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Background: Elemental selenium nanoparticles have emerged as a novel selenium source with 

the advantage of reduced risk of selenium toxicity. The present work investigated whether heat 

treatment affects the size, structure, and bioactivity of selenium nanoparticles.

Methods and results: After a one-hour incubation of solution containing 80 nm selenium 

particles in a 90°C water bath, the nanoparticles aggregated into larger 110 nm particles and 

nanorods (290  nm  ×  70  nm), leading to significantly reduced bioavailability and phase II 

enzyme induction in selenium-deficient mice. When a solution containing 40 nm selenium 

nanoparticles was treated under the same conditions, the nanoparticles aggregated into larger 

72 nm particles but did not transform into nanorods, demonstrating that the thermostability of 

selenium nanoparticles is size-dependent, smaller selenium nanoparticles being more resistant 

than larger selenium nanoparticles to transformation into nanorods during heat treatment.

Conclusion: The present results suggest that temperature and duration of the heat process, as 

well as the original nanoparticle size, should be carefully selected when a solution containing 

selenium nanoparticles is added to functional foods.
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Introduction
Selenium has multiple beneficial effects for human health, through regulation of at 

least 25 selenoproteins all containing selenocysteine, the 21st genetically encoded 

protein amino acid.1 Among these selenoproteins, the glutathione peroxidase and 

thioredoxin reductase families are well characterized. Glutathione peroxidases 

catalyze the reduction of hydrogen peroxide and a variety of organic hydroperoxides, 

including phospholipid hydroperoxide, to water and corresponding alcohols, using 

glutathione as the hydrogen donor.2 Thioredoxin reductases exert antioxidant actions 

through catalyzing the reduction of oxidized thioredoxin, using nicotinamide-adenine 

dinucleotide phosphate (NADPH) as the electron donor, or by directly reacting with 

hydrogen peroxide and hydroperoxides.3 Variations in selenoprotein genes have been 

found to be associated with increased cancer risk.4,5 Transgenic mice with reduced 

selenoprotein expression manifest precancerous changes.6,7 Human studies have shown 

reduced cancer risk and DNA damage after selenium supplementation among those 

with lower basal plasma selenium.8–10 These studies argue for a cancer-preventive 

effect of selenium at nutritional levels in selenium-deficient populations.

Like various other naturally occurring chemopreventive agents, such as sulforaphane, 

curcumin, resveratrol, and epigallocatechin gallate, selenium at supranutritional lev-

els (which are roughly 10–30-fold higher than nutritional levels) is also capable of 
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inducing phase II detoxification enzymes, such as glutathi-

one S-transferase and quinone reductase.11–15 The resulting 

enhanced detoxification many contribute to the powerful 

chemopreventive effects exhibited by supranutritional sele-

nium, which have been observed in approximately 100 small 

animal studies.8,16,17 Since supranutritional selenium levels 

are close to the toxic selenium levels in general,8,16,17 the 

safety margin and potential toxic effects of different selenium 

compounds are critical considerations when evaluating their 

potential for supplementation.

Bulk red elemental selenium particles at the redox state 

of zero found in some bacteria are biologically inert.18 It is 

known that elemental selenium atoms can be formed in the 

redox system of sodium selenite and glutathione at the molar 

ratio of 1:4.19 We have demonstrated that the presence of a 

protein such as bovine serum albumin in the redox system 

can control the aggregation of neonatal elemental selenium 

atoms, thus inhibiting the formation of bulky red elemental 

selenium particles, and consequently leading to the formation 

of red elemental selenium nanoparticles.20 Compared with 

several extensively studied selenium compounds, ie, sodium 

selenite, selenomethionine, and methylselenocysteine, sele-

nium nanoparticles show markedly lower acute toxicity and 

significantly lower short-term and subchronic toxicities, 

but all these selenium compounds have equivalent efficacy 

in their ability to increase selenoenzymes.20–25 Furthermore, 

selenium nanoparticles appear to be more efficient than 

sodium selenite and selenomethionine in increasing glu-

tathione S-transferase activity,21,25 and seem to be equally 

efficient in inducing apoptosis of certain types of cancer cells 

as methylseleninic acid, a metabolite of methylselenocysteine 

that is considered to be the most promising selenium com-

pound in cancer prevention.26 Selenium nanoparticles may 

enhance selenium permeation and retention in tumor tissues 

because their blood vessels contain enlarged pore sizes rang-

ing from 100 nm to 800 nm, in stark contrast with the pore 

sizes of 2 nm to 6 nm in the vessels of healthy tissues.27 In 

addition to cancer prevention, selenium nanoparticles also 

show potential as antimicrobial agents.28

Selenium nanoparticles have emerged as a novel selenium 

source with the obvious advantage of reduced risk of sele-

nium toxicity.20–25,29,30 Accordingly, a selenium nanoparticle 

solution may be added to functional foods, the final products 

of which may be subjected to heat during processing. An 

important feature of nanoparticles is their high surface to 

volume ratio. As the nanosize decreases, surface atomic-

ity, surface energy, and surface binding energy all increase 

quickly; as a result, the surface atoms become more prone to 

diffusion, with an inherent tendency to combine with other 

atoms for energy dissipation. Hence, the thermodynamic 

properties and stability of nanoparticles should be affected 

by particle size and heat treatment.31–33 The thermal stability 

of selenium nanoparticles as a type of nanoscale biomaterial 

remains unknown. Herein, we investigated the impact of heat 

treatment on the size, structure, and bioactivity of selenium 

nanoparticles. We found that heat treatment causes selenium 

nanoparticles to aggregate into larger sizes and nanorods, 

leading to significantly reduced bioactivity in mice. The 

thermostability of selenium nanoparticles is size-dependent, 

smaller selenium nanoparticles being more resistant than 

larger selenium nanoparticles to transformation into nanorods 

during heat treatment.

Materials and methods
Chemicals
NADPH, dithio-bis-nitrobenzoic acid, glutathione, 

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES), insulin, thioredoxin (Escherichia coli), guanidine 

hydrochloride, bovine serum albumin, 1-chloro-2,4-dini-

trobenzene, and 2,3-diaminonaphthalene were all purchased 

from Sigma (St Louis, MO). Other chemicals, including 

hexamethylene, hydroxylamine hydrochloride, nitric acid, 

and perchloric acid, were of the highest grade available.

Solution-based preparations of selenium 
nanoparticles of two sizes
One mL of 25 mM sodium selenite was mixed with 4 mL 

25 mM of glutathione containing either 2 mg or 20 mg bovine 

serum albumin. The mixture pH was adjusted to 7.2 with 

1.0 M sodium hydroxide to generate red elemental selenium 

and oxidized glutathione.20 The red solution was dialyzed 

for 96 hours at 4°C against double distilled water which was 

replaced every 24 hours to separate oxidized glutathione from 

the selenium nanoparticles. The final solution containing sele-

nium nanoparticles and bovine serum albumin was stored in a 

4°C refrigerator, in which the selenium nanoparticle solution 

prepared using the low concentration of bovine serum albumin 

was stable for several months, and the selenium nanoparticle 

solution prepared by using the high concentration of bovine 

serum albumin was stable for several years.

Nanoparticle observation
A droplet of selenium nanoparticle solution was dropped 

onto copper grids and allowed to dry in air before observation 

under a high resolution transmission electron microscope. 

The average sizes of selenium nanoparticles prepared using 
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the low and high concentrations of bovine serum albumin 

were 80 nm (45 nm ~ 95 nm) and 40 nm (20 nm ~ 55 nm), 

respectively.

Animals and treatments
Selenium-deficient male Kunming mice (21–22  g) and 

their selenium-deficient diet were all purchased from the 

animal center in Anhui Medical University. The mice were 

housed in plastic cages in a room with controlled tempera-

ture (22°C ± 1°C) and humidity (50% ± 10%) on a 12-hour 

light/dark cycle. The mice were allowed to obtain food and 

water ad libitum. All experiments involving the mice were 

performed in compliance with the ethical guidelines issued 

by the Anhui Agriculture University.

Nutritional level of selenium
In the bioavailability experiment, 15 mice were divided into 

three groups (n =  5): the control group was administered 

oral saline; the other two groups were orally given selenium 

nanoparticles, either unheated or heated, at a selenium dose 

of 100 µg/kg body weight for 7 days.

Supranutritional level of selenium
In the supranutritional dose experiment, 24 mice were divided 

into three groups (n = 8): the control group was administered 

oral saline; the other two groups were administered oral sele-

nium nanoparticles, either unheated or heated, at a selenium 

dose of 2000 µg/kg body weight for 7 days.

Biomarkers
At the end of each set of experiments, the mice were sac-

rificed by cervical dislocation. Peripheral blood from the 

ophthalmic veins was collected into tubes to obtain blood and 

plasma after centrifugation. The livers were excised immedi-

ately and rinsed in ice-cold saline. The samples were stored 

at -30°C before assay. Liver tissues were homogenized in 

ice-cold 150  mM and pH 7.2 phosphate-buffered saline 

containing 1 mM EDTA-Na
2
 (1:9, w/v), and the homogenate 

was then centrifuged at 15,000 g and 4°C for 15 minutes. The 

resulting supernatants were used for determination of soluble 

protein levels with bovine serum albumin as standard,34 and 

for determination of glutathione peroxidase, thioredoxin 

reductase, and glutathione S-transferase activity.

Glutathione peroxidase activity assay
Glutathione peroxidase was assayed using the method of 

Rotruck et al.35 Glutathione peroxidase activity was expressed 

as units/mg protein or units/mL plasma; one unit of the 

activity was calculated in terms of 1 µmol of glutathione 

oxidized per minute.

Glutathione S-transferase activity assay
Glutathione S-transferase activity was chemically determined 

at 340 nm using 1-chloro-2,4-dinitrobenzene as the substrate. 

Glutathione S-transferase activity was expressed as units/

minute/mg protein; one unit of activity was calculated in 

terms of nmol of 1-chloro-2,4-dinitrobenzene changed per 

minute.36

Thioredoxin reductase activity assay
Thioredoxin reductase activity was measured based on 

the method of Holmgren and Björnstedt37 with some 

modifications. A stock mixture was composed of HEPES 

buffer (1.0 M, pH 7.6), EDTA (0.2 M), NADPH (40 mg/mL), 

and bovine insulin (10  mg/mL) in a volume ratio of 

5:1:1:12.5. In a 96-well plate, 3 µL thioredoxin (2 mg/mL), 

7 µL stock mixture, 40 µL HEPES (50 mM, pH 7.6), and 

20 µL liver homogenate (with 20–30 µg protein) were added 

to each well. The enzymatic reaction was maintained at 37°C 

for 20 minutes, and then terminated by adding 240 µL stop 

solution containing 0.2 mg/mL dithio-bis-nitrobenzoic acid, 

6 M guanidine hydrochloride, and 0.2 M Tris at pH 8.0. Each 

sample contained a nonenzymatic reaction as the control. 

The nonenzymatic reaction included all components except 

thioredoxin, which was replaced by the same volume of 

saline. The 96-well plates were read at 412 nm. The absor-

bance of the control was subtracted from the absorbance of 

the sample. A background control, which was the subtraction 

of absorbance with and without thioredoxin in the absence of 

liver homogenate, was further subtracted from all samples. 

Thioredoxin reductase activity unit was defined as A412 

change × 1000 per minute and thioredoxin reductase activity 

was expressed as U/mg protein.38

Selenium assay
Selenium was assayed by a fluorescence method.39 Samples 

were digested using the mixture of nitric acid and perchloric 

acid at the ratio of 3:1 (v/v), then reacted with 2,3-diaminon-

aphthalene at 60°C for 30 minutes, then finally extracted with 

hexamethylene. The fluorescence intensity excited at 378 nm 

and recorded at 512 nm was used for calculating selenium 

concentration with sodium selenite as a standard.

Statistical analysis
Data are presented as the mean ± standard error of the mean. 

The differences between groups were examined by one-way 
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analysis of variance post hoc Tukey test, using GraphPad 

Software (Prism version 5, San Diego, CA). P , 0.05 was 

considered to be statistically significant.

Results
Impact of heat treatment
Size and structure of 80 nm selenium nanoparticles
A sealed glass tube with 10  mL of the 80  nm selenium 

nanoparticle solution was incubated in a 1000 mL water bath 

at 90°C for one hour, and then the hot glass tube was cooled 

in an ice bath to room temperature. Under inspection by high 

resolution transmission electron microscopy, it was found 

that the selenium nanoparticles changed substantially due to 

heat treatment. As shown in Figure 1A, selenium particles in 

the precursor unheated selenium nanoparticle solution were 

spherical nanoparticles with an average size of 80 nm ranging 

from 45 nm to 95 nm, whereas in the heated selenium nanopar-

ticle solution (Figure 1B), the precursor selenium nanoparticles 

were replaced by both enlarged nanoparticles with an average 

size of 110 nm ranging from 70 nm to 120 nm and nanorods, 

the average dimension of which was 290 nm × 70 nm.

Bioavailability of 80 nm selenium nanoparticles
The primary purpose of this study was to investigate the 

impact of heat treatment on the bioactivity of selenium 

nanoparticles. One of the most fundamental properties 

of selenium compounds is bioavailability in terms of 

increasing selenoenzyme activity and tissue selenium 

levels. We have shown that oral administration of selenium 

nanoparticles to selenium-deficient mice at doses of 35, 70, 

and 1000 µg/kg for one week dose-dependently increased 

selenoenzyme activity and tissue selenium levels.21 Thus, 

in the present study, we used selenium 100 µg/kg, which 

is a typical selenium nutritional dose, for one-week oral 

supplementation. As compared with the control (Figure 2A), 

the unheated 80  nm selenium nanoparticles significantly 

(P , 0.001) increased hepatic glutathione peroxidase activity 

by 5.7-fold, whereas the heated selenium nanoparticles 

significantly increased the activity (P , 0.01), but only by 

3.0-fold; accordingly, a significant difference (P  ,  0.01) 

existed between the two selenium nanoparticle groups. As 

compared with the control (Figure 2B), the unheated 80 nm 

selenium nanoparticles significantly (P , 0.01) increased 

hepatic thioredoxin reductase activity by 1.9-fold. In contrast, 

the heated selenium nanoparticles did not significantly alter 

the activity; consequently, a significant difference (P , 0.01) 

existed between the two selenium nanoparticle groups. As 

compared with the control (Figure 2C), the unheated 80 nm 

selenium nanoparticles significantly (P , 0.001) increased 

hepatic selenium by 2.0-fold, whereas the heated selenium 

nanoparticles significantly (P , 0.05) increased the selenium 

level, but only by 1.5-fold; accordingly, a significant differ-

ence (P ,  0.05) existed between the two selenium nano-

particle groups. As compared with the control (Figure 2D), 

the unheated 80  nm selenium nanoparticles significantly 

(P , 0.001) increased plasma glutathione peroxidase activ-

ity by 2.3-fold, whereas the heated selenium nanoparticles 

significantly (P , 0.01) increased the activity, but only by 

1.7-fold; accordingly, a significant difference (P  ,  0.05) 

existed between the two selenium nanoparticle groups. 

Coincidentally, plasma selenium levels almost completely 

mirrored the alterations found in plasma glutathione per-

oxidase (Figure 2D). These results clearly demonstrate that 

the heat treatment significantly reduced bioavailability of the 

80 nm selenium nanoparticles.

Glutathione S-transferase induction  
and selenium retention of 80 nm nanoparticles  
at a supranutritional level
Another important bioactivity of selenium, in addition to 

bioavailability, is its impact on phase II enzymes. We have 

shown that oral administration of selenium nanoparticles to 

selenium-deficient mice at supranutritional selenium doses of 

500 and 2000 µg/kg for one week dose-dependently increased 

glutathione S-transferase activity and tissue selenium levels.40 

Thus, in the present study, we used selenium 2000 µg/kg 

for one week as oral supplementation. As compared with 

the control (Figure  3A), the unheated 80  nm selenium 

nanoparticles significantly (P  ,  0.001) increased hepatic 

glutathione S-transferase activity by 1.6-fold. In contrast, 

heated 80 nm selenium nanoparticles did not alter the activity; 

consequently, a significant difference (P , 0.001) existed 

between the two selenium nanoparticle groups. As compared 

A B 

170 nm170 nm

Figure 1 Heat treatment changes the size and the structure of 80 nm selenium 
nanoparticles. (A) Unheated precursor selenium nanoparticles. (B) Precursor 
selenium nanoparticle solution after heating at 90°C for one hour.
Note: The bar in A and B represents 170 nm.
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with the control (Figure 3B), the unheated 80 nm selenium 

nanoparticles significantly (P  ,  0.001) increased hepatic 

selenium by 8.9-fold, whereas the heated selenium nanopar-

ticles significantly (P , 0.001) increased the selenium levels, 

but only by 6.6-fold; accordingly, a significant difference 

(P , 0.001) existed between the two selenium nanoparticle 

groups. As compared with the control (Figure 3C), both the 

unheated and the heated selenium nanoparticles caused a 

highly significant (all P , 0.001) massive increase in hepatic 

glutathione peroxidase activity, by 38.8-fold and 34.2-fold, 

respectively. However, as expected, no significant differences 

were found between the two selenium nanoparticle groups, 

because selenoenzymes, including hepatic glutathione per-

oxidase, can be fully saturated at the upper end of nutritional 

selenium levels. Although the heated 80  nm selenium 

nanoparticles showed an approximately 50% reduced effi-

cacy in increasing hepatic glutathione peroxidase activity at 

100 µg selenium/kg as compared with the unheated mate-

rial (Figure 2A), in this case a 20-fold increase of selenium 

amounts should fully compensate for this defect.

Size and structure of 40 nm selenium nanoparticles
The 40 nm selenium nanoparticles were treated with heat 

under the same conditions and for the same duration as the 

80  nm selenium nanoparticles. Under inspection by high 

resolution transmission electron microscopy, as shown in 

Figure 4A, the selenium particles in the unheated selenium 

nanoparticle solution were spherical, with an average size of  

0

200

400

600

800

1000

L
iv

er
 G

P
x 

(U
/m

g
 p

ro
te

in
)

***

**

A

0

20

40

60

80

100

L
iv

er
 T

rx
R

 (
U

/m
g

 p
ro

te
in

)

**
B

0.00

0.10

0.20

0.30

0.40

0.50

0.60

L
iv

er
 s

el
en

iu
m

 (
µg

/g
 li

ve
r)

***

*

C

0

500

1000

1500

2000

2500

3000

3500

P
la

sm
a 

G
P

x 
 (

U
/m

L
)

P < 0.05

P < 0.05

P < 0.01
P < 0.01

P < 0.05

***

**

D

0.04

0.08

0.12

0.16

0.20

0.24

B
lo

o
d 

se
le

ni
um

 (
µg

/m
L

)

***

***

E

Control HeatedUnheated Control HeatedUnheated

Control HeatedUnheated Control HeatedUnheated

Control HeatedUnheated

Figure 2 Heat treatment reduces bioavailability of 80 nm selenium nanoparticles at a nutritional level. Selenium-deficient mice were orally administered with saline as a 
control, or 80 nm selenium nanoparticles, either unheated or heated, at a selenium dose of 100 µg/kg for 7 days.
Notes Compared with the controls, *P , 0.05; **P , 0.01; ***P , 0.001.
Abbreviations: GPx, glutathione peroxidase; TxR, thioredoxin reductase.
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40 nm, ranging from 20 nm to 55 nm, whereas in the heated 

selenium nanoparticle solution (Figure 4B), enlarged nanopar-

ticles with an average size of 70 nm were observed. In stark 

contrast with heat-activated evolution of the 80 nm selenium 

nanoparticles, in this case nanorods were not observed. 

Strikingly, the enlarged selenium nanoparticles had a 

surprisingly narrow size distribution ranging from 68 nm to 

72 nm, highly faceted morphology, and uniform edge-to-edge 

distances between particles relative to the untreated precur-

sor nanoparticles (Figure 4A and B). These contrasts could 

be more clearly seen from the photos with enhanced resolu-

tion (Figure 4C for the unheated selenium nanoparticles and 

Figure 4D for the heated selenium nanoparticles).

Discussion
Elemental selenium nanoparticles can be formed natu-

rally in certain bacteria,41–43 and can be prepared through 

inorganic selenium reduction in the presence of protein or 

polysaccharide.20,44–46 Various sizes of selenium nanoparticles 

can be obtained by changing the concentration of a protein 

such as bovine serum albumin.47,48 Generally, the higher the 

bovine serum albumin concentration, the smaller the selenium 

nanoparticle size.47,48 Accordingly, in the present study, 40 nm 

and 80 nm selenium nanoparticles were prepared by adding 

low or high concentrations of bovine serum albumin to the 

redox system of sodium selenite and glutathione.

Nanoparticles have an inherent tendency to grow into 

larger particles. In general, a smaller nanoparticle with a 

lower melting point grows uniformly, until it becomes stable 

at a specific heat treatment temperature through thermody-

namic control.32,33 Maye et  al and Maye and Zhong, have 

investigated the effect of heat treatment on the manipulation 

of the size and shape of alkanethiol-protected gold nanopar-

ticles in solution.32,33 The precursor gold nanoparticles they 

used showed an average core size of 2.0 nm with a wide 

size distribution; in addition, the particle shapes were not 

uniform. After heat treatment, the sizes of gold nanoparticles 

increased, and, in sharp contrast with the morphological 

features of the precursor nanoparticles, the enlarged nano-

particles evolved from heat treatment showed three striking 

features, ie, a much narrower size distribution, highly faceted 

outlines, and uniform spacing between the nanoparticles.32,33 

Interestingly, in the present study, we observed generally 

similar evolutions using the 40 nm selenium nanoparticle 

solution. After the 40 nm selenium nanoparticle solution was 

subjected to 1 hour of heat treatment at 90°C, the enlarged 

nanoparticles displayed obvious alterations of shape and 

homogeneity in comparison with the precursor nanoparticles 

(Figure 4A and B). Three typical morphological features were 

evident: first, a much narrower size distribution; second, the 

predominance of faceted particles with pentagon or hexagon 

outlines exhibiting three-dimensional profiles; and third, 

uniform edge-to-edge distances.
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However, the evolution of the 80 nm selenium nano-

particles on heat treatment was radical, with both faceted 

nanoparticles and nanorods being formed after 1 hour of 

heat treatment at 90°C (Figure 1B). Faceted nanoparticles 

may evolve, as with the 40 nm selenium nanoparticles, from 

the smaller 45 nm nanoparticles that are still present in the 

90  nm selenium nanoparticles (Figure  1A), whereas the 

nanorods may evolve from the larger 95 nm nanoparticles 

in the 90 nm selenium nanoparticles (Figure 1A). Because 

bovine serum albumin concentration in the 80 nm selenium 

nanoparticles is 10-fold lower than that in the 40 nm sele-

nium nanoparticles, it may be argued that the extra protein 

may prevent the formation of nanorods. However, this 

possibility was ruled out, because when we added bovine 

serum albumin to preformed 80  nm selenium nanopar-

ticles at the same bovine serum albumin concentration as 

that in the 40 nm selenium nanoparticles, we found heat 

treatment at 90°C still resulted in formation of nanorods. 

Thus, the thermally-activated size and structure evolutions 

are considered to be dependent on precursor particle size, 

with smaller selenium nanoparticles being more resistant 

than larger selenium nanoparticles to transformation into 

nanorods during heat treatment.

In the present study, we only investigated the impact of 

heat treatment on bioactivity of the 80 nm selenium nanopar-

ticles, without addressing the issue using the 40 nm selenium 

nanoparticles. This selection was based on two reasons. First, 

the bioactivity of nanorods generated from the 80 nm selenium 

nanoparticles is completely unknown. Second, we have eluci-

dated size effects of selenium nanoparticles in vitro, in a cell 

model, and in vivo, using different sizes ranging from 10 nm 

to 200 nm,40,47,48 and the sizes of both the precursor 44 nm sele-

nium nanoparticles and the heated material fall into this range. 

Our previous studies have demonstrated that different sizes of 

170 nm 170 nm

80 nm80 nm

A

C 

B  

D

Figure 4 Heat treatment changes the morphology of 40 nm selenium nanoparticles. (A) and (C) Unheated precursor selenium nanoparticles. (B) and (D) Precursor selenium 
nanoparticle solution after heating at 90°C for one hour.
Note: The bar in A and B represents 170 nm, and in C and D represents 80 nm.
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selenium nanoparticles have no differences in bioavailability 

in both a cell model and in an in vivo model,47 but selenium 

nanoparticles of small size gain advantages in their ability to 

scavenge multiple free radical species in vitro,48 and to enhance 

selenium accumulation and glutathione S-transferase activity 

in vivo,40 as summarized in Tables 1 and 2. Based on these 

studies, it can be inferred that transformation into nanorods is 

responsible for the observed reduction in bioavailability, and 

that heat treatment to the 44 nm selenium nanoparticles would 

reduce its bioactivity, other than bioavailability.

As a novel supplemental agent with a reduced risk of sele-

nium toxicity, selenium nanoparticle solution may be added 

to functional foods, for which the final products could require 

heat processing. The present results suggest that temperature 

and duration of heat processing, as well as original nano-

particle size, should be carefully selected when a selenium 

nanoparticle solution is added to functional foods, in order to 

conserve fully the bioactivity of the selenium nanoparticles. 

A selenium nanoparticle solution after heat treatment can be 

monitored for alterations in the size and structure of the nano-

particles, in addition to changes in nutritional parameters/

biomarkers. Normally, selenium is supplemented in food at 

very low levels; it is not possible to observe selenium nano-

particles by transmission electron microscopy in foods at such 

low concentrations. Thus, the results obtained from studies 

of selenium nanoparticle solution as a surrogate for actual 

foods not only indicate alterations in nutritional parameters, 

but also link the alterations to changes in nanoscale size and 

structure. In addition, different foods would be processed 

by various types of heat treatment; we cannot address all 

the possible specific food processes in the present study. 

However, the results obtained using the selenium nanopar-

ticle solution as a model can justify the general guideline 

that caution should be used when selenium nanoparticles are 

added to foods which need to be heated during processing. 

Based on the results of the present study, in regard to food 

that has been supplemented with selenium nanoparticles, 

the best general method for drying would be lyophilization. 

Given that the thermostability of selenium nanoparticles is 

size-dependent, smaller selenium nanoparticles being more 

resistant than larger selenium nanoparticles to transforma-

tion into nanorods during heat treatment, there is also the 

strong implication that the use of smaller size selenium 

nanoparticles in foods is essential if extensive heat exposure 

is unavoidable. On the other hand, some food heat processes 

involve lower temperature conditions than those required to 

affect selenium nanoparticle structure and bioavailability. 

For example, to prepare selenium capsules, 1 mL selenium 

nanoparticle solution (400 µg/mL) is added to 2 g starch, 

and this mixture could be dried at 60°C for 40  minutes 

with an airblast. Milk sterilization involves heat treatment 

at 62°C for 30  minutes. To mimic these processes, we 

observed the impact of heat treatment at 60°C for 40 minutes 

on a 31  nm selenium nanoparticle solution. As shown in 

Supplementary Figure 1, such a moderate heat process did 

not alter the size of the selenium nanoparticles. Thus, as 

Table 1 Comparison of bioactivity of selenium nanoparticles 
with different sizes in vitro and in vivo at nutritional levels (small 
5–15 nm, medium 20–60 nm, large 80–200 nm)

In vitro and in vivo models Size effects Reference

In vitro models by ESR spectra detection
Scavenging AAPH-generated radical S . M . L 48
Scavenging DPPH radical S . M . L 48
Scavenging superoxide radical S . M = L 48
Scavenging singlet oxygen M . L 48

Attenuating Cu2+-induced  
DNA damage

S . M . L 48

HepG2 cells
Increasing GPx activity S = M = L 47
Increasing PHGPx activity S = M = L 47
Increasing TrxR activity S = M = L 47

Selenium-deficient mice
Increasing hepatic selenium S = M = L 47
Increasing hepatic GPx activity S = M = L 47
Increasing hepatic TrxR activity S = M = L 47

Abbreviations: ESR, electron spin resonance; AAPH, 2,2′-azo-bis-(2-
amidinopropane) hydrochloride; DPPH, 1,1-diphenyl-2-picryhydrazyl; GPx, 
glutathione peroxidase; PHGPx, phospholipid hydroperoxide glutathione peroxidase; 
TrxR, thioredoxin reductase; S, small; M, medium; L, large.

Table 2 Comparison of bioactivity of 36 nm and 90 nm selenium 
nanoparticles at supranutritional levels

Oral selenium  
nanoparticle doses in mice

Size effects in term  
of increase

Reference

0.5 mg/kg for 7 days Blood selenium  
36 nm . 90 nm

40

0.5 mg/kg for 7 days Hepatic GST activity  
36 nm . 90 nm

40

2 mg/kg for 7 days Blood selenium  
36 nm . 90 nm

40

2 mg/kg for 7 days Hepatic selenium  
36 nm . 90 nm

40

2 mg/kg for 7 days Hepatic GST activity  
36 nm . 90 nm

40

5 or 10 mg/kg once,  
monitored at 24 or 72 hours

Blood selenium  
36 nm . 90 nm

40

5 or 10 mg/kg once,  
monitored at 24 or 72 hours

Hepatic selenium  
36 nm . 90 nm

40

5 or 10 mg/kg once,  
monitored at 72 hours

Hepatic GST activity  
36 nm . 90 nm

40

Abbreviation: GST, glutathione.
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compared with the use of inorganic selenium salts (where 

heat is not a consideration), the potential disadvantages of 

using selenium nanoparticles when a heat process is required 

can potentially be overcome, provided nanoscale size and 

heat treatment conditions are carefully selected.

Conclusion
Heat treatment has a significant impact on the size, structure, 

and bioactivity of selenium nanoparticles. In general, the 

sizes of selenium nanoparticles increase and bioactivities 

decrease when a selenium nanoparticle solution is subjected 

to heat treatment. However, the thermally-activated size 

and structure evolution are substantially dependent upon 

precursor particle size, with smaller selenium nanoparticles 

being more resistant than larger selenium nanoparticles to 

transformation into nanorods during heat treatment.
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Figure S1 Impact of heat treatment on size and structure of 31 nm selenium nanoparticles. (A) Unheated precursor selenium nanoparticles. (B) Precursor selenium 
nanoparticle solution after heating at 60°C for 40 minutes. (C) Size before and after heat treatment.
Note: Data are presented as the mean ± standard deviation (n = 70).
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