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Abstract: Schizophrenia is a complex neuropsychiatric disease with documented clinical and 

genetic heterogeneity, and evidence for neurodevelopmental origins. Driven by new genetic 

technologies and advances in molecular medicine, there has recently been concrete prog-

ress in understanding some of the specific genetic causes of this serious psychiatric illness. 

In particular, several large rare structural variants have been convincingly associated with 

schizophrenia, in targeted studies over two decades with respect to 22q11.2 microdeletions, 

and more recently in large-scale, genome-wide case-control studies. These advances promise 

to help many families afflicted with this disease. In this review, we critically appraise recent 

developments in the field of schizophrenia genetics through the lens of immediate clinical 

applicability. Much work remains in translating the recent surge of genetic research discoveries 

into the clinic. The epidemiology and basic genetic parameters (such as penetrance and expres-

sion) of most genomic disorders associated with schizophrenia are not yet well characterized. 

To date, 22q11.2 deletion syndrome is the only established genetic subtype of schizophrenia 

of proven clinical relevance. We use this well-established association as a model to chart 

the pathway for translating emerging genetic discoveries into clinical practice. We also pro-

pose new directions for research involving general genetic risk prediction and counseling in  

schizophrenia.

Keywords: schizophrenia, genetics, 22q11 deletion syndrome, copy number variation, genetic 

counseling, genetic predisposition to disease

Introduction
Schizophrenia is arguably one of humankind’s most severe diseases.1,2 Driven by new 

genetic technologies and advances in molecular medicine, recently there has been 

concrete progress in understanding some of the specific genetic origins of this com-

plex psychiatric illness, summarized in several recent reviews.2–8 There has, however, 

been little focus on how we might practically apply the findings.9–11 In this review, 

we critically appraise recent developments in terms of immediate clinical utility. We 

use the well-established association of schizophrenia with microdeletion 22q11.2 as a 

model to chart the pathway for translating emerging genetic discoveries into clinical 

practice. We also propose new directions for research involving general genetic risk 

prediction and counseling in schizophrenia.

Clinical features of schizophrenia9,12

Schizophrenia is a common psychiatric illness that typically involves lifelong but 

treatable changes in thinking, behavior, and emotions. It has a lifetime morbid  
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risk of approximately 1%. The principal symptoms are 

psychotic in nature: delusions (false beliefs), hallucinations 

(false perceptions), and thought disorder (disorganization 

of thought processes). In addition to these “positive” 

symptoms, there are also “negative” symptoms of blunted 

affect (reduced emotional expression), poverty of speech, 

anhedonia (reduced ability to feel pleasure), and amotivation, 

as well as disorganization of behavior and emotions. 

Depression, anxiety, irritability, agitation, sleep disturbance, 

and cognitive impairments, including changes in attention, 

memory, insight, and judgment, are also common. Onset of 

schizophrenia occurs most commonly in early adulthood 

from 17 to 30 years of age, but can arise in childhood (in 

<1% of cases) through to the elderly age range. The diagnosis 

of schizophrenia is a clinical diagnosis, based on course 

of illness as well as cross-sectional symptoms. Diagnostic 

reliability is high when standard diagnostic criteria are 

combined with a direct examination and thorough history, 

including information from the patient, relatives, and 

others, to differentiate schizophrenia from other psychotic 

disorders. As with most neuropsychiatric disorders, there 

are no characteristic neuropathological findings (Table 1), 

which, coupled with the absence of any diagnostic tests 

and substantial clinical heterogeneity (variable signs and 

symptoms), emphasizes the importance of detailed expert 

phenotyping (cf “shallow phenotyping”).13

Genetic epidemiology of schizophrenia
Psychiatric genetics has historically focused in large part on 

the study of schizophrenia and its epidemiology.14 It is well-

established that the heritability of schizophrenia is .80%,15–17 

amongst the highest known for complex genetic disorders.18 

Consistent evidence from family, twin, and adoption studies 

over the past century strongly indicates that predisposition 

is largely genetically determined (MIM #181500).19–24 Non-

genetic factors, for example, marijuana use and hypoxia-

mediated factors like birth complications or childhood head 

injury, increase risk for schizophrenia only modestly.9,25–32 

Studies of schizophrenia in twins33,34 support reduced pen-

etrance (genetic variants that do not express in every carrier 

as disease) and variable expression (variants that express as 

different diseases in different carriers),35,36 which is com-

mon to most human genetic diseases. As for most diseases, 

there is also substantial evidence for genetic heterogeneity 

and probably allelic heterogeneity.18,36 Gene–gene interac-

tion (epistasis) is likely in schizophrenia37,38 and indeed is 

ubiquitous in nature.39 Molecular evidence for early predic-

tions of spontaneous (de novo) mutations in schizophrenia,40,41 

Table 1 Schizophrenia within the context of other common complex neuropsychiatric diseases (as of 2011)

Schizophrenia ASD Epilepsy Parkinson  
disease

Alzheimer  
disease

Clinical features
Approximate lifetime risk ∼1% ∼1% ∼0.5% ∼1.6%a ∼10%a

Typical onset Young adulthood Early childhood Childhood Mid to late  
adulthood

Mid to late  
adulthood

Clinical heterogeneity Yes Yes Yes Yes Yes
Clinical diagnostic imaging/biomarker(s)/test(s) No No Yes No No
Definitive neuropathological diagnosis No No No Yes Yes
Primary mode of neuropathogenesis Developmental Developmental Developmental Degenerative Degenerative

Genetic features
Heritability .80% ∼90% ∼45%b ∼30% ∼70%
Genetic heterogeneity Yes Yes Yes Yes Yes
Major common variant(s) No No No No Yes
Rare sequence mutation subtype(s) No Yes Yes Yes Yes
Rare chromosomal anomaly/structural  
mutation subtype(s)

Yes Yes Yes No Yes

Genetic diagnosis changes medical managementc Yes No Yes No No
Pharmacogenetics as standard of care No No No No No
Routine use of genome-wide scansd No Yes No No No
Family history as predominant recurrence risk factor Yes Yes Yes Yes Yes
Sources (reference numbers) See text9 61, 190, 233, 234 235–239 240–243 244–247

Notes: aEstimated based on risk after age 55–65 years, and therefore highly dependent on the mean life expectancy of the population; bno consensus estimate, with a 
wide range of reports in the literature;235,239 cmanagement changed for the associated neuropsychiatric disease; this does not include more informed genetic counseling, the 
precipitation of other referrals or investigations,248 or the potential for earlier/more aggressive treatment as a result of early clinical diagnosis because of an increased index 
of suspicion; dwithout accompanying developmental delay/mental retardation, ASD, or multiple congenital anomalies.
Abbreviation: ASD, autism spectrum disorder.
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Table 2 Potential future roles for molecular genetics in the clinical management of schizophrenia

Area of benefit Details and examples

Medical (of primary benefit to the clinician and patient)
Prediction and prevention • Personalized genetic (ie, inborn) lifetime risk for psychosis* 

• Narrowing of window for age at onset in high risk cases 
• Personalized neurocognitive and/or neuroimaging precursors of psychosis 
• Opportunity to limit important deleterious gene by environment interactions 
• Anticipation of potential extra-psychiatric features* 
• Tailored early interventions to delay or prevent onset, or attenuate course

Diagnosis • �At first onset of psychosis, higher index of suspicion for schizophrenia (as a result of improvements  
in prediction)*

Management • �Coordinated multisystem management and anticipatory care for possible extra-psychiatric manifestations  
of causal genetic variant(s)*

Treatment • Earlier/more aggressive treatment (as a result of improvements in prediction and diagnosis)* 
• Preference for or avoidance of particular antipsychotic medications 
• Tailored dosing (eg, via knowledge of fast and slow metabolizers; pharmacogenomics) 
• �Less potential confusion of medication side effects with extra-psychiatric manifestations  

of causal genetic variant(s) (eg, metabolic syndrome, parkinsonism, seizures)*
• Novel personalized therapeutic targets

Prognosis • �Improved course (as a result of improvements in prediction/prevention, diagnosis,  
treatment, and management)*

• Personalized data on natural history and longevity*

Psychosocial (of primary benefit to the patient and family)
Understanding • Partial answer to the question, “Why me?”* 

• Explanation for potential premorbid developmental signs and symptoms (eg, learning difficulties)* 
• �Extra reassurance that parenting or personal life choices did not play a major role in causing  

the illness*
Counseling • Personalized recurrence risks for family members* 

• Better informed reproductive decision making and possibility for prenatal detection*
Hope • Proof of progress in understanding the illness* 

• Prospect of continued improvements in treatment and management, as above*

Note: *Already possible for 22q11.2 deletion syndrome (22q11.2DS) subtype of schizophrenia (see text for details).

recently reframed as the “common disease – rare alleles” 

model,42 adds to the complex genetic picture. Thus, it is not 

surprising, in hindsight, that classic Mendelian inheritance 

patterns are very rarely observed in schizophrenia, and that 

elucidation of causal genetic factors has been so challenging. 

Researchers have remained undeterred, because of the myriad 

possible benefits for patients, families, and clinicians that 

could result from an improved understanding of the genetic 

etiology of schizophrenia (Table 2).

22q11.2 deletion syndrome
To date, 22q11.2 deletion syndrome (22q11.2DS; previ-

ously DiGeorge syndrome and velocardiofacial syndrome) 

is the only established genetic subtype of schizophrenia of 

proven clinical relevance.3,43 The association of 22q11.2DS 

with schizophrenia followed soon after the discovery in the 

early 1990s that the 22q11.2 deletion was the underlying 

molecular anomaly unifying several, seemingly distinct, 

clinical syndromes first described in the 1960s and 1970s.44,45 

Many of the features suggested above with respect to 

the genetic epidemiology of schizophrenia, including 

spontaneous mutations, reduced penetrance, and variable 

expressivity, are found in 22q11.2DS.

Molecular origins and epidemiology
22q11.2DS is associated with a hemizygous microdeletion 

on chromosome 22q11.2 of variable length (typically 

3 Mb) and, in some cases, variable position within this 

region.9,46 There is no apparent critical region at this locus 

for any major phenotype, including schizophrenia.47–50 Most 

deletions are flanked by segmental duplications51 and occur 

as de novo mutations mediated by nonallelic homologous 

recombination.46,52 Only 5%–10% of cases have been 

found to be inherited from transmitting parents,53–56 most 

frequently mothers with mild neuropsychiatric phenotypes.57 

Nevertheless, 22q11.2DS is the most common genomic 

disorder58 in humans, with an oft-cited estimated prevalence 

in the general population of 1 in 3000–4000 live births that 

is likely to be an underestimate.59,60 Fluorescence in situ 

hybridization using a standard 22q11.2 probe (D22S75 or 
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TUPLE1) has been used since 1992 to detect most deletions 

in this region,9 but is now being superseded by clinical 

microarrays that should increase diagnostic yield.46,61,62 

Several lines of evidence support the generally pathogenic 

nature of 22q11.2 deletions and the high penetrance of 

observable phenotypes,3,63,64 so that no distinction is typically 

made between individuals with 22q11.2 deletions and 

individuals with 22q11.2DS. 

Association with schizophrenia
Several studies have confirmed that 22q11.2DS accounts for 

approximately 1% of all cases of schizophrenia (see Bassett 

et al65 and references therein). Conversely, an estimated 22.5% 

of adults with 22q11.2DS develop schizophrenia66 or a related 

psychotic disorder.67 In other words, a 22q11.2 deletion is a 

variant of large effect, associated with a greater than 20-fold 

increase in risk for schizophrenia.9 The clinical expression 

of the schizophrenic illness is essentially indistinguishable 

from that found in the general population with respect to 

prodrome, age at onset, presentation, cognitive profile (except 

for lower mean IQ), and, according to limited data available, 

response to treatment.43,66–71 Thus 22q11.2DS represents the 

best available specific genetic model of schizophrenia, with 

minimized genetic heterogeneity and substantial evidence this 

is a representative form of this illness.2 Empirical evidence 

for a strong negative selective pressure57 and high rate of 

recombination at the 22q11.2 locus72 is consistent with the 

common disease – rare variant model for schizophrenia.42

Clinical relevance
For patients with schizophrenia, a clinician today should be 

armed with a high index of suspicion for 22q11.2DS and/

or consistently use established clinical screening criteria to 

detect features suggesting this genetic diagnosis, such as 

dysmorphic facies, a nasal voice, congenital anomalies, and/or 

learning difficulties.65,73 This would prompt a comprehensive 

diagnostic assessment, including developmental, medical, 

and family history, and a physical examination by a clinician 

experienced in genetic syndromes and dysmorphology.9 

Genetic testing would follow if sufficient features were 

present to support a clinical diagnosis of 22q11.2DS73 

and should proceed in all patients with comorbid mental 

retardation and/or multiple congenital anomalies.3,61

In a patient with schizophrenia, detection of a 22q11.2 

deletion is clinically relevant.9 Consensus clinical practice 

guidelines46 now exist that detail opportunities for anticipa-

tory care and optimizing medical management of associated 

features, and for genetic counseling that can be informed by 

extensive (and rapidly expanding) knowledge of pathogen-

esis, recurrence risk, and lifelong expression, natural history, 

and clinical outcomes.54,56,57,63,66,67,70,74–88 Careful attention to 

the commonly accompanying endocrine and neurological 

features in particular may be helpful in the psychiatric 

management of patients with 22q11.2DS.9,63 As is common 

in patients with schizophrenia, the psychiatrist may be the 

only physician the patient sees regularly and may therefore 

be expected to provide primary care for accompanying medi-

cal conditions, and/or have the responsibility for arranging 

appropriate investigations and follow-up.

For patients already diagnosed with 22q11.2DS, what 

are the potential implications of knowing about the risk 

for schizophrenia prior to first onset of psychosis? As for 

schizophrenia in the general population,29 there is little 

evidence for any additional environmental factor(s) affecting 

risk of psychosis in 22q11.2DS.9,89 Avoiding substance use, 

particularly early marijuana use, and lifelong general health 

measures such as good nutrition, and physical and mental 

exercise, may decrease risk to some extent.9 Common genetic 

modifiers of some effect may exist,90,91 as for the congenital 

cardiac phenotype,92,93 but have not been convincingly 

demonstrated67,94–96 (see Philip and Bassett48 for more details), 

and additional copy number variation/variants (CNV) do not 

seem to play a major role in expression of schizophrenia.53 

Prospective97–99 and retrospective68,70,100 research is ongoing to 

identify specific neurocognitive and neuroimaging predictors 

of future psychotic symptoms, as none are yet known. The 

greatest potential benefit of early diagnosis of a 22q11.2 

deletion would likely be to facilitate the recognition of the 

early stages of schizophrenia or another psychiatric illness, 

and promptly seeking expert help in diagnosis and effective 

treatment.9,78 Limiting the duration of untreated psychiatric 

illness is associated with better prognosis.101 Psychosis in 

an adolescent or young adult with 22q11.2DS should also 

be easier to diagnostically classify as schizophrenia in its 

early stages because of the significant association between 

these two elements,102 despite the potential additional 

diagnostic complexities that could be posed by comorbid 

mental retardation.103

Schizophrenia in the molecular age
Foreshadowed by the association with 22q11.2 deletions, 

there is further emerging evidence that multiple rare vari-

ants contribute significantly to the genetic vulnerability for 

schizophrenia. Other select genomic disorders caused by 

rare, recurring CNV represent emerging genetic subtypes 

of schizophrenia of growing clinical importance (Table 3). 
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This encouraging progress comes after several decades of 

genome-wide and targeted molecular studies, representing 

essential, though largely unfruitful, tests of standard genetic 

hypotheses usually involving common variants at the level of 

nucleotide sequence (eg, single nucleotide polymorphisms 

[SNPs]) and DNA structure (eg, copy number polymor-

phisms [CNPs]). In retrospect, these studies were driven 

by genetically naïve expectations for schizophrenia. These 

included that there would exist (1) a single major locus, (2) 

common genetic variants of large effect, and (3) variants 

specific to schizophrenia (ie, not frequently associated with 

other conditions).

Genome-wide linkage and association  
studies
Associations with schizophrenia
Initially, several genome-wide linkage studies of multiply 

affected families identified regions where candidate genes 

for schizophrenia are likely to be. Some of these loci have 

been replicated and/or supported by meta-analyses,9,18,104–108 

including 1q21-q23, 6p22, 8p21, and 13q32-q34.109–118 As 

expected,119 however, there are also negative studies of all 

loci.18,120–122 Despite a few highly significant findings that 

have led, for example, to identification of functional SNPs 

in candidate genes,123 one of the most important collective 

contributions of these studies has been the confirmation that 

there is no unifying single gene mutation for familial forms 

of schizophrenia.

In addition, there have now been several large-scale, 

case-control genome-wide association studies (GWAS) of 

schizophrenia using SNP-based microarray technology. 

Overall, this strategy, based on studying common SNPs, has 

proven to be relatively ineffective for the study of complex 

neuropsychiatric diseases, compared with the relative suc-

cesses for auto immune diseases like diabetes and inflam-

matory bowel disease.124 Some of these GWAS failed to find 

significant evidence of association and/or have not replicated 

weak associations.125–129 Others have reported common 

sequence variants of very small effect, including several in 

the human leukocyte antigen (HLA) region (6p).130–137 The 

latter findings recall early studies of protein-based HLA 

polymorphisms.138,139 Meta-analysis using GWAS data from 

thousands of individuals with schizophrenia has revealed a 

few weak-effect associations, in the ZNF804A gene.140–143 

GWAS of common structural variants such as CNPs, while 

fewer in number, have yielded comparable findings of nomi-

nal effect.127,144

GWAS using common SNPs and data on drug dosages and 

treatment response in schizophrenia (ie, pharmacogenomics 

studies) are reviewed elsewhere.145,146 These show modest 

results similar to those for diagnosis of schizophrenia, and 

broad clinical applications still represent more a dream than a 

Table 3 The current established and emerging genetic subtypes of schizophrenia are characterized by large, rare, recurring copy 
number variation and variable expressivity

Genetic subtype  
of schizophrenia

Established Emerging

Genotype
Locus 22q11.2 1q21.1 3q29 15q11-q13 15q13.3 16p11.2
Copy number change Loss Loss Loss Gaina Loss Gain
Typical size 3.0 Mb 1.4 Mb 1.6 Mb 6.0 Mb 1.5 Mb 0.6 Mb
Phenotypeb

MIM number 188400/192430 612474 609425 608636 612001 611913
Schizophrenia Yes Yes Yes Yes Yes Yes
Other psychiatric illnessesc Yes Yes Yesd Yesd Yes Yes
ASDs Yes Yesd Yes Yes Yes Yes
Developmental  
delay/mental retardation

Yes Yes Yes Yes Yes Yes

Seizures/epilepsy Yes Yes Noe Yes Yes Yes
Congenital anomaliesf Yes Yes Yes Noe Yes Yes
References See text46 64, 159, 163, 164,  

166, 168, 170, 172,  
173, 175, 249–254

64, 161, 162,  
166, 255–261

64, 127, 157,  
159, 160, 180,  
262–268

64, 159–161, 164,  
166, 173, 253,  
254, 269–278

64, 161, 164, 166,  
173, 182, 253, 
279–288

Notes: aOriginating on maternally derived chromosome; bthere are no pathognomonic signs or symptoms, and the penetrance of each microdeletion or microduplication 
with respect to each component phenotype is incomplete; cmajor depressive disorder, bipolar disorder, attention-deficit hyperactivity disorder/hyperactivity (unspecified), 
generalized anxiety disorder/anxiety (unspecified), aggression/temper outbursts, and/or major behavior problems (unspecified); drare reports only; eno compelling data as yet, 
but there remain few detailed reports of the phenotype in individuals with this structural variant; fcardiac anomalies, palatal anomalies (such as velopharyngeal insufficiency), 
skeletal abnormalities, and/or other major birth defects.
Abbreviations: ASDs, autism spectrum disorders; Mb, mega base pairs; MIM, Mendelian Inheritance in Man.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

5

Clinical genetics of schizophrenia

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


The Application of Clinical Genetics 2012:5

reality; the family history with respect to treatment response 

remains arguably the best predictor of treatment efficacy and 

side effects.147 Findings from thousands of targeted candidate 

gene association studies of schizophrenia using individual 

SNPs (and, occasionally, specific rare sequence variants), 

catalogued online in the SzGene database148 (www.szgene.

org) and the database of Genotypes and Phenotypes (www.

ncbi.nlm.nih.gov/gap), are either negative altogether or 

sporadically positive without replication and/or positive but 

with modest effect size. None are associated with a relative 

risk for schizophrenia anything approaching that of the ε4 

variant of the APOE gene relative risk for Alzheimer disease 

(Table 1).9 Taken together, the GWAS and targeted associa-

tion study results conclusively indicate there are no common 

genetic variants of large effect for schizophrenia.

Clinical relevance
Although linkage approaches and GWAS of common vari-

ants have yielded a collection of several dozen candidate 

genes, the individual effect sizes of associated variants 

are modest. Mutation testing in these genes has no role in 

the clinic at this time. Larger and larger sample sizes have 

ensured that variants of smaller and smaller effect may be 

detected. Importantly, a GWAS design lacks the power to 

detect rare sequence variants of large effect, and it is rare 

variants that may collectively play a major role in the etiol-

ogy of schizophrenia.124 While preliminary findings from 

the first whole exome sequencing studies in schizophrenia 

are solely in the realm of scientific discovery at this time, 

they provide evidence in support of a de novo mutational 

paradigm at the sequence level.149,150 In time, these studies 

may provide clinically relevant findings. However, the most 

notable evidence today for clinically important rare genetic 

variants in schizophrenia comes from studies of CNV – that 

is, structural genomics.

Rare copy number variation  
and emerging genetic subtypes
The discovery that there is substantial structural genomic 

variation in the human genome that contributes to both nor-

mal variation and to susceptibility for disease is one of the 

major scientific advances in recent years.5,64,151–155 Consistent 

with early reports of the association of schizophrenia with 

rare microscopically visible chromosomal abnormalities156 

and the established association with 22q11.2 deletions,43,66,67,69 

there is now substantial evidence for the importance of 

diverse rare structural variants in causing schizophrenia.3,5 

These structural variants are mainly comprised of specific 

examples of large (eg, .500 kb) CNV that are consistently 

enriched in schizophrenia samples, and absent or extremely 

uncommon (ie, “rare”) in control populations.

Associations with schizophrenia
Following the discovery of 22q11.2 deletions in schizophre-

nia, the next tier of large, rare CNV findings includes a set 

of emerging genetic subtypes of schizophrenia (Table 3).3 In 

contrast to 22q11.2DS, the epidemiology and basic genetic 

parameters such as penetrance and expression remain uncer-

tain for these genomic disorders, and there has been little to 

no study of the dosage-sensitive genes that may cause the 

associated phenotypes.64 Collectively, however, this second 

tier of CNV may be as or more common in schizophrenia 

than 22q11.2 deletions.3,5 Those variants identified to date 

include large (.500 kb), rare, recurring (flanked by seg-

mental duplications), hemizygous losses (deletions) and 

gains (duplications) at several loci (Table 3). All involve 

numerous genes and are consistently identified in large-

scale case-control CNV studies of schizophrenia, albeit 

each individually at apparently low prevalence. A recent 

review has suggested pooled odds ratios for schizophrenia 

of 8 or higher for four of these five genomic disorders,5 

and for 15q11-q13 duplications of maternal origin, an ini-

tial report based on four cases suggested an odds ratio for 

schizophrenia of 7.3.157 As with 22q11.2 deletions,3 these 

rare structural variants may be expressed as other psychiatric 

illnesses and/or developmental conditions, such as autism 

spectrum disorders (ASDs) and epilepsy (Table 3). On the 

other hand, the few studies of rare CNV in bipolar disorder 

indicate little overlap of these forms of schizophrenia with 

this major mood disorder.5,158 This would be consistent with 

the historical clinical separation of schizophrenia and bipo-

lar disorder based on presentation, course, and outcome, and 

the perhaps less “neurodevelopmental” nature of bipolar dis-

order. The variability of expression of 22q11.2 deletions and 

these other rare structural variants is shining new light on 

schizophrenia and on the genetically related spectrum of neu-

ropsychiatric disorders.3 There are also other potential sus-

ceptibility factors for schizophrenia of likely smaller effect 

(Table 4),5 such as hemizygous deletions at 15q11.2159–164 

and 17q12,162,165 and duplications at 1q21.1159,164,166 and 

16p13.11.160,167 These appear to be similarly or more vari-

able in their expression and less penetrant with respect to 

schizophrenia, or indeed any major phenotype, than 22q11.2 

deletions and the five emerging genetic subtypes.64,168–179 

All await more detailed study, especially of expression in 

adults.
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Table 4 outlines some of the many remaining issues 

with respect to clinical translation for possible genetic 

subtypes of schizophrenia. For instance, there are lim-

ited or inconsistent data on CNV inheritance status or 

comorbidity in most of the existing studies, and numer-

ous systematic methodological issues that complicate 

the assessment of prevalence and penetrance.3,180 Truly 

inclusive population-based prevalence samples of schizo-

phrenia (eg, community catchments) are diff icult to 

obtain, and many of the initial large case-control studies 

may have implicitly or explicitly excluded subjects with 

dysmorphic features, birth defects, learning difficulties, 

and/or known syndromes.3 Such systematic ascertainment 

biases in sample collection for large-scale case-control 

studies suggest that the prevalence of genomic disorders 

in schizophrenia may be underestimated. As an example, 

the expected prevalence of 22q11.2 deletions in schizo-

phrenia is about 1%,65,181 but a pooled estimated prevalence 

based on large consortium-based case-control studies is 

approximately 0.3%.5 There are also few data concerning 

fundamental issues such as the possible effects of sex, 

ethnicity (most studies to date have involved Caucasians), 

or sampling from genetic isolates. Nonetheless, this initial 

wave of genome-wide studies of CNV provides replicated 

associations of schizophrenia with specific rare variants. 

This supports a more general mutational mechanism 

involving large rare CNV that substantially elevate risk 

for schizophrenia, especially more developmental forms 

of the disease.3,182

Neurodevelopmental implications
Notably, many of the structural variants associated with 

schizophrenia implicate a dosage effect of neurodevelopmen-

tal genes involved with neuronal proliferation, migration, or 

synapse formation.2,182 Although there are few studies that 

have examined age at onset of schizophrenia,166 it may be that 

Other CNV

Conception
Premorbid developmental

signs and symptoms
Diagnosable illness

No detectable
expression

Other
expression

(eg, epilepsy, cardiac defects)

Related
psychiatric
disorders

Other
genomic
disorders

22q11.2DS
genetic subtype

Schizophrenia

Developmental
pathogenesis

± Limited
degenerative
pathogenesis

Gene
expression

•   Genetic background
•   Stochastic events
•   Environmental factors
•   ±Other genetic mutations or polymorphisms
    (de novo or transmitted; deleterious or protective)
•   ±Epigenetic mechanisms

22q11.2 deletion

Structural
variants

Sequence variants
in individual genes

Genetic
heterogeneity

Brain Development and Neuronal Plasticity

Interacting genetic and
non-genetic factors

Phenotypic endpoints
showing clinical heterogeneity

Brain development and neuronal plasticity

Figure 1 Neurodevelopmental model of schizophrenia, informed by new molecular genetic discoveries. One or more transmitted or de novo sequence or structural 
mutations, involving one or more genes, and acting individually or interactively, is proposed as the initial causal event. The pathway from genotype to phenotype is formulated 
as a dynamic process beginning at or before conception, and involving gene expression (including, but not limited to, protein activity) and interaction with normal brain 
development and neuronal plasticity mechanisms, and likely multiple other genetic and non-genetic factors. Different phenotypic endpoints are possible, and specific factors 
that dictate variable expression of ostensibly the same genetic loading are largely unknown and may be variant-specific. These resulting phenotypes could include clinically 
diagnosable schizophrenia, other psychiatric illnesses, other conditions including disorders of development, or no detectable expression. For example, a 22q11.2 deletion 
(yellow structural variant) may be expressed as schizophrenia and/or a related psychiatric disorder and/or another developmental disorder (yellow stars). 
Note: Adapted from AS Bassett, EW Chow, S O’Neill, LM Brzustowicz, Genetic insights into the neurodevelopmental hypothesis of schizophrenia, Schizophrenia Bulletin, 
2001, 27, 3, pp. 417–430, by permission of Oxford University Press.35

Abbreviation: CNV, copy number variation.
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rare CNV have a greater impact on such genes in individuals 

with younger onset (eg, childhood, age ,12 years) compared 

with onset at older ages.182 This would be consistent with 

a previously reported greater prevalence of chromosomal 

abnormalities and 22q11.2 deletions in childhood-onset 

schizophrenia.183 Several other lines of evidence, including 

brain imaging, premorbid clinical signs, and associations 

with minor dysmorphic features, have previously indicated 

that early changes in neurodevelopment may be involved in 

the pathogenesis of schizophrenia.2,35,184 The current genetic 

neurodevelopmental model of the etiopathogenesis of 

schizophrenia (Figure 1) has important consequences with 

respect to the potential for pre-symptomatic prediction and, 

ultimately, attenuation, delay, or prevention of psychosis, as 

well as present-day genetic counseling (outlined below).

Clinical relevance
Use of 22q11.2DS as the benchmark for clinical applicabil-

ity of molecular genetics in schizophrenia highlights the 

gaps that currently exist at the level of translating recent 

genetic results involving other large rare CNV to inform 

clinical management of patients (Table 4). Optimism about 

eventual direct benefits for patients and their families stems 

from the observations that effect sizes are generally large and 

that the spectrum of disorders involved in variable expres-

sion may tend to be multisystem and/or developmental in 

nature. This may be related to the multiple genes usually 

involved in large CNV, and in turn suggests that penetrance 

for any observable phenotype, as opposed to schizophrenia 

per se, will be fairly high. Meaningful prediction of some 

associated conditions would then be possible, creating 

opportunities for anticipatory care and improved medical 

management, as already exist for 22q11.2DS.3 Eventually, 

such genetic variants may also assist in diagnostic subtyp-

ing of schizophrenia.

Psychiatric disorders in general appear to have a poorly 

understood, nuanced connection to the various associated 

structural variants.153 Determinants of disease specificity 

may be other, perhaps more common, genetic, epigenetic, 

stochastic, and/or environmental modifiers. There has been 

little research as yet on such additional factors (Table 4).185 

Likely the research that will have the most clinical impact 

will involve unbiased sampling, family studies, and detailed 

study of the variable expression and natural history of 

individual variants. This will in turn facilitate specific care 

recommendations and prediction of comorbidities, and 

eventually prognosis and drug response (Table 4).3 To date, 

in order to gain sample sizes sufficient to detect signals in 

genetically heterogeneous populations, many researchers 

have sacrificed: (1) detailed phenotyping of the probands, (2) 

the ability to return to individual participants after analyses, 

and (3) the familial context necessary to assess de novo 

status and segregation patterns. These features represent, 

from a clinician’s point of view, unfortunate consequences 

of the study design of much of the large-scale genetics 

research conducted thus far in the twenty-first century. The 

longstanding practice of DNA sample anonymity, and other 

formal barriers between research participation and clinical 

care, is more and more at odds with a conflicting “duty to 

warn” in this new era of molecular medicine, where action-

able and clinically relevant information is increasingly likely 

to be obtained.186,187 Researchers, clinicians, and genetic 

counselors must begin to consider new strategies for when 

and how to routinely return to genotypic information and 

subsequently inform research participants and their clinicians 

of medically pertinent findings, keeping in mind that the 

interpretation of any particular variant is subject to change 

as new data accrues.

Lack of data on potential utility at this time, especially 

given limited resources, suggests that clinical genome-wide 

microarray testing is not yet justified for individuals with 

schizophrenia, except for the minority with syndromic and/or 

neurodevelopmental features such as mental retardation or 

multiple congenital anomalies.3,61,65 Similarly, calls for rou-

tine targeted clinical testing on the basis of a single study 

where penetrance and information about expression remain 

unknown (eg, 7q36.3 duplications of various sizes implicat-

ing the VIPR2 gene188) appear dangerously premature. The 

effectiveness of personal genomic information in tailoring 

interventions and improving health outcomes has not yet been 

convincingly demonstrated for emerging genetic subtypes 

of schizophrenia, nor for susceptibility factors that may be 

relevant for this complex disease. There are also limited to no 

data with respect to the ethical, legal, social, and economic 

implications of widespread personal genomic testing.189 As 

for other diseases like ASDs,61,190 careful consideration and 

professional consensus are needed to decide how to apply 

such genomic knowledge in clinical practice. Use of well-

recognized standards and guidelines for clinical genetic 

testing, such as the ACCE Model Process for Evaluating 

Genetic Tests (available from: www.cdc.gov/genomics/

gtesting/ACCE/), may be helpful in this regard. Their appli-

cation quickly exposes the many gaps in our fundamental 

knowledge base with respect to the clinical and analytic 

validity, and clinical utility, of genetic testing for most CNV 

in schizophrenia, particularly compared with other diseases 
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and genetic variants such as breast/ovarian cancer and BRCA1 

and BRCA2 mutations.191

Genetic risk and counseling issues
Genetic counseling for schizophrenia largely continues to 

focus on recurrence risk based on family history, but recent 

molecular genetic discoveries are now having a significant 

impact in specific cases. Post-onset (ie, phenotype first), the 

identification and disclosure of a well-established genetic 

variant (eg, a 22q11.2 deletion) that is strongly associated 

with a stigmatized illness like schizophrenia may be highly 

valued by the patient and family for its explanatory value.186,192 

Such variants also provide the potential to inform reproduc-

tive decision making, including the possible availability of 

prenatal detection.3 Even in the absence of such genetic vari-

ants, genetic counseling for schizophrenia may still represent 

an informative and therapeutic intervention. However, there 

are limited empiric data about potential benefits at present.

Table 4 Pathway to clinical utility for copy number variation and genomic disorders associated with schizophrenia (as of 2011)

Clinically relevant issues Established 
genetic subtype

Emerging 
genetic subtypes

Potential susceptibility  
factorsa

22q11.2 deletion 1q21.1 deletion 
3q29 deletion 
15q11-q13 duplication 
15q13.3 deletion 
16p11.2 duplication

Various, including: 
1q21.1 duplication 
15q11.2 deletion 
16p13.11 duplication 
17q12 deletion

Replication of association in unrelated  
  cohorts

● ● ●
Estimation of population incidence  
  and de novo vs inherited rates

○b c c

Estimation of prevalence within  
  general schizophrenia population

● ○d ○d

Estimation of penetrance for  
  schizophrenia (± for any feature)

● ○e ○e

Assessment of clinical expression  
  of the schizophrenia illness

●
Elucidation of neuropsychiatric  
  expression across the lifespan

●f ○g ○g

Elucidation of other expression  
  across the lifespan

●f ○g ○g

Search for genetic modifiers  
  of expression

○
Search for early clinical predictors  
  of psychosis

○
Evaluation of transmission patterns  
  and reproductive fitness

●
Development of clinical screening  
  criteria

●
Evaluation of prognosis and  
  long-term outcomes

○
Identification of opportunities  
  for improved management

○
Creation of clinical practice guidelines ●
Description of treatment response  
  (pharmacogenomics)

○h

Identification of specific treatment  
  targets

Notes: See text and Table 3 for references. aSeemingly less penetrant for schizophrenia, and/or with less evidence as yet for association, than the emerging genetic subtypes, 
see text for details; bpopulation incidence estimates based mainly on prevalence in infants with major congenital anomalies (eg, congenital heart disease289);59 cone non-
standard attempt to estimate the de novo rate using available case-control data;290 destimated from available case-control data;5 no studies of consecutive patients, nor any 
involving only a single centre or community catchment; eattempts to estimate penetrance did not use standard genetic methods, but instead available case-control data;64,291 

fadults with 22q11.2DS may have a diminished lifespan;75 gsome data, primarily derived from association studies of other developmental diseases. Little to no data regarding 
lifelong expression (ie, in adulthood), or expression in carriers not ascertained through a major phenotype; hclinical observation suggests that response to treatment is not 

substantially different in 22q11.2DS-schizophrenia,9,43 but there remain limited published data. ● = Much evidence or progress; ○ = some evidence or progress.
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Genomic disorders and genetic subtypes
Identifying genetic subtypes of schizophrenia offers new 

possibilities with respect to recurrence risk prediction. In 

the case of an individual with 22q11.2DS-schizophrenia and 

no other affected relatives (including the spouse or partner), 

for example, knowledge of the proband’s 22q11.2 deletion 

bifurcates the risk scenario. Transmission of the 22q11.2 

deletion would imply a recurrence risk for schizophrenia 

of approximately 20%–25% in each offspring, whereas a 

failure to transmit the deletion would theoretically decrease 

that risk to the standard population rate (∼1%). With no 

knowledge about the 22q11.2 deletion status, offspring 

would have an a priori averaged (though individually far 

less informative) recurrence risk for schizophrenia that 

is comparable to the standard empiric recurrence risk of 

13%.20,147 Also, identification of a de novo 22q11.2 deletion, 

or other putatively causal de novo CNV, in an individual with 

schizophrenia would be expected to lower the recurrence 

risk for siblings and nieces/nephews to nearly the popula-

tion rate.10 We note from experience that for schizophrenia 

the risk of recurrence in siblings and nieces/nephews is the 

dominant concern expressed in most genetic counseling 

sessions, given the significantly decreased reproductive fit-

ness associated with schizophrenia and concomitantly few 

direct offspring.57,193,194

As new diagnoses of specific genomic disorders and 

increasing evidence for their involvement in schizophrenia 

flood clinical practice, the need for more psychiatric genetic 

counseling research and training will be increasingly 

apparent. First, the association of specific large rare CNV 

with schizophrenia, as outlined above (Tables 3 and 4), effec-

tively means that incidental predictive “genetic testing” for 

schizophrenia is now a reality of clinical practice, because 

of the use of clinical microarrays as a first-tier diagnostic 

test for developmental delay/mental retardation, multiple 

congenital anomalies (even in utero), or ASD.10,61 Proposed 

benefits and disadvantages of predictive testing are discussed 

elsewhere.147,195,196 Genetic counselors, however, may be 

reluctant to disclose the possibility of psychotic illness to 

parents even in the context of well-established risk factors 

such as 22q11.2 deletions. Stigma,197 lack of knowledge about 

the illness and its treatment, and concerns about generating 

anxiety79 may play a role in deferral or non-disclosure,198 

despite some evidence that opportunities to anticipate and 

prepare for such an illness would have been valued by the 

parents.186 Second, genetic counseling of the adolescent and 

adult patients themselves may be complicated by cognitive 

impairments and/or psychiatric symptoms.147,199 There are 

surprisingly few empirical studies of the optimal content 

and process, and of the effectiveness and ensuing outcomes, 

of genetic counseling in these instances,199,200 even for 

well-recognized genomic disorders like 22q11.2DS57 or Wil-

liams syndrome.201

On the other hand, clinical microarrays also give results 

unrelated to current genomic disorders and about which there 

is much uncertainty with respect to interpretation. Today, 

proposed workflow algorithms for determining pathogenicity 

are likely to label most individual CNV identified, other than 

the relatively established like those underlying 22q11.2DS 

and other genomic disorders, as “variants of unknown sig-

nificance” or “VOUS.”153,202 This is of particular concern for 

smaller (atypical) rare CNV at loci that may be associated 

with emerging genetic subtypes of, or possible susceptibil-

ity factors for, schizophrenia. The nature of schizophrenia 

poses additional challenges. For example, parents of adult 

patients are less likely to be available for testing to determine 

de novo/inherited status, and patients may be poor historians 

with respect to medical and/or family history. Clinical inter-

pretation of many CNV findings will thus remain a major 

challenge for the foreseeable future.

Familial schizophrenia
Individuals from multiplex families arguably have the great-

est need for risk prediction and genetic counseling. However, 

empiric recurrence risk figures cannot be quantitatively modi-

fied to account for multiple affected relatives or a bilineal (ie, 

maternal and paternal) family history.147,203 The sole excep-

tions relate to the situations where both parents, or one parent 

and one sibling, are affected, for which some recurrence risk 

data are available.9,147,204 There is also no ability to adjust risk 

to take into account relatives with schizophrenia spectrum 

conditions and/or other neuropsychiatric diseases.147,203 Also, 

unlike in Huntington disease before mutation identifica-

tion,9,205,206 knowledge of linkage or association information 

where it exists for individual families cannot be meaningfully 

incorporated into illness prognostication, given the modest 

effect size of alleles identified.

As for any individual with schizophrenia, clinicians 

should be aware of features consistent with testable condi-

tions like 22q11.2DS. However, 22q11.2 deletions are less 

likely to be co-segregating with schizophrenia in multiply 

affected families, as they are associated with a strong nega-

tive selective pressure.57 Other large rare CNV associated 

with schizophrenia, for example, microduplications not 

associated with multisystem/syndromic features,157,180 may 

have less effect on reproductive fitness and thus a higher 
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likelihood of contributing to the burden of illness in multiply 

affected families, though this remains to be shown. There is 

growing empirical207 and theoretical208,209 evidence that, as for 

Parkinson disease,210 familial and “sporadic” schizophrenia 

may not be molecularly distinct entities. This underscores 

the need for a greater focus in future studies on both the 

inheritance status of genetic variants shown to be associated 

with schizophrenia, and on the extent of co-segregation of 

these variants with other neuropsychiatric illness and devel-

opmental conditions within families.

Idiopathic schizophrenia
Often overlooked in our collective enthusiasm for the promise 

of new genetic discoveries are the sobering realizations that 

the vast majority of cases of schizophrenia are “idiopathic” 

and that, as for most conditions,211 family history remains 

the cornerstone for individualized disease prediction. When 

the schizophrenia is not a syndromic form of the illness,9 of 

genetically testable origin,61 or originating in the context of a 

multiplex family, patients and their relatives are unlikely to be 

seen by a genetics professional unless presented with an unre-

lated concern.147 Much has been written and repeated over the 

past several decades about the optimal content and process of 

“multifactorial” genetic counseling,9,147,196,204,212–214 despite low 

rates of genetic counseling referrals215 and a continued scarcity 

of evidence in support of the desirability216 or effectiveness217 

of the genetic counseling intervention. To assess these key 

issues, and also prepare for the growing role of personalized 

molecular genetic information, there is an urgent need for 

data-driven reports of the genetic counseling of patients with 

idiopathic schizophrenia and their relatives.

Recent advances in schizophrenia genetics may still be 

germane to contemporary genetic counseling however, even 

in the absence of personalized application. For example, 

presenting schizophrenia to consultands as a neurodevelop-

mental disorder (Figure 1),35 with psychosis as a later stage 

manifestation often preceded by a prodromal period,2 has 

the potential to further modify false beliefs that upbringing, 

lifestyle decisions, or other “triggers”204 are either neces-

sary or sufficient to cause an illness that otherwise would 

not have developed. Proof that de novo mutations play an 

important causal role in some cases may help in dispelling a 

popular misconception218 that “genetic” and “inherited” are 

synonymous terms. Especially in the absence of an affected 

first- or second-degree ancestor, de novo mutation is a highly 

plausible theory of causation that may decrease a sense of 

family blame or shame. Finally, presenting evidence for 

genetic and epigenetic differences between monozygotic 

twins can help to explain discordant twin pairs without 

needing to resort to the unsupported assumption of powerful 

environmental factors in these rare cases.219–222 The role of 

independent environmental factors29 may be less, and that 

of gene-environment interactions25,223,224 and stochastic 

effects225,226 may be greater, than initially supposed.

As yet, the full “risk architecture” of schizophrenia, 

and the extent to which risk factors may be modifiable, is 

unknown.2 With respect to idiopathic schizophrenia, there 

is a forced reliance on family history and associated crude 

empiric recurrence risks, unmodified quantitatively by any 

other clinical or demographic variables.203 Few attempts 

have been made to update or validate these recurrence risks, 

despite the potential increase in the proportion of individu-

als with schizophrenia who partner with someone else with 

schizophrenia (ie, assortative mating),227 new conceptualiza-

tions of the genetically relevant schizophrenia spectrum,3 and 

increasing opportunities for molecular characterization. Ini-

tial attempts to generate a “risk score” from multiple variants 

with weak association with schizophrenia may be promising 

avenues for future research,131,228,229 but are not yet meaning-

ful in a clinical genetic counseling context. In addition, the 

factors of primary interest in genetic counseling (ie, those 

that increase individual recurrence risk substantially) do not 

necessarily have much effect on average risk, the primary 

focus of most retrospective studies of schizophrenia, and 

vice versa.230 Partial risk prediction as afforded by proven 

moderate to high penetrance variants such as 22q11.2 dele-

tions may be the best case scenario. There are likely to be 

fundamental limits on precise individualized genetic risk 

prediction due to the complex architecture of common traits, 

including common variants of very small effect, rare vari-

ants that cannot be fully enumerated, and complex epistatic 

interactions, as well as stochastic and possible environmental 

factors.231  The potential “added value” of genome-wide data 

(eg, derived from next-generation sequencing) in tailoring 

risk estimates would also need to be weighed against many 

other factors. These include the cost of, and expertise needed 

for, the molecular analysis (which is still prohibitive for 

widespread use, particularly in publicly funded health care 

systems) and the interpretation of results (as great or greater 

than molecular analytic costs, and less likely to decrease over 

time).231 Such barriers will impede widespread application of 

new genetic technologies in clinical practice more generally 

for the foreseeable future. Personal genome sequencing as 

a single universal genetic test that is cost-effective and of 

broadly applicable clinical utility remains a distant, though 

much wished for, prospect.232
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Conclusion
Schizophrenia is a complex neuropsychiatric disease with 

documented clinical and genetic heterogeneity, and little 

is known about the associated pathophysiology apart from 

strong evidence for neurodevelopmental origins. The eluci-

dation of specific causes and mechanisms for schizophrenia 

that is beginning to be derived from advances in molecular 

genetics and related research promises to help many families 

afflicted with this illness. However, much work needs to be 

done to move the recent surge of genetic research discover-

ies into the clinic. In particular, specific large rare structural 

variants (CNV) have been convincingly implicated in targeted 

studies over two decades (with respect to 22q11.2 deletions) 

and more recently in several large-scale genome-wide case-

control studies of schizophrenia. Clinical interpretation of 

most individual loci remains unclear as yet because the 

associated epidemiology and basic genetic parameters (such 

as penetrance and expression) are not yet well characterized. 

For now, 22q11.2 deletions represent the cutting-edge of 

clinically applicable molecular genetics in schizophrenia. 

New opportunities in risk prediction and genetic counseling 

are exciting avenues for future research.
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