this virus. The oncolytic properties of MYXV correlated 

with the level of p-Akt found in specific cell culture condi-

tions, ie, an increase in p-Akt levels in monolayer showed 

greater killing, whereas decreased p-Akt levels in spheroids 

had little killing until reattachment in adherent culture. Thus 

it is predicted that MYXV will have particular utility for 

targeting metastatic spread of this cancer, but this remains 

to be tested in vivo.

Measles virus
MV is a member of the Paramyxoviridae family and is an 

enveloped, single-stranded, negative-sense RNA virus that 

causes rash, fever, runny nose, cough, muscle pain, and red 

eyes in an infected person. A live attenuated MV vaccine 

strain called Edmonston has been developed as an effective 

oncolytic virus for treatment of ovarian cancer in preclinical 

studies.144 Upon viral infection, the hemagglutinin envelope 

glycoprotein of the oncolytic MV binds to the cellular 

receptor CD46, a cofactor for inactivation of complement, 

and subsequently the fusion glycoprotein induces fusion of 

viral-cell membranes.56 Expression of hemagglutinin and 

fusion proteins on the surface of virus-infected cells results 

in intercellular fusion of multiple neighboring uninfected 

cells with the infected cell, a characteristic MV-induced 

cytopathic effect (CPE) called syncytia. Extensive formation 

of syncytia causes apoptotic cell death of not only infected 

cells but also uninfected neighboring cells, a bystander killing 

that may augment the oncolytic activity of MV. CPE effects, 

however, are only induced when infection takes place in 

cells with more than a required minimum density of CD46 

receptor expression.145 Normal cells usually express only a 

low level of CD46. Therefore, infection of normal cells does 

not cause CPE and cell death. The safety of oncolytic MV 

has been demonstrated in measles replication–permissive 

animal models, including a CD46 transgenic mouse model 

and macaque models.146,147 The CD46 receptor is highly 

expressed in ovarian cancer cells, rending ovarian cancer an 

ideal target for MV virotherapy.148–150 A modified oncolytic 

MV expressing the soluble extracellular domain of human 

carcinoembryonic antigen (CEA) was created to monitor 

viral replication noninvasively in vivo.151 MV-CEA was able 

to kill a panel of ovarian cancer cells in vitro. Furthermore, 

intratumoral injection of MV-CEA led to 80% complete 

tumor regression in SC SKOV3.ip1–engrafted athymic nude 

mice, and IP administration of the virus greatly enhanced 

the survival of IP SKOV3.ip1 xenograft mice.144 In addition, 

it was also confirmed that CEA expression could be used as 

a marker for the presence of MV-CEA replication post–viral 

administration. These results provided the basis for the sub-

sequent phase I clinical trial with MV-CEA in patients with 

recurrent ovarian cancer. Interestingly, in a following study 

testing multiple dosages in an IP xenograft animal model, 

Peng et al reported that IP treatments with either six doses 

of 103 or single or six doses of 104, 105, or 107 median tissue 

culture infective dose (TCID
50

) MV-CEA resulted in equiva-

lent anti-tumor effects.152 These results suggested that in vivo 

tumor growth and MV infection/replication could reach an 

equilibrium state regardless of the initial infection doses. 

In addition to CEA, the thyroidal sodium iodide symporter 

(NIS) was also inserted into the MV genome for monitoring 

viral propagation, which can be mapped by serial radioiodine 

imaging. Results using MV-NIS suggested that MV-CEA 

and MV-NIS had comparable tumor suppression activity 

in vivo.153 A more attenuated Edmonston strain–derived MV 

vaccine, called MV-Moraton, and another live virus vaccine 

from the Paramyxoviridae family, Jeryl Lynn mumps, have 

also been investigated for their possible oncolytic activity. The 

results showed that both viruses have potent antiovarian tumor 

activities comparable with MV-CEA in xenograft models.154 

MV-Moraton and Jeryl Lynn mumps are commercially avail-

able vaccines and have been used in more than 300 million 

people. The proven safety profile in humans and the capacity 

for mass production make these two viruses appealing OV 

candidates for cancer therapy in general.

A tropism-modified MV has also been generated and 

studied for its potential application in ovarian cancer. To 

minimize potential CD46-associated immune suppression 

and virus sequestration by non–target tissues after MV 

administration, the hemagglutinin protein of MV was geneti-

cally modified to incorporate a single-chain antibody (scFv) 

specific for FRα while eliminating its CD46 binding.60 FRα 

has been found to be overexpressed in various cancers 

including 90% of ovarian cancer, whereas in normal tissue, 

FRα is only expressed at the apical surface of polarized epi-

thelial cells.155,156 The recombinant virus MV-FRα reduced 

its background viral infection levels on normal cells and 

targeted only FRα-expressing cancer cells. The virus retained 

complete antiovarian cancer activity of the parental MV, as 

demonstrated in SC and IP SKOV3.ip1 xenograft models.

MSCs have also been tested as the virus-carrying vehicle 

in an attempt to protect MV from preexisting neutralizing 

antibody and to improve targeted delivery of the virus to 

ovarian tumors. It was shown that MV-infected MSCs could 

efficiently reach and infiltrate into IP SKOV3.ip1 tumors 

for virus delivery in measles-naive athymic mice and also 

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

10

Li et al

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Oncolytic Virotherapy 2012:1

in mice passively immunized with human measles immune 

serum.157 This resulted in effective enhancement of animal 

survival in the tumor-bearing cohorts. In contrast, no such 

effect was displayed when passively immunized mice were 

treated with naked virus or uninfected MSCs.

Reovirus
Reoviruses are nonenveloped viruses with a genome consist-

ing of 10–12 dsRNA segments. Reoviruses were initially 

named respiratory enteric orphan viruses because they were 

commonly isolated from human respiratory and gastroin-

testinal tracts but are not apparently associated with human 

diseases. Reovirus serotype 3 Dearing strain has been devel-

oped as an OV under the trade name Reolysin (Oncolytics 

Biotech).158 It is very difficult to genetically modify reovirus 

using classic reverse-genetic approaches because of the 

segmented dsRNA viral genome. Nevertheless, the WT, 

unaltered Reolysin, has potent intrinsic oncolysis activities. 

Reovirus specifically targets and kills cancer cells with an 

activated Ras signaling pathway that leads to the inhibition 

of PKR activation.55 In normal cells, it is believed that PKR 

is activated by reovirus genomic dsRNA segments and viral 

dsRNA transcripts. As a result, reovirus cannot express 

sufficient viral proteins for continued replication in normal 

cells, in contrast to the productive virus infection in tumor 

cells that possess deficient PKR activation. It has also been 

suggested that the oncolytic activity of reovirus is mediated 

by TNF-related apoptosis-inducing ligand (TRAIL)-induced, 

caspase 3/8-dependent apoptosis.159,160

Mutations in the Ras signaling pathway are often found 

in patients with ovarian cancer,161 indicating that ovarian 

cancer is a potential therapeutic target for reovirus. In an 

early in vitro study, Reolysin efficiently infected and killed 

four human ovarian cancer cell lines (MDAH2774, PA-1, 

SKOV3, and SW626), primary ovarian cancer cells from 

patient samples, but not a normal ovarian fibroblast cell 

line (NOV-31).162 It was further demonstrated that intra-

tumoral injection of Reolysin induced regression of SC 

SKOV3 tumors in nude mice, and IP administration of the 

virus inhibited ascites formation and prolonged survival of 

treated mice in an IP MDAH2774 xenograft model. This 

study also showed that Reolysin specifically and effectively 

infected distal colon tumors in the SC flank, but not normal 

tissue surrounding the tumor, following IV delivery of the 

virus. Reolysin infection of ovarian cancer cells could also 

sensitize the cells to recombinant TRAIL, an anticancer agent 

currently being tested in clinical trials,163 possibly via down-

regulation of cellular FLICE/caspase-8 inhibitory protein.159 

This suggests that combination of reovirus and TRAIL could 

be more effective than either regimen alone in the treatment 

of ovarian cancer.

Vesicular stomatitis virus
VSV is an enveloped, negative-stranded RNA virus of the 

Rhabdoviridae family. Viruses in this family are attractive 

OV candidates, because with the exception of rabies, they 

are rarely associated with diseases in humans. Moreover, 

few people have preexisting immunity in most populations 

worldwide.

VSV binds to and enters mammalian cells through an 

unidentified receptor that is ubiquitously expressed in nor-

mal cells and malignant cells.164 Infection of normal cells 

strongly induces interferon-mediated antiviral responses, and 

thus virus replication is blocked. By contrast, cancer cells 

frequently have defective interferon signaling pathways, 

allowing for unchecked viral replication. A dysregulated 

PKR pathway is the one of the key factors for determination 

of the tumor selectivity of VSV.165 Viral protein expression 

and replication likely kill virus-infected cancer cells by the 

induction of apoptotic cell death during metaphase, which 

is triggered by inhibition of mitotic progression by VSV 

infection.166

It has been shown that VSV is a potent oncolytic in a wide 

variety of cancer models,167 including ovarian cancer.168–170 

In vitro, a VSV vector–expressing GFP (VSV-GFP) was 

able to efficiently infect and kill various ovarian cancer cell 

lines and ovarian surface epithelial cells transformed with 

SV40 T antigen within 3 days.169 By contrast, infection of 

normal primary human ovarian epithelial cells was detected 

in only about 5% of the cells, and no cytotoxicity effects 

were observed 3 weeks postinfection. The antiovarian cancer 

efficacy of VSV-GFP has also been tested using an immu-

nocompetent white spotting variant (Wv) mouse model.169 

Wv mice have a naturally occurring point mutation in the c-kit 

gene, causing defects in the development of germ cells.171,172 

Nearly 100% of homozygous Wv mice develop ovarian 

epithelial tumors, defined as tubular adenomas, as early as 

3 months of age.173 This type of epithelial ovarian tumor is 

benign, but can gain increasing neoplastic changes in older 

mice. Treatment of tumor-bearing Wv mice with VSV-GFP 

via intrabursal, IP, or IV administration was shown to greatly 

reduce the tumor burden without inducing detectable toxicity 

effects.169 Examination of GFP signals in treated Wv mice 

10 days after virus injection indicated that VSV selectively 

targeted the in situ ovarian tumor, while no GFP expression 

was detected in any other organs and tissues. In another study, 
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using an IP human ES-2 ovarian cancer xenograft model, 

Stojdl and colleagues showed that a VSV virus (AV2) with 

mutated matrix protein and enhanced ability to induce IFN 

responses in normal cells enhanced survival of virus-treated 

animals.170 AV2 has slightly decreased oncolytic activity 

in ovarian cancer cells in vitro compared with WT VSV. 

However, AV2 is highly attenuated in BALB/C mice, sug-

gesting that it may be safer for clinical applications.

Maraba mirus
Like VSV, MRB is a member of the Rhabdoviridae family. 

In a comparison of oncolytic activity across this family, 

MRB was shown to have the highest degree of killing in 

an array of cancer cell lines, including those from ovarian 

sources.174 To improve replication and decrease toxicity, 

two point mutations were made in MRB (MRB MG1) that 

were homologous to two point mutations made in VSV that 

improved replication of VSV. In an ES-2 xenograft model of 

ovarian cancer, low doses of MRB MG1 showed significant 

decreases in tumor burden. Moreover, there was a dose-

dependent tumor response to MRB MG1, and it demonstrated 

better efficacy at all doses when compared directly with a 

VSV construct.

Sindbis virus
SINV is a member of the Togaviridae family that is an envel-

oped, positive-stranded RNA virus that infects natural host 

birds and transfers vector mosquitoes. Infection in humans 

can occur when a person is bitten by infected mosquitoes, but 

generally causes very mild symptoms. SINV as a blood-borne 

pathogen is stable in the bloodstream, which may enable 

more efficient systemic delivery of the virus. SINV has an 

inherent tropism for tumor cells. The SINV receptor LAMR 

is overexpressed in ovarian cancer cells175 and many other 

types of tumor cells,176 and is important to mediate cancer cell 

migration and metastasis.177 Like VSV, SINV is highly sensi-

tive to IFN, and thus can only replicate in cancer cells with 

acquired genetic defects in the IFN-signaling pathway, but 

not in normal cells with intact innate immune responses.178 

Productive infection, at least with VSV, likely causes cancer 

cell death by inducing apoptosis.179

SINV virotherapy of ovarian cancer was first tested 

using an SCID mouse model bearing IP human ES-2 ovarian 

cancer xenografts and a syngeneic C57Bl/6 mouse model 

with IP engraftment of murine MOSEC ovarian cancer 

cells.180 It was found that IP injection of SINV significantly 

suppressed tumor growth in both models. Survival analy-

sis in the syngeneic model also confirmed the antitumor 

activities of SINV. An attenuated laboratory SINV strain, 

AR339, also suppresses tumor growth in a human OMC-3 

ovarian cancer xenograft model.181 By using in vivo imaging 

of SINV expressing firefly luciferase and ES-2 cells express-

ing Renilla luciferase, combined with histologic analysis, 

virus infection colocalized with the tumor tissue in vivo, 

suggesting that virus infection is tumor-specific. In addition 

to the oncolysis of cancer cells, SINV also was also shown 

to induce a potent bystander antitumor immunity.178 This 

antitumor immunity is likely mediated by activation of NK 

cells.182 Correspondingly, SINV oncolytic vectors express-

ing interleukin (IL)-12 or IL-15, two cytokines known to 

elicit antitumor activity by activation of natural killer cells, 

exhibit more potent antitumor activity than SINV express-

ing lacZ.180,182

Echovirus type 1
EV1 is a nonenveloped, single-stranded, icosahedral RNA 

virus of the Picornaviridae family. EV1 is isolated from the 

gastrointestinal tract and causes no or mild upper respiratory 

infection. The EV1 receptor integrin α
2
β

1
 is highly expressed 

on ovarian cancer cells, but is only present on normal surface 

epithelium at a low level.183 In vitro, EV1  induces strong 

cytopathic effects in various ovarian cancer cell lines, but 

not in immortalized human OSE cells or human peripheral 

blood mononuclear cells.184 EV1 can also infect and kill 

multicellular spheroids of ovarian cancer cells DOV13. 

When tested in SCID mice bearing OVHS-1 xenografts, both 

intratumoral and IP injections of EV1 were shown to suppress 

tumor burden significantly. In an SC xenograft model, none 

of EV1-treated mice reached experiment end points (tumors 

exceeding 20% of body weight) after the experiment was 

ended 14 weeks post–virus administration, whereas all mice 

without virus treatment reached end points within 3 weeks. 

These results suggest EV1 is also a potential oncolytic virus 

candidate for the treatment of ovarian cancer.

Clinical applications
Clinical studies using OVs to treat ovarian cancer is still in its 

infancy. As of April 2012, results from three phase I clinical 

trials in ovarian cancer have been published, involving Onyx-

015,185 Ad5-∆24-RGD,186 and measles virus MV-CEA.149 

A phase I clinical trial testing JX-594 in patients with differ-

ent types of cancers including ovarian cancer has also been 

published.187 Ad5-D24-GMCSF and Ad5/3-D24-GMCSF 

have also been evaluated under compassionate use regulated 

by the Finnish Medicines Agency FIMEA.188,189 In addition, 

there are two ongoing trials with Reolysin in ovarian cancer 
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Table 2 Summaries of clinical trials of oncolytic virotherapy in patients with ovarian cancer

Virus type Name Study  
phase

Number  
of patients

Efficacy Toxicity Refs

Best responses CA-125

MV MV-CEA I 21 14 SD 5 PR Mild 149
Ads Onyx-15 I 16 No clear response No response 1 DLT, 15 mild 185

Ad5-∆24-RGD I 21 15 SD 7 MR Mild 186

Ad5-∆24-GMCSF CU** 4* (20) 1 CR, 1 SD, 1 MR 1 CR, 1 PR, 1 SD Mild 188

Ad5/3-∆24-GMCSF CU** 4* (21) 1 SD 1 MR Mild 189
VV JX-594 I 2* (23) 2 SD Mild 187

GL-ONC1 I/II Recruiting 193
Reovirus Reolysin I Recruiting 194

Reolysin (with paclitaxel) II Recruiting 195

Notes: *Number of patients with ovarian cancer, out of the total number of patients with various types of cancer, indicated in the parentheses, in the corresponding clinical 
trial; **studies under compassionate use regulated by the Finnish Medicines Agency FIMEA. With regard to CA-125 tumor markers, MR, PR, SD, and CR indicate a less than 
29% decrease, a more than 30% decrease, stabilization, and a normal level in tumor marker, respectively.
Abbreviations: CR, complete response; PR, partial response; MR, minor response; SD, stable disease; PD, progressive disease; CU, compassionate use. 

and one ongoing trial with attenuated VV GL-ONC1 for 

all peritoneal metastatic cancers including ovarian cancer, 

according to the NIH website ClinicalTrials.gov. Although 

early phase trials mainly address the safety, maximum toler-

ated dose, and toxicity spectrum of OVs, antitumor efficacy, 

viral replication, and antibody responses are also analyzed. 

Clinical efficacies are assessed by Response Evaluation 

Criteria in Solid Tumor (RECIST) criteria and cancer antigen 

(CA)-125 response. CA-125, also known as mucin 16, is a 

protein biomarker for recurrence of ovarian cancer.190 In all 

studies, eligible ovarian cancer patients have persistent or 

recurrent ovarian cancer, fallopian tube cancer, or primary 

peritoneal cancer after prior treatment with chemotherapy. 

The enrollees are older than 18 years and have adequate 

organ function. Participating patients, except for those in 

the JX-594 trial, receive administration of OVs through an 

IP catheter. All these clinical studies have shown that OVs 

were well tolerated, and no maximum tolerated doses were 

reached in any of the trials. Encouraging antitumor responses 

were observed in all but the Onyx-015 trial. Summaries of 

the clinical studies are provided in Table 2.

Onyx-015
The first human OV trial for ovarian cancer was conducted 

with adenovirus Onyx-015 in 16 patients.185 Four dose levels 

of virus (1 × 109, 1 × 1010, 3 × 1010, and 1 × 1011 plaque-

forming units [pfu]) were tested in this trial. For a particular 

dose level, Onyx-015 was administered to patients daily for 

5 days (one cycle) every 4 weeks. These patients received a 

total of 35 cycle treatments, with a mean of two cycles per 

patient. Most patients experienced common toxicity criteria 

grade 1 or 2 flu-like syndrome and abdomen pain after virus 

infusion. Only one patient who received 1 × 1010 pfu exhibited 

common toxicity criteria grade 3 abdominal pain and grade 3 

diarrhea, and the patient’s toxicity profile was considered 

dose-limiting. No grade 4 toxicity was noted in any patient. 

This toxicity study indicates that Onyx-015 administration 

is safe at the highest dosage tested. Viral DNA was detected 

10 days after the last dose of virus in five of eight patients 

who were subjected to polymerase chain reaction (PCR) 

testing of peritoneal specimens. No viral DNA was detected 

in the blood samples in these patients. Interestingly, viral 

DNA was still detected in one patient 354 days after final 

virus treatment. These data, however, were not sufficient 

to prove the presence of viral replication since an increase 

in viral genome copy number was not shown. Antiadenovirus 

antibody responses were evident in 12 of 13 patients that 

were examined. Unfortunately, there was no clear evidence 

of antitumor activities induced by Onyx-15 in this trial. Four 

of the 16 patients showed brief stable disease after more 

than two cycles of Onyx-015, but soon developed progres-

sive disease. Eventually, all patients stopped virotherapy 

because of development of progressive disease, except one 

who was removed from the trial due to Onyx-015 dose-

limiting toxicity.

Ad5-∆24-RGD
The tropism-modif ied Ad5-∆24-RGD virus has been 

engineered to improve cancer-targeting and the oncolytic 

activity of early adenovirus vectors, such as Onyx-015, 

in preclinical studies. Consistently, a phase I clinical trial 

with Ad5-∆24-RGD has yielded promising antiovarian 

cancer responses.186 In this clinical trial, vector dosages of 

Ad5-∆24-RGD ranging from 1 × 109 viral particles per day 

(vp/d) to 1 × 1012 vp/d, with increase of 1/2 log vp/d in each 

successive cohort tested in 21 patients, of whom 18 patients 

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

13

Oncolytic virotherapy for ovarian cancer

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Oncolytic Virotherapy 2012:1

had recurrent ovarian cancer. Virus was delivered daily for 

3 consecutive days, and the patients were followed up on days 

0–3, 7, 14, and 28 to evaluate toxicity, virus replication, and 

antitumor efficacy. As for the clinical study with Onyx-015, 

Ad5-∆24-RGD treatment did not cause significant toxicity. 

Although no partial or complete responses were observed, 

15 patients (71%) were shown to have stable disease. 

In addition, seven patients (33%) had deceased CA-125 

levels, and four of them had .20% reduction. RGD-specific 

viral DNA was detected in ascites in 16 of 21 patients by 

quantitative real-time (qRT) PCR after virus treatment. 

More importantly, increased viral DNA copy number was 

detected at various time points after day 3 of virus treatment 

in seven patients, suggesting viral replication in the cancer 

cells. Immunohistochemistry analysis of ascites from selected 

patients confirmed the infection of ovarian cancer cells by the 

virus. Dose-dependent antiadenovirus neutralizing antibody 

response was generally detected in ascites and serum in all 

patients. Unlike Onyx-015, Ad5-∆24-RGD DNA was also 

found in serum (ten patients), saliva (ten patients), and urine 

(nine patients), probably due to high replication activity of 

Ad5-∆24-RGD in the IP cavity, leading to the dissemination 

of the virus.

MV-CEA
MV-CEA has been tested in 21 patients with recurrent ovar-

ian cancer in a phase I trial study.149 Patients were treated 

with seven escalating doses of MV-CEA (103–109 TCID
50

 

at 1-log increments) every 4 weeks for up to six cycles. No 

dose-limiting toxicity was observed with MV-CEA. Most 

toxicities were grade 1 or 2 fever, fatigue, and abdominal 

pain. Fourteen of the 21 patients (67%) had stable disease 

with median duration of 92.5 days. Nine of the 14 patients 

with stable disease (64%) were in the three highest dose lev-

els, indicating dose-dependent outcomes. CA-125 levels were 

demonstrated to decrease  .30% in five patients. Median 

overall survival of the patients in this trial was 12.15 months, 

while in similar patient populations the median survival is 

expected to be 6 months. Viral DNA was detected in the 

blood in four patients by qRT-PCR, but no virus shedding 

was detected in saliva and urine in any patient. CEA levels 

were elevated in the peritoneal fluid in one patient in the 

108-TCID
50

 cohort and two in the 109-TCID
50

 cohort, and in 

the serum in all three patients in the 109-TCID
50

 cohort. No 

antibody responses to MV-CEA were observed. This might 

have resulted from preexisting high baseline anti-measles 

antibody in enrolled patients who were required to be immu-

nized with measles for safety consideration in this first-ever 

human virotherapy trial with MV. Since MV predominantly 

utilizes the CD46 receptor for cell entry, the authors also 

examined the expression of CD46  in tumor specimens in 

15 patients whose tissues were available, attempting to 

investigate the effect of CD46 expression on the oncolytic 

activities of MV-CEA. Thirteen of the 15 patients showed 

high-level expression of CD46; however, no association of 

CD46 expression with clinical efficacy was observed. Due 

to the small patient sample size and different dosages used in 

this initial clinical trial, whether CD46 expression is associ-

ated with clinical efficacy remains to be identified.

Ad5-D24-GMCSF and Ad5/3-D24-
GMCSF
Two phase I clinical trials have been conducted to test 

whether GM-CSF could facilitate induction of antitumor 

immunity in the context of oncolytic Ad vectors Ad5-∆24 

and Ad5/3-∆24.188,189 Twenty patients with 15 different types 

of cancers (four patients with ovarian cancer) and 21 patients 

with twelve different types of cancers (four patients with 

ovarian cancer) were treated with Ad5-D24-GMCSF and 

Ad5/3-D24-GMCSF, separately. Viruses were administered 

using ultrasound-guided intratumoral injection or intracavity 

injection as in ovarian cancer patients, with one-fifth of the 

dose given IV. The starting dose of virus was 8 × 109 vp/d in 

the Ad5-D24-GMCSF trial, 8 × 1010 vp/d in the Ad5/3-D24-

GMCSF trial, and escalated to 4 × 1011 vp/d in both trials. 

Both studies showed that virus treatments were well tolerated 

and induced antitumoral and antiviral immune responses, as 

measured by the activation of tumor- and virus-specific cyto-

toxic T lymphocytes. Clinical benefits were also observed in 

some patients, including four patients with ovarian cancer 

in the Ad5-D24-GMCSF trial and one of four patients in the 

Ad5/3-D24-GMCSF trial.

JX-594
Taking the lead that VV has adapted to acquire stability in the 

bloodstream and is capable of rapid spread to distal tissues,191 

a phase I clinical trial was designed to test whether JX-594 

could target metastatic tumors via IV infusion. Escalating 

dosages (1  ×  105–3  ×  107 pfu/kg) were administered in 

23 patients with nine different types of cancers, including 

two patients with recurrent ovarian cancer.187 Results from 

this study showed that JX-594 could selectively infect 

tumors after IV infusion in a dose-dependent manner. Viral 

infection of tumors was detected in all eight patients receiv-

ing the two highest doses of JX-594, but in only two out of 

15 patients receiving lower doses. Antitumor activities were 
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also observed and appeared to be dose-dependent. One of 

the two patients with ovarian cancers receiving a lower dose 

of JX-594 was virus-negative in tumor but showed stable 

disease for more than 4 weeks after treatment. The other 

patient receiving the second- highest dose was virus-positive 

in the tumor and had stable disease for more than 16 weeks. 

The most common virus-associated adverse side effect was 

grade 1/2 flu-like symptoms, indicating that it is safe to 

administer JX-594 via this IV route.

GL-ONC1
GL-ONC1 (also named GLV-1h68) is an attenuated Lister 

strain VV with insertion of Renilla luciferase-GFP fusion 

gene, lacZ and β-glucuronidase reporter genes in the 

F14.5L, J2R (TK), and A56R (hemagglutinin) loci of the 

viral genome.192 This OV is being tested in a phase I/II trial 

in patients with advanced peritoneal cancers, which include 

ovarian cancer patients.193

Reolysin
The two ongoing Reolysin clinical trials are (1) a phase I trial 

in patients that did not respond to platinum chemotherapy, 

and (2) a phase II trial to investigate the safety and efficacy 

of Reolysin in combination with paclitaxel compared with a 

paclitaxel regime alone.194,195 In the first clinical trial, patients 

were treated with Reolysin via both IV and IP routes. Among 

the patients that have been treated, viral replication could be 

detected in peritoneal and ovarian cancer cells following IV 

administration.196 This is the first to reveal that reovirus can 

reach peritoneal and ovarian cancer via systemic delivery.

Conclusions
The use of live viruses specifically to kill cancer cells dates 

back as early as the beginning of the last century.197 However, 

the field of oncolytic virotherapy did not truly expand as 

a systematic inquiry until two decades ago, when genetic 

approaches were first applied to modify OVs in order spe-

cifically to target cancer cells.63,90 In 2005, Ad vector H101 

was approved in China as the world’s first approved OV 

for treatment of head and neck cancer in combination with 

chemotherapy.198 Currently two oncolytic viruses, Reolysin 

and OncoVEX, a herpex simplex type 1 virus–based onco-

lytic therapeutic agent, have entered pivotal phase III trials. 

JX-594 is also being tested in phase II clinical trials for liver 

cancer and metastatic colorectal cancer, and has shown great 

promise in preliminary results. Early last year, OncoVEX 

was acquired by Amgen in a deal that has been valued at up 

to US$1 billion. Although promising, we are still far from 

fulfilling the great potential of oncolytic virotherapy. One 

key challenge is our as-of-yet modest understanding of the 

multifactorial interactions between the tumor, its microen-

vironment, OVs, and the host immune responses to both the 

OV and the cancer cells.

Although preclinical and clinical studies have confirmed 

the safety and potential of OV therapy for ovarian cancer, 

many key outstanding questions remain to be addressed.

1.	 How can targeted delivery of OVs to ovarian tumor tis-

sue be improved? Preexisting antiviral antibodies and 

OV-induced immune responses to the virus can hinder 

the delivery of OVs to ovarian tumor sites. The carrier 

cell–based delivery strategy may overcome this hurdle, 

for example when tumor-homing MSCs are used to ferry 

virus to tumor tissues. The feasibility of this “Trojan 

horse” approach to virus delivery in the clinical setting 

remains to be tested.

2.	 What are the operative mechanisms for OV-mediated 

antiovarian cancer effects? The parameters that determine 

the susceptibility of individual ovarian cancer patients to 

virotherapy is still not clear in clinical settings. In addi-

tion, few studies have addressed the complex interactions 

between OVs and the various transformed and noncan-

cerous cells that inhabit all tumor microenvironments. 

Most importantly, the effects of residual or dysfunctional 

antitumor immunity and the immune-evasion strategies 

by ovarian carcinoma cells on the oncolytic efficacy have 

not been clearly elucidated. Numerous lines of evidence 

have indicated that host immunity acts as a “double-edged 

sword” in oncolytic virotherapy. On one hand, the rapid 

generation of host immune responses to the virus could 

preempt the time window for effective viral replication 

within the tumor bed. On the other hand, virus–tumor 

interactions can also liberate immune responses against 

tumor antigens and induce long-lasting bystander antitu-

mor immunity. A major unanswered question remains: 

does the direct killing of cancer cells by OVs or the 

virus-induced antitumor immunity play the major role in 

OV-induced cancer regression?

3.	 Can OVs target the more drug-resistant OCICs? The 

ability to target chemotherapy-resistant OCICs might 

determine the outcome of any new treatment for advanced 

ovarian cancer, particularly in combination with standard 

chemotherapies. So far, OVs have not been tested for their 

capability to infect and kill OCICs.

4.	 How can the oncolytic potency of OVs be improved? 

First, OVs in combination with chemotherapy have 

shown synergistic effects in treating ovarian cancer in 
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cell culture and animal models. Traditionally, OVs always 

enter clinical trials not as the first-line treatment but as a 

final-stage salvage attempt. Instituting earlier combination 

regimens of OVs with conventional therapeutics may be 

a far better strategy than testing OV monotherapy after 

standard treatments have already failed. Also, sequential 

employment of genetically different OVs for virotherapy 

has been shown be more effective to induce antitumor 

immunity in preclinical studies.139 This approach lever-

ages the observation that different OVs have very distinct 

tumor selectivities, which may facilitate targeting the cell 

heterogeneity associated with many cancers, including 

ovarian cancer.

5.	 Finally, preclinical studies have also indicated that 

many OVs can be armed with eff icacy-improving 

therapeutic genes. These adjunct genes can express 

immunoregulatory factors such as IL-12 and GM-CSF 

that can stimulate antitumor immunity by activating NK 

and CD8+ T cells. JX-594 and OncoVEX, being tested 

in clinical trials, are both armed with GM-CSF. It is 

worth noting that most current approaches aim to boost 

antitumor immune responses in cancer virotherapy by 

activating effector immune cells such as NK and CD8+ 

T cells. However, immunotherapy for cancer, particularly 

ovarian cancer, has increasingly focused on inhibiting 

regulatory T cells (Tregs) that block the development of 

effective T-cell immune responses to tumor antigens.199 

Circulating or tissue-resident Tregs may block effective 

antitumor immune responses in late-stage ovarian cancer, 

creating an effective immunosuppressive environment 

in the tumor. New strategies to combine OVs with Treg-

targeted suppression could be a key to achieve complete 

regression of patients with ovarian cancer. OVs are an 

ideal vehicle to deliver locally therapeutic gene products 

that could assist in mounting more effective cellular 

antitumor responses. Alternatively, OVs can be combined 

with drugs that inhibit Tregs, such as cyclophosphamide. 

In addition to its direct cytotoxic effect on cancer cells, 

gemcitabine has also been shown to eliminate Tregs selec-

tively, and preclinical models indicate that gemcitabine 

can synergize well with many OVs.

In many ways, the current state of oncolytic virotherapy is 

similar to the situation with the cytotoxic chemotherapy drugs 

first developed over half a century ago, with one notable 

exception. Like the older cytotoxic drugs still being used 

routinely in the clinic today, many OVs also exhibit potent 

anticancer properties in the preclinical setting, but there is 

a limit to what can be learned in animal models, and their 

correct exploitation in cancer patients now requires appropri-

ate clinical trials to teach oncologists how to exploit them 

effectively. In stark contrast to the classic chemotherapeutics 

that now comprise the standard of care for so many cancers, 

the single most notable characteristic of OV therapies tested 

to date is their extraordinary safety record. This should 

encourage the oncology field to be optimistic that exploiting 

the great potential of oncolytic virotherapy now needs to be 

conducted in the clinical arena. Despite the challenges ahead, 

advances in our understanding of tumorigenesis, antitumor 

immunity, and molecular biology and anticancer properties 

of OVs have helped and will continue to shape the transla-

tion of preclinical and clinical studies into significant clinical 

outcomes for cancer patients.
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