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Abstract: Antiplatelet therapy remains the mainstay in preventing aberrant platelet activation 

in pathophysiological conditions such as myocardial infarction, ischemia, and stroke. Although 

there has been significant advancement in antiplatelet therapeutic approaches, aspirin still 

remains the gold standard treatment in the clinical setting. Limitations in safety, efficacy, and 

tolerability have precluded many of the antiplatelet inhibitors from use in patients. Unforeseen 

incidences of increased bleeding risk and recurrent arterial thrombosis observed in patients 

have hampered the development of superior next generation antiplatelet therapies. The phar-

macokinetic and pharmacodynamic profiles have also limited the effectiveness of a number 

of antiplatelet inhibitors currently in use due to variability in metabolism, time to onset, and 

reversibility. A focused effort in the development of newer antiplatelet therapies to address some 

of these shortcomings has resulted in a significant number of potential antiplatelet drugs which 

target enzymes (phosphodiesterase, cyclooxygenase), receptors (purinergic, prostaglandins, 

protease-activated receptors, thromboxane), and glycoproteins (αIIbβ3, GPVI, vWF, GPIb) in 

the platelet. The validation and search for newer antiplatelet therapeutic approaches proven to 

be superior to aspirin is still ongoing and should yield a better pharmacodynamic profile with 

fewer untoward side-effects to what is currently in use today.

Keywords: platelet aggregation inhibitors, blood platelets, purinergic P2Y receptor antagonists, 

receptor, PAR-1, platelet glycoprotein GPIIb-IIIa, thrombosis

Introduction
Antiplatelet drugs are the cornerstone in treatment of cardiovascular diseases. Despite 

the significant decrease in morbidity and mortality due to the currently approved anti-

platelet drugs, recurrent ischemia, myocardial infarction (MI), and unwanted bleeding 

still occur. The majority of drugs in development have focused on targeting either 

surface receptors or enzymes in the platelet in order to protect against unwanted clot 

formation following initial platelet activation. The first target for antiplatelet therapy 

was cyclooxygenase-1 by aspirin. While newer approaches for containing platelet 

activity have been developed, the pharmacodynamics and pharmacoeconomics suggest 

that aspirin will continue to be a mainstay for platelet therapy in the years to come. 

Currently, a combination regimen of aspirin and clopidogrel is the standard of care 

for prevention of platelet activation, thrombosis, and stroke. Unfortunately many of 

the current antiplatelet drugs face limitations in their utility due to genetic differences 

in the ability to metabolize pro-drugs, such as is the case with clopidogrel, acquired 

allergic responses such as is seen with heparin and aspirin, and resistance as has been 

reported with aspirin (see Table 1). Additional limitations observed in the application 
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of currently approved antiplatelet drugs include a narrow 

therapeutic window and limited efficacy. An overview of 

the current Food and Drug Administration (FDA)-approved 

antiplatelet therapies as well as those in development will be 

discussed in this review.

P2Y receptor antagonists
The P2Y receptors are G-protein-coupled (GPCR) purinergic 

receptors belonging to the P2 family. Two receptors, P2Y
1
 

and P2Y
12

, are present in the platelet. P2Y
1
 is a G

q
 coupled 

GPCR, while P2Y
12

 is coupled to Gα
i2
. Activation of P2Y

1
 

signals phospholipase β, leading to DAG formation, calcium 

mobilization, and eventually PKC and CalDAG-GEF activa-

tion.1 In contrast, P2Y
12

 activation inhibits adenylyl cyclase, 

activates phosphoinositide 3-kinase,2 the small GTPase 

Rap1,3 and activation of αIIbβ3.4

Ticlopidine (Ticlid®; Roche, Basel, Switzerland) is a first 

generation thienopyridine that requires cytochrome P450 

(CYP) 1 A metabolism prior to exerting its irreversible antag-

onistic effects on platelet reactivity via the P2Y
12

 receptor.5 

Early experimental observations showed agonist-induced 

platelet aggregation was intermittently inhibited by ticlopi-

dine.6,7 Studies with ticlopidine, however, exhibit off-target 

effects mediated by the inhibition of intracellular calcium 

mobilization.8 Maximal inhibition of platelet aggregation 

is observed 3–5  days post administration of ticlopidine.9 

The delayed onset of antiplatelet effects is a consequence 

of metabolism of the pro-drug.6 Clinical trials (CATS and 

TASS studies) have shown ticlopidine to be more effective 

than aspirin alone,10,11 but exhibiting significant off-target 

effects including minor bleeding with hemorrhagic events 

observed in less than 1% of subjects studied. Additionally, 

ticlopidine-treated patients typically discontinue treatment 

due to a variety of secondary adverse events including diar-

rhea, skin rash, and neutropenia.10,12

Clopidogrel (Plavix®, Bristol-Myers Squibb, New York 

City, NY), a second generation oral thienopyridine, also 

requires metabolism of a pro-drug by the CYP2C19. The 

active metabolite, which is a highly labile compound, irre-

versibly binds to and inhibits the P2Y
12

 receptor through 

a disulfide bridge. The CURE trial has shown the clinical 

benefit of the dual clopidogrel-aspirin therapy compared with 

aspirin alone by significantly reducing mortality and nonfatal 

MI or stroke in patients with unstable angina; however, the 

dual regimen was associated with an increase in bleeding 

compared with placebo.13,14 The CAPRIE trial, which evalu-

ated the efficacy of clopidogrel monotherapy compared with 

dual therapy of clopidogrel plus aspirin, showed clopidogrel 

treatment results in a reduction of primary endpoints.15 

Evidence of poor metabolizers for clopidogrel has helped 

to explain the reduced function in patients with an altered 

CYP2C19 allele.16 Poor metabolizers of clopidogrel have 

diminished platelet inhibition resulting in a higher rate of 

adverse cardiovascular events than noncarriers.17

Table 1 Approved antiplatelet drugs

Drug Target Half-life Side effects Bioavailability Use

Ticlopidine 
(Ticlid)

P2Y12 receptor 12 hours Bleeding, rash, neutropenia, thrombotic 
thrombocytopenic purpura (rare), nausea, 
vomiting, heartburn, indigestion

Oral Transient ischemic 
attacks, patients 
undergoing PCI

Clopidogrel 
(Plavix)

P2Y12 receptor 6–8 hours Bleeding, rash, neutropenia, thrombotic 
thrombocytopenic purpura (rare)

Oral NSTEMI, STEMI, PCI, 
recent stroke, or 
established PAD

Prasugrel 
(Effient)

P2Y12 receptor 8 hours Bleeding Oral Patients with ACS 
undergoing PCI

Ticagrelor 
(Brilinta)

P2Y12 receptor 6–12 hours Dyspnea Oral STEMI, ACS

Abciximab 
(ReoPro)

GPIIb-IIIa , 10–30 minutes Bleeding, thrombocytopenia, EDTA-induced 
psuedothrombocytopenia

IV PCI

Eptifibatide 
(Integrilin)

GPIIb-IIIa ∼2.5 hours Bleeding, thrombocytopenia, EDTA-induced 
psuedothrombocytopenia

IV NSTEMI, PCI, unstable 
angina

Tirofiban 
(Aggrastat)

GPIIb-IIIa 2 hours Bleeding, thrombocytopenia, EDTA-induced 
psuedothrombocytopenia

IV NSTEMI, PCI, unstable 
angina

Cilostazol 
(Pletal)

PDE3 11–13 hours Headache, dizziness, hypotension, flushing, 
nausea, vomiting, diarrhea, abdominal pain

Oral Intermittent 
claudication, PAD, PCI

Dipyridamole 
(Aggrenox)

PDE3 and inhibition 
of adenosine uptake

10 hours Bleeding, headache, diarrhea, palpitations, 
dizziness, rash, pancytopenia

Oral Transient ischemic 
attacks

Abbreviations: ACS, acute coronary syndromes; EDTA, ethylenediaminetetraacetic acid; GP, glycoprotein; IV, intravenous; NSTEMI, non-ST elevation myocardial infarction; 
PAD, peripheral arterial disease; PCI, percutaneous coronary intervention; PDE, phosphodiesterase; STEMI, ST elevation myocardial infarction.
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Prasugrel (Effient®, Eli Lilly and Company, Indianapolis, 

IN) is a third-generation thienopyridine, chemically distinct 

from clopidogrel. In-vivo and in-vitro pharmacological 

studies have demonstrated that this adenosine triphosphate 

(ATP) analog selectively and irreversibly inhibits adenosine 

diphosphate (ADP)-induced aggregation to a greater degree 

than clopidogrel.18 The irreversible binding is thought to be 

due to the disulfide binding between the reactive thiol group 

of the active metabolite and the cysteine residue of the P2Y
12

 

receptor.19–21 Prasugrel is an orally available pro-drug that 

requires active transformation via the CYP450 along with 

esterases.22 Activation of the pro-drug requires CYP3 A4 

and CYP2B6.23 Clinical studies have verified that inhibi-

tion of platelet aggregation is more effective with prasugrel 

compared with clopidogrel after a single dose in healthy 

subjects.23 Furthermore, subjects who responded poorly to 

clopidogrel showed greater platelet-induced inhibition in 

response to prasugrel.23,24 Further, assessment of secondary 

endpoints favors prasugrel due to lower incidences of car-

diovascular death, nonfatal MI, and rehospitalization due to 

recurrent ischemia.

Ticagrelor (Brillinta®, AstraZeneca, London, UK), 

an oral cyclopentyl-triazolo-pyrimidine analog, unlike 

thienopyridines, is a direct and reversible inhibitor of 

the P2Y
12

 receptor that is activated from its pro-drug by 

CYP3 A.25 Ticagrelor exerts its action via binding to the 

P2Y
12

 receptor at a site distinct from the ADP binding site, 

thus making it an allosteric inhibitor.25 As a consequence of 

P2Y
12

 inhibition, ATP is converted to cyclic monophosphate, 

vasodilator-stimulated phospoprotein is dephosphorylated, 

and activation of PI3-K is inhibited.26 The PLATO trial 

compared ticagrelor with clopidogrel in which the primary 

composite endpoints, stroke, MI, cardiovascular death, and 

stent thrombosis, were reduced in patients with acute coro-

nary syndromes (ACS) (with or without ST-elevation MI).27 

The benefit of ticagrelor appears to be attenuated in patients 

with lower bodyweight and those not taking lipid-lowering 

drugs in North American groups relative to comparative 

studies elsewhere.28 There is no significant difference in 

major bleeding between the two agents; however, spontane-

ous (noncoronary artery bypass grafts) or nonprocedural-

related bleeding is increased with ticagrelor. Additionally, 

off-target effects of dyspnea and asymptomatic ventricular 

pauses are associated with ticagrelor use.28,29 In general, 

ticagrelor has so far proven superior to current treatment 

regimens, including a rapid onset of action, acceptable safety 

profile, and effectiveness in reducing the primary endpoints 

in ACS patients.

Elinogrel (PRT060128, Novartis, Basel, Switzerland/

Portola Pharmaceuticals, South San Francisco, CA) is a 

direct-acting reversible P2Y
12

 receptor inhibitor that is cur-

rently undergoing clinical investigation (INNOVATE-PCI) 

for efficacy and safety in patients undergoing percutaneous 

coronary intervention (PCI) (see Table 2).30 Preclinical data 

show that intravenous or orally administered elinogrel is 

superior to clopidogrel and has minimal effect on bleeding 

times.31 In addition, a single dose of elinogrel has been shown 

to overcome high platelet reactivity in patients undergoing 

PCI who were nonresponsive to clopidogrel.31 Elinogrel, 

while still in clinical development for safety and efficacy 

assessment in patients, shows promise as a next generation 

P2Y
12

 antagonist.

Cangrelor (ARC-69931MX, The Medicines Company, 

Parsippany, NJ) is an intravenous nontheinopyridine and 

reversible P2Y
12

 inhibitor. Like prasugrel and ticagrelor, 

cangrelor showed a more rapid onset of action and greater 

degree of platelet inhibition than clopidogrel. Recent 

evaluations of the inhibitor in the CHAMPION-PCI and 

CHAMPION-PLATFORM trials were stopped early due to 

its lack of apparent differences in the primary endpoint of 

death, MI, or ischemia-driven revascularization 48 hours after 

PCI.32 Also, the rate of major bleeding in patients undergoing 

PCI was higher with cangrelor compared with clopidogrel 

in both studies.33

Table 2 Antiplatelet drugs under development

Drug Target Stage of development

Elinogrel P2Y12 receptor Phase II

Cangrelor P2Y12 receptor Phase III

BX 667 P2Y12 receptor Preclinical

Vorapaxor (SXH 530348) PAR1 Phase III

Atopaxar (E5555) PAR1 Phase II

S18886 (Terutroban) TPα Phase III

Z-335 TPα Phase I

BM-573 TPα Preclinical

h6B4-Fab GPIb Preclinical

GPGP-290 GPIbα Preclinical

SZ2 GPIbα Preclinical

PR-15 (Revacept) GPVI Phase I completed

DZ-697b GPVI Phase I completed

AJW200 vWF Phase I

ARC1779 vWF Phase II

ARC15105 vWF Preclinical

ALX-0081 vWF Phase II

ALX-0681 vWF Phase II

82D6 A3 vWF Preclinical

Z4 A5 GPIIb-IIIa Preclinical

DG-041 PGE2 Phase II
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BX 667 is an orally active reversible P2Y
12

 receptor 

antagonist that is metabolized by esterases to form the 

carboxylic active form, BX 048.34 In-vitro, ADP-induced 

aggregation is potently inhibited by BX 667. Additionally, 

administration of BX 667 results in a rapid and sustained 

inhibition aggregation.35 This observation is also supported 

by the intravenous BX 048 and oral BX 667 administration in 

rat arteriovenous-shunt model which showed a similar phar-

macodynamic relationship between the plasma concentration 

of BX 048 and thrombus inhibition.34 This antagonist has yet 

to be evaluated in healthy human subjects.

Glycoprotein antagonists
αIIbβ3 antagonists
Glycoprotein GPIIbIIIa (αIIbβ3) is the most abundant integ-

rin on the platelet surface.36 αIIbβ3 is known to be involved in 

both inside-out or outside-in platelet signaling. The inside-out 

signaling in platelet activation involves the various signaling 

pathways that converge into a common signaling endpoint 

that leads to the activation of integrin αIIbβ3.37 Ligand 

binding of fibrinogen or von Willebrand factor (Vwf) to 

αIIbβ3 mediates platelet adhesion and aggregation, triggers 

outside-in integrin activation and results in additional granule 

secretion, stabilization of platelet adhesion, aggregation, and 

clot retraction.37

Abciximab (ReoPro®; Eli Lilly) is an antibody devel-

oped from the murine human chimera c7E3 Fab, which 

targets the integrin αIIbβ3,38 preventing integrin binding 

to fibrinogen and Vwf. Abciximab rapidly binds with high 

affinity and has a slow rate of dissociation from its target.39 

In addition, abciximab binds with high affinity to α
v
β3 

(vitronectin receptor)40 and low affinity to the leukocyte 

MAC-1 receptor.41 Initial intravenous administration enables 

rapid onset of platelet inhibition.42 As abciximab has an 

extremely short half-life,43 platelet aggregation returns to 

baseline levels within 12–24 hours following discontinuation 

of therapy.44,45 Interestingly, the ISAR-REACT trial dem-

onstrated no additional benefit of abciximab over placebo 

in the reduction of ischemic complications or mortality.43,46 

Similarly, among diabetic patients without elevated troponin 

levels undergoing elective PCI, no difference was observed 

in primary endpoint events between abciximab and placebo/

clopidogrel groups.47 Conversely, in patients with elevated 

troponin levels, the incidence of mortality and recurrent 

ischemic complications was significantly reduced with 

abciximab.48 Careful monitoring must be accompanied with 

the administration of abciximab as bleeding and thrombo-

cytopenia have been observed.49–51

Eptifibatide (Integrilin®, Millenium Pharmaceuticals, 

Cambridge, MA/Schering-Plough, Kenilworth, NJ) is a 

cyclic heptapeptide derived from snake venom that contains 

a KGD (lysine-glycine-aspartic acid) sequence which selec-

tively recognizes αIIβ3.52 The IMPACT-II study showed that 

a single loading dose followed by continuous infusion for 

20–24 hours only resulted in 50% αIIbβ3 receptor block-

ade; thus, limited benefits and efficacy through eptifibatide 

were observed.53 The ESPRIT trial, however, which utilized 

intravenous administration of a double bolus54 followed by 

maintenance infusion, significantly reduced the 30  days 

incidence of death, MI, and target vessel revascularization,55 

establishing the clinical efficacy for this drug. These observa-

tions were confirmed in the PURSUIT trial, which showed 

an absolute reduction in the 30-day incidence of death and 

MI on eptifibatide.56 Despite the reduction in mortality, the 

ACUITY trial also showed an increase incidence of major 

bleeding in patients with ACS undergoing PCI.57,58

Tirofiban (Aggrastat®, Merck, Whitehouse Station, NJ) is 

a tyrosine-derivative nonpeptide mimetic reversible inhibitor 

of αIIbβ3 that specifically and competitively binds to the 

receptor. Treatment with tirofiban in combination with aspirin 

and heparin in patients with ACS significantly reduced the 

30-day post-treatment incidence of death, MI, or recurrent 

ischemia.59 Further, tirofiban was superior for ACS patients 

recovering from invasive coronary angiography.59 As for the 

use of tirofiban as an adjunct to PCI, tirofiban was shown 

to be inferior to abciximab in the RESTORE and TARGET 

trials where the incidence of composite death, nonfatal MI, 

and urgent target vessel revascularization were higher with 

tirofiban or abciximab at 30 days.60

Z4 A5 is a novel αIIbβ3 peptide antagonist that is currently 

in development. This antagonist has been shown to inhibit 

platelet-induced aggregation and thrombi formation. Addi-

tionally, when Z4 A5 was examined along with heparin and/

or aspirin in the rabbit arteriovenous shunt thrombosis model, 

it was shown to be an effective antithrombotic agent when 

administered with aspirin.61 The pharmacodynamics and phar-

macokinetics in humans are currently under investigation.61

Additional glycoprotein antagonists
Additional glycoprotein targets have received a fair amount 

of attention in the drive to develop novel approaches for 

antiplatelet intervention. The Vwf, a multimeric glycoprotein 

that acts as a bridging element between damaged endothelial 

sites and the glycoprotein receptors on platelets, is one such 

target. The A1 and A3 domains of Vwf bind to collagen, while 

the A1 domain is bound to the GPIb-IX-V platelet receptor 
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complex.62,63 Vwf also binds to active αIIbβ3 on the platelet 

surface. Interactions between αIIbβ3 and Vwf contribute 

to the final, irreversible binding of platelets to the suben-

dothelium and play a leading role in platelet aggregation.64 

A second target receiving attention as a potential site for 

antiplatelet therapy is the collagen receptor glycoprotein VI 

(GPVI). The collagen-GPVI interaction triggers subsequent 

tyrosine phosphorylation of the immunoreceptor tyrosine-

based activation motif of the Fc receptor γ chain, activating 

the Syk kinases pathway, LAT, SLP-76, and phospholipase 

Cγ2,65 resulting in platelet activation or aggregation.

Vwf antagonists
AJW200 is an IgG4 humanized monoclonal antibody to Vwf 

which has been shown to specifically inhibit high-shear-

stress-induced platelet aggregation in a concentration-depen-

dent manner in vitro in blood from human volunteers.66

ARC1779 (Archemix Corp, San Francisco, CA) is an 

aptamer-based antagonist. This second generation nuclease-

resistant aptamer is conjugated to a 20-Kda polyethylene gly-

col and binds with high affinity to the active Vwf A1-domain 

and inhibits Vwf-dependent platelet aggregation.67 A Phase 

II trial demonstrated that continuous infusion of ARC1779 

effectively increased platelet counts in critically ill thrombotic 

thrombocytopenic purpura patients by preventing platelet 

aggregation and loss of platelets. Cessation of ARC1779 infu-

sion resulted in platelet count reduction and progression of 

thrombotic thrombocytopenic purpura-related organ dam-

age.68 This drug is currently under clinical investigation.

Other Vwf antagonists in clinical development or investi-

gations include ARC15105, ALX-0081 (Ablynx), ALX-0681, 

and 82D6 A3. ARC15105 is a chemically advanced aptamer 

with assumed higher affinity to Vwf, but less specific inhibi-

tor of Vwf-dependent platelet aggregation than ARC1779, 

based on ex-vivo trials.69 The preclinical and clinical trials 

have shown that ALX-0081, a bivalent humanized nanobody 

that recognizes the Glycoprotein Ib (GPIb) binding site of 

Vwf, is a potent and safe inhibitor of Vwf-mediate platelet 

aggregation over a wide range of doses when administered 

in combination with aspirin, heparin, and clopidogrel. ALX-

0081 is currently under investigation in PCI patients in a 

Phase II trial. 82D6 A3, a monoclonal antibody directed 

against amino acids Arg-963, Pro-981, Asp-1009, Arg-1016, 

Ser-1020, Met-1022, and His-1023 of the Vwf A3 domain,70 

was shown to result in complete inhibition of Vwf binding 

to collagen during the first 3 days after stent implantation 

in baboons.71 Further trials will need to follow to verify 

82D6 A3 efficacy, safety, and tolerability.

GPVI receptor antagonists
PR-15 (Revacept®, ABX-CRO/Medifacts GmbH, Goer-

litz, Saxony, Germany) is a soluble, dimeric glycoprotein 

(GPVI)-Fc that has been shown to adhere to exposed colla-

gen in endothelial lesions preventing the binding to platelet 

GPVI receptors. Collagen-induced human platelet adhesion 

or plaque formation were significantly reduced with pre-

treatment of soluble GPVI-Fc.72,73 Similarly, infusion of 

GPVI-Fc was shown to virtually abolish stable arrest and 

aggregation of platelets following vascular injury in mice.65 

Subsequently, a Phase I clinical trial demonstrated that intra-

venous administration of PR-15 is safe and well tolerated by 

healthy volunteers.74

DZ-697b is an orally active collagen and ristocetin inhibi-

tor. Safety and efficacy have been assessed in a Phase I trial 

which showed potential benefits such that bleeding time was 

substantially shortened compared with clopidogrel treat-

ment.75 DZ-697b is currently under clinical investigation.

GPIb receptor antagonists
Novel targets still under investigation include h6B4-Fab, 

GPGP-290, and SZ2. h6B4-Fab is a murine monoclonal 

antibody, derived from the humanized Fab fragment of 6B4 

targeting GPIbα and neutralizes the binding site of the Vwf 

A1 domain.76,77 6B4 has been shown to inhibit platelet adhe-

sion by competing with Vwf for binding to GPIbα under 

high-shear conditions. Moreover, preliminary data show 6B4 

has no effect on platelet count or bleeding times in vivo in 

baboons, but dose- and time-dependently inhibited ristocetin-

induced platelet aggregation.78 GPG-290 is a recombinant, 

chimeric antibody purified from Chinese hamster ovary cell 

culture that contains the amino-terminal 290 amino acids 

of GPIbα linked to the human IgG1. GPG-290 treated dogs 

were shown to exhibit prolonged bleeding compared with 

the clopidogrel-treated control, despite the prevention of 

coronary artery thrombosis.79 SZ2, a monoclonal antibody 

developed against GPIbα, has also been shown to inhibit 

both ristocetin- and botrocetin-induced platelet aggregation 

in vitro.80 Preclinical investigations are still underway to 

determine the in-vivo efficacy of SZ2.

Phosphodiesterase antagonists
Platelets express three phosphodiesterase (PDE) isoenzymes, 

PDE 2, 3, and 5. PDEs regulate the levels of 3,5′-cyclic ade-

nosine monophosphate (Camp) and 3′,5′-cyclic guanosine 

monophosphate (Cgmp) by catalyzing the hydrolysis of 

Camp and Cgmp to inactive 5′-AMP and 5′-GMP, respec-

tively.81 Platelet activation relies on degradation of Camp 
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and Cgmp; hence regulating these secondary messengers  

is fundamental in regulating platelet activation and 

thrombosis.

Cilostazol (Pletal®, Otsuka Pharmaceutical Co, Tokyo, 

Kapan) is a type III PDE (PDE3) selective oral inhibitor.82 

Liu and colleagues have shown that cilostazol enhances the 

interstitial concentration of adenosine in several in-vitro 

and in-vivo models83 by inhibiting adenosine uptake. This 

in turn stimulates A
2
 receptors, which further increases 

Camp levels. As a result, platelet-induced aggregation is 

reversibly inhibited by cilostazol.84 Cilostazol is extensively 

metabolized by CYP3 A4, while CYP2C19 is also shown 

to have a minor role in cilostazol metabolism.85 Cilostazol 

is safe and effective in reducing the incidence of repeated 

revascularization after PCI and risk of restenosis; however, 

this drug does not show superiority in reducing the primary 

composite endpoints of adverse cardiovascular events after 

drug-elution stent implantation.86 Despite the functional 

implications of adjunctive treatment with cilostazol compared 

with standard aspirin and clopidogrel treatment, as shown in 

the OPTIMUS-2 study, the accompanied side effects (head-

aches, gastrointestinal symptoms, and skin rash) often lead 

to the discontinuation of the drug.87

Dipyridamole (Aggrenox®, Boehringer Ingelheim, 

Ingelheim, Germany) is a pyridopyrimidine derivative with 

both antiplatelet and vasodilator properties.88 Similar to 

cilostazol, dipyridamole inhibits cyclic nucleotide phos-

phodiesterase and blocks adenosine uptake, which results in 

increased Camp.89 The ESPS-2 and ESPRIT trials showed 

that dual treatment of dipyridamole and aspirin reduced risk 

of stroke or death by 37% compared with aspirin alone.90,91 

Based on the ESPRIT and ESPS-2 trials, dipyridamole has 

been FDA approved for stroke prevention.91

Thromboxane A2 receptor 
antagonists
Platelets express the thromboxane receptor α (TPα), a GPCR 

that is coupled to G
q
 and G

12/13
 and signals platelet activation 

through a number of intracellular pathways which converge 

to reinforce primary platelet activation through thrombin or 

collagen.92

S18886 (terutroban) is an oral reversible inhibitor of TPα. 

In preclinical studies, S18886 dose-dependently prolonged 

occlusive thrombus formation in animal models, but did not 

alter the size of the myocardial infarct size in the ischemia-

perfusion model. S18886 and clopidogrel were effective in 

preventing occlusive thrombus formation with a moderate 

increase in bleeding time.93 Subsequently, however, in the 

Phase III clinical trial (PERFORM), S18886 did not meet 

the predefined criteria for noninferiority since S18886 and 

aspirin had similar rates of protection without safety advan-

tages for S18886.94

Z-335 ((+/-)-sodium[2-(4-chlorophenylsulfonyl-amino

methyl)indan-5-yl]acetate monohydrate) is an oral TPα 

antagonist that has previously been shown to dose-depend-

ently inhibit the specific binding of [3H]SQ-29548 (TPα 

inhibitor) to human and guinea pig platelet membranes.95 

In healthy male Japanese volunteers, Z-335  inhibited 

U46619-induced platelet aggregation within 2  hours of 

administration.96

BM-573, another investigational inhibitor that targets 

TPα, has been shown to halt the progression of atheroscle-

rosis in low-density lipoprotein receptor deficient mice.97 

Preclinical models have shown that arachidonic acid-induced 

aggregation is completely inhibited in the presence of 

BM-57398 and clinical studies on this compound are cur-

rently ongoing.

Thrombin receptor antagonists
Thrombin activates human platelets via two protease activated 

receptors (PARs), PAR1 and PAR4. PAR activation leads to 

a diverse range of pro-thrombotic signaling events mediated 

through G
q
, G

12/13
, and possibly G

i
, resulting in phospholipase 

β activation, Rho activation, and adenyl cyclase inhibition, 

respectively. PAR activation requires thrombin cleavage of the 

amino terminus of the receptor, revealing a tethered ligand. 

While it has been challenging to develop an inhibitor that 

can directly compete with the endogenous tethered ligand, 

development of PAR1 inhibitors as a therapeutic target to 

minimize uncontrolled platelet activation has recently been 

investigated.

SCH 530348 (Vorapaxar®, Merck and Co, Whitehouse 

Station, NJ) is an orally active synthetic analog of him-

bacine99 that competitively binds with high affinity to the 

PAR1. Previous in-vitro assays show SCH 530348 inhibited 

thrombin- and thrombin receptor activating peptide-induced 

platelet aggregation, without affecting the aggregation 

induced by ADP, U46619, or collagen. In addition, SCH 

530348 did not affect the prothrombin and activated partial 

thromboplastin time, suggesting that bleeding time may not 

be increased. Pre-clinically, cynomolgus monkeys treated 

with SCH 530348 alone or in addition with aspirin and 

clopidogrel, showed no increase in bleeding times.100 The 

TRA-PCI study verified that addition of SCH 530348 to 

standard antiplatelet therapy (aspirin and clopidogrel) was 

not associated with increases in thrombolysis in MI (TIMI) 
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or bleeding compared with the control group.101 The Phase III 

clinical trials TRA-CER and TRA 2ºP-TIMI, which sought 

to assess the impact of vorapaxar on cardiovascular death, 

MI, stroke, and recurrent vascular events in patients with 

established coronary, cerebral, or peripheral atherosclerosis102 

failed due to unforeseen intracranial bleeding.102

Preclinical trials showed that oral administration of the 

PAR1 antagonist, E5555 (Atopaxar®, Eisai Co Ltd, Tokyo, 

Japan), significantly prolonged bleeding times in guinea 

pigs.103 Further, PECAM-1, active αIIbβ3, GPIb, thrombo

spondin, and vitronectin expression were significantly 

reduced by E5555 in whole blood flow cytometry. Clinical 

studies have shown that E5555 attenuated thrombin-induced 

but not ADP-induced platelet aggregation.104,105

Additional PAR-1 antagonists SCH 205831 and SCH 

602539 are still under investigation. Preliminary data show 

SCH 205831 derived from himbacine inhibited platelet depo-

sition in baboons with arteriovenous-shunt thrombosis. Simi-

larly, SCH 602539 inhibited thrombosis in a dose-dependent 

manner in the Folts model of thrombosis in anesthetized 

cynomolgus monkeys.106 These compounds continue to be 

developed in preclinical models.

Conclusion
Significant progress has been made in advancing our under-

standing of how platelet activation directly regulates throm-

bus formation in the vessel leading to occlusive thrombi and 

stroke. However, a continued need for the development of 

new antiplatelet therapies exists as the risk for MI, stroke, 

and death, remain a persistent problem for individuals suf-

fering from cardiovascular disease. Further, while aspirin 

continues to be the first line of pharmacological intervention 

in antiplatelet therapy, the risk of bleeding is significantly 

exacerbated by its irreversible action coupled to the addi-

tional regimen of dual therapy often employed to minimize 

thrombotic events. In hopes of reducing prolonged bleeding 

or myocardial infarct events, newer compounds continue to 

be developed to target alternative sites in the platelet. The 

successful implementation of these strategies may signifi-

cantly reduce the morbidity and mortality in cardiovascular 

disease due to unwanted platelet activation as well as exces-

sive bleeding due to traditional approaches. Even with the 

newer antiplatelet drugs entering the market in the near 

future, we are faced with the realization that activation of the 

platelet involves an increasingly complex signaling network. 

Hence, new frontiers will need to be explored which will 

take advantage of this signaling to reveal novel therapeutic 

targets with diminished off-target effects.
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