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Abstract: Highly stable dispersions of nanosized silver particles were synthesized using a 

straightforward, cost-effective, and ecofriendly method. Nontoxic glucose was utilized as a 

reducing agent and poly-α, γ, L-glutamic acid (PGA), a naturally occurring anionic polymer, 

was used as a capping agent to protect the silver nanoparticles from agglomeration and 

render them biocompatible. Use of ammonia during synthesis was avoided. Our study clearly 

demonstrates how the concentration of the capping agent plays a major role in determining 

the dimensions, morphology, and stability, as well as toxicity of a silver colloidal solution. 

Hence, proper optimization is necessary to develop silver colloids of narrow size distribution. 

The samples were characterized by Fourier transform infrared spectroscopy, ultraviolet-visible 

spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, 

and zeta potential measurement. MTT assay results indicated good biocompatibility of the PGA-

capped silver nanoparticles. Formation of intracellular reactive oxygen species was measured 

spectrophotometrically using 2,7-dichlorofluorescein diacetate as a fluorescent probe, and it 

was shown that the PGA-capped silver nanoparticles did not induce intracellular formation of 

reactive oxygen species.

Keywords: silver nanoparticles, poly-α, γ, L-glutamic, green synthesis, morphology, 

cytotoxicity

Introduction
In recent years, nanoscience has increased and expanded from a multidisciplinary 

research concept to a primary scientific frontier. Rapid technological advancements 

have led to the expansion of nanoscale device components, advanced sensors, and 

novel biomimetic materials.1,2 Among the noble metals, silver nanoparticles have 

received considerable attention due to their attractive physicochemical properties, such 

as magnetic and optical polarizability, electrical conductivity, catalysis, antimicrobial 

behavior, DNA sequencing, surface-enhanced Raman scattering, and thermal 

properties.3,4 Silver nanoparticles have been found to have strong antimicrobial activity, 

and are used in wound dressings, contraceptive devices, surgical instruments, bone 

prostheses, and as coating for ocular lenses to prevent microbial activity.2,5,6 However, 

the potentially negative impacts of nanomaterials are sometimes overlooked during 

the discovery phase of research. The implementation of green chemistry principles 

can enhance nanoscience by maximizing safety and efficiency, while minimizing the 

environmental and societal impacts of these materials.1

The general principle of synthesis of metal nanoparticles from a salt solution is 

based on using a reducing agent in the presence of a capping agent. Commonly used 
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reductants include borohydride, citrate, ascorbate, elemental 

hydrogen, tetrabutylammonium borohydride, organometallic 

compounds, dimethylformamide, potassium bitartrate, 

alcohols, and polyols.7–13 Capping agents prevent nano

particles from agglomerating, as well as modifying 

their morphology. Polyvinyl pyrrolidone, polyvinyl 

alcohol, gelatin, carboxymethylcellulose, polyacrylnitrile, 

starch, gelatin, heparin, chitosan, bovine serum albumin, 

polysaccharides, and oleylamine are the most often used 

capping agents for silver nanoparticles.14–18 A problem 

which can occur with the particle stabilizer is the difficulty 

of removing it from the system, and this is addressed in 

the literature.19 The remains of the stabilizer often modify 

the surface characteristics of the particles, thus affecting 

biocompatibility and distribution throughout the body.19 

Therefore, it is necessary to determine accurately the 

concentration of stabilizers for any given method.

Herein we demonstrate, for the first time, a simple and 

quick method of synthesis of uniform and stable silver 

nanoparticles, using nontoxic glucose as the reduction 

agent, poly-α, γ, L-glutamic acid (PGA) as the capping 

agent, and without using ammonia. A number of researchers 

have successfully synthesized silver nanoparticles, but use 

of this green, one-pot, four-component method overcomes 

some of the disadvantages previously reported using other 

methods, such as impurities, solvent toxicity, difficulty in 

controlling particle size and distribution, economic viability, 

and problems in preparation that limit their commercialization 

potential.12,15,18,20 The major advantage of this method of 

synthesis of silver nanoparticles, relative to other methods, 

is most certainly use of PGA as the capping agent. PGA is 

a nontoxic, hydrophilic, and biodegradable polymer utilized 

to enhance the stability and cytocompatibility of silver 

nanoparticles. PGA is a naturally occurring, multifunctional, 

biodegradable biopolymer of L-glutamic acid produced by 

fermentation with Bacillus subtilis,21 and has been developed 

rapidly in the last two decades.21 Incorporation of PGA 

into an antigenic formulation, influenza vaccine, and gene 

transfection carrier has led to improved pharmaceutical 

efficacy.21

The use of PGA as a capping agent has already been 

reported by another group,22 but with use of ammonia in the 

synthesis, which was avoided using our method. Ammonia 

is a very corrosive and hazardous chemical, so is avoided 

in a number of other reported synthesis procedures, with 

use of alternative chemicals as reducing and/or capping 

agents, eg, sodium borohydride, dimethyl formamide, and 

cetyltrimethylammonium bromide.7–9,13,23,24 However, there 

is a general concern about these products because of their 

potential environmental and biological risks. These studies 

have also contributed to our understanding of the role played 

by a capping agent in size, morphology, and stability control. 

To address this issue, we have done a series of experiments 

under identical conditions (ie, precursor, temperature, reduc-

tant, concentrations of reagents, and reaction time) except 

for the use of different concentrations of capping agent. 

We found that particles of varying shape, size, uniformity, 

agglomeration, and stability could be produced by adding 

different amounts of capping agent.

The environmental and health impact of nanomaterials is 

becoming an important topic in research over recent years. 

The unique advantages offered by these nanomaterials in 

a wide range of applications cannot be realized until these 

concerns are resolved.25 As shown by toxicokinetic studies, 

the liver is expected to be the major organ for systemic 

toxicity of silver nanoparticles.26 Therefore, in our study, we 

used a test system of human HepG2 hepatoma cells in order 

to evaluate the in vitro cytotoxic potential of bare and PGA-

capped silver nanoparticles using the 3-(4,5-dimethylthi-

azol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. 

Recent studies have pointed to a higher toxic potential using 

nanomaterials than their larger counterparts, probably due to 

oxidative stress as a consequence of increased production of 

reactive oxygen species.27,28 In this study, we also determined 

whether bare and PGA-capped silver nanoparticles could 

cause increased production of reactive oxygen species.

Materials and methods
Materials
Silver nitrate (AgNO

3
, molar ratio 169.88) was obtained from 

Centrohem (Stara Pazova, Serbia), glucose (C
6
H

12
O

6
, molar 

ratio 180.20) from Zorka Pharma (Sabac, Serbia), and sodium 

hydroxide (NaOH, molar ratio 40.00) from Kemika (Zagreb, 

Croatia). PGA with a molecular weight of 20–40 kDa (99.9% 

high-pressure liquid chromatography purity) was purchased 

from Guilin Peptide Technology Limited (Guangxi, China). 

All reagents were of analytic grade and used as received 

without further purification.

Chemicals, ie, Eagle’s minimal essential medium, 

penicillin/streptomycin, L-glutamine, phosphate-buffered 

saline, trypsin, fetal bovine serum, nonessential amino 

acid solution (100×), MTT, dimethyl sulfoxide, tert-butyl 

hydroperoxide (t-BOOH) and 2,7-dichlorofluorescein 

diacetate (DCFH-DA) used for determining cytotoxicity and 

formation of reactive oxygen species were obtained from 

Sigma-Aldrich (St Louis, MO).

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2011:6 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2839

Silver nanoparticles capped by PGA

Methods
Green synthesis of bare and PGA-capped 
silver nanoparticles
The route to synthesis of silver nanoparticles with and 

without PGA as the capping layer and without use of 

ammonia is new, simple, and completely green. Bare and 

PGA-capped silver nanoparticles were synthesized using a 

chemical reduction method whereby silver nitrate, glucose, 

and PGA served as a precursor, a reduction agent, and a 

capping agent, respectively.

The initial solution used in all syntheses was 20 mL of 

distilled water into which 0.5 mL (0.5 wt%) NaOH, 10 mL 

(1 wt%) glucose, and 0.5  mL (0.1 wt%) AgNO
3
 were 

introduced, with continuous stirring on a magnetic stirrer 

at 300 rpm. Glucose in an alkaline solution is oxidized 

by oxygen, forming gluconic acid, which is converted to 

sodium gluconate, a noncorrosive and nontoxic compound 

used as a food additive or fortifier of sodium in the presence 

of sodium hydroxide. Silver nitrate speeds up the reaction 

by acting as an oxidizing agent. As glucose is oxidized by 

dissolved oxygen, silver ions are reduced, forming silver 

nanoparticles, and the solution takes on a yellow-green color. 

For the formation of the capped silver nanoparticles, 0.5 mL 

of 0.05 wt% (0.05), 0.1 wt% (0.1), 0.2 wt% (0.2), 0.4 wt% 

(0.4), or 0.5 wt% (0.5) PGA was added to the solution before 

adding AgNO
3
. The preparation was completed in a single 

reaction vessel to facilitate fabrication.

Ultraviolet spectroscopy
Ultraviolet measurements were performed using a GBC 

Cintra ultraviolet-visible spectrophotometer at a frequency 

interval of 200–600  nm. Ultraviolet-visible spectroscopy 

was used to estimate the extent of formation of silver nano-

particles during the reaction, the formation of PGA-capped 

silver nanoparticles, the stability of the silver nanoparticles 

over a given time period, and the extent of formation of 

silver nanoparticles using different amounts of capping 

agent, ie, the influence of capping agent concentration on 

the final products.

Fourier-transform infrared spectroscopy
Analysis of the quality of the samples was performed using 

Fourier transform infrared (FTIR) spectroscopy. FTIR spectra 

for the samples were recorded in the range of 400–4000 cm-1 

using a Specord 75 spectrometer (Carl Zeiss, Jena, Germany) 

at 4  cm-1 resolution. FTIR measurements of the samples 

were carried out to identify possible interactions between 

silver and PGA which might be responsible for stabilization, 

ie, protection of the silver nanoparticles from agglomeration 

and rendering them biocompatible.

Field emission scanning electron 
microscopy
Observation of the microstructure of the bare and capped 

silver nanoparticles using different amounts of PGA as 

the capping agent was done using field-emission scanning 

electron microscopy (FESEM). FESEM measurements were 

performed on a Supra 35 VP field-emission scanning electron 

microscope (Carl Zeiss). The samples were prepared by 

redispersion in ethanol using an ultrasonic bath and filtering 

the dispersions using polycarbonate membranes. Carbon 

coating was used to prevent charging.

Transmission electron microscopy
Transmission electron microscopy (TEM) with a JEM-2100 

(JEOL, Peabody, MA) was employed for further morpho-

logical characterization of the bare and PGA-capped silver 

nanoparticles by exploring the individual nanostructures. 

Samples for the TEM analysis were prepared by dispersing 

the powders in distilled water using an ultrasonic bath. The 

suspensions were subsequently dropped on a lacey carbon 

film supported by a 300-mesh copper grid.

Zeta potential measurement
The zeta potential was measured using a Zetasizer (Nano ZS, 

Model ZEN3600, Malvern Instruments, Worcestershire, UK), 

with a particle size range for zeta potential determination of 

5–10  µm, using the principle of electrophoretic mobility 

under an electric field. The zeta potential is a function of the 

dispersion/suspension pH which determines particle stability 

in dispersion.

Cell culture
HepG2 cells were obtained from the European Collection 

of Cell Cultures. The cells were grown in Eagle’s minimal 

essential medium containing 10% fetal bovine serum, 1% 

nonessential amino acid solution, 2 mM L-glutamine, and 

100 U/mL penicillin plus 100 µg/mL streptomycin at 37°C 

in a humidified atmosphere and 5% CO
2
.

Cytotoxicity of bare and PGA-capped 
silver nanoparticles
The cytotoxicity of the bare and PGA-capped silver nano-

particles was determined using the MTT assay according 

to Mosmann,29 with minor modifications.30 This assay 

measures the conversion of MTT to insoluble formazan 
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by dehydrogenase enzymes from the intact mitochondria 

of living cells.

HepG2  cells were seeded into 96-well microplates 

(Nunc, Naperville, IL) at a density of 40,000 cells/mL and 

incubated for 20 hours at 37°C for attachment. The medium 

was then replaced by fresh complete medium containing 

0%, 0.01%, 0.1%, 1%, and 10% v/v of bare and PGA-

capped silver nanoparticles, and incubated for 24 hours. In 

each experiment, a negative control (nontreated cells) and 

vehicle control (10% emulsion) was included. MTT (final 

concentration 0.5 mg/mL) was then added, and incubated for 

a further 3 hours. In the next step, the medium and MTT was 

removed, and the formazan crystals formed were dissolved 

in dimethylsulfoxide. The optical density was measured at 

570 nm (reference filter 690 nm) using a microplate-reading 

spectrofluorometer (Tecan Genios, MTX Lab Systems Inc, 

Vienna, VA). Survival (viability) was determined by com-

paring the optical density of the wells containing the treated 

cells with those of the nontreated cells. Five replicates per 

concentration point and three independent experiments were 

performed.

The results are expressed as the mean values of three 

independent experiments. One-way analysis of variance 

(Kruskal-Wallis) was used for evaluation of the statistical 

significance of any differences between the exposed and 

control cells and between cells exposed to bare and PGA-

capped silver nanoparticles. P , 0.05 was considered to be 

statistically significant.

Intracellular reactive oxygen species 
formation
Formation of intracellular reactive oxygen species was 

measured spectrophotometrically using a fluorescent probe, 

ie, DCFH-DA, as described by Osseni et al,31 with minor 

modifications.32 DCFH-DA readily diffuses through the 

cell membrane and is hydrolyzed by intracellular esterases 

to nonfluorescent 2′,7′-dichlorofluorescein. It is then 

rapidly oxidized to highly fluorescent 2′,7′- DCFH-DA in 

the presence of reactive oxygen species. The fluorescence 

intensity is proportional to the amount of intracellular reactive 

oxygen species formed.

HepG2 cells were seeded at a density of 75,000 cells/mL 

in 96-well, black, tissue culture-treated microtiter plates 

in five replicates. After 20 hours of incubation at 37°C in 

5% CO
2
, the cells were incubated with 20 µM DCFH-DA. 

After 30  minutes, DCFH-DA was removed and the cells 

were treated with 0%, 0.01%, 0.1%, 1%, and 10% v/v of 

the bare and PGA-capped silver nanoparticles in phosphate-

buffered saline. Negative (nontreated cells), vehicle (10% 

emulsion), and positive control (0.5 mM t-BOOH) groups 

were included in each experiment. For the kinetic analyses, 

the dishes were maintained at 37°C and the fluorescence 

intensity was determined every 30 minutes during a 5-hour 

incubation using the microplate-reading spectrofluorometer 

at an excitation wavelength of 485  nm and an emission 

wavelength of 530 nm.

Statistically significant differences between the treated 

groups and controls, and between cells treated with bare 

and PGA-capped silver nanoparticles were determined 

by one-way analysis of variance (Kruskal-Wallis) with 

Dunnett’s test and Bonferroni’s post-test, respectively. 

P , 0.05 was considered to be statistically significant.

Results and discussion
Ultraviolet-visible spectroscopy
The ultraviolet-visible absorption results confirmed formation 

of bare and PGA-capped silver nanoparticles prepared by 

new, simple, green, one-pot four-component synthesis 

(Figure 1). The successful synthesis of bare and PGA-capped 

silver nanoparticles was first indicated by the distinctive color 

that appeared in the colloidal solution. Initially, reduction 

of silver ions leads to formation of silver atoms, followed 

by agglomeration into clusters.6 These clusters eventually 

lead to formation of colloidal silver particles.6 When the 

colloidal particles are much smaller than the wavelength of 

visible light, the solutions develop a yellow color with an 

intense band around 400 nm.33 This band is attributable to 

collective excitation of the electron gas in the particles, with 

a periodic change in electron density at the surface (surface 

plasmon absorption).33,34

Silver nanoparticles are especially valued for their 

optical properties, being useful for surface-enhanced 

Raman scattering, imaging, sensing, and wave guiding 

applications, where the optical absorption arising from the 

surface plasmons of noble metal materials is important. The 

position and shape of the surface plasmon absorption band 

is strongly dependent on the size and shape of the particle, 

the dielectric constant of the medium, and surface-adsorbed 

species.33–35

The ultraviolet-visible spectra for bare silver nanoparticles 

shows only one dominant, broad absorption band around 

421  nm, which represents the typical signature of the 

dipolar plasmon resonance of silver nanoparticles.33–35 

The ultraviolet-visible absorption spectra of the silver 

nanoparticles capped with different concentrations of PGA 

were also investigated in our study. Ultraviolet-visible 

absorption spectra for the PGA (0.05)-capped silver nano-

particles and PGA (0.1)-capped silver nanoparticles showed 
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Figure 1 (A) UV-visible spectra of bare silver nanoparticles and capped with different amounts of PGA as capping agent, (B) Absorbance maximum displacement depending 
on the concentration of capping agent; (C) Increase of the absorbance maximum depending on the concentration of capping agent and (D) Stability of bare and PGA capped 
silver nanoparticles three months after synthesis.
Abbreviations: PGA, poly-a, g, L-glutamic acid; AgNpPGA, PGA-capped silver nanoparticles.
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narrow surface plasmon absorption bands at 411 nm and at 

404 nm wavelengths, respectively. The maximum absorption 

displacement for the PGA (0.05)-capped silver nanoparticles 

as well as for the PGA (0.1)-capped silver nanoparticles at 

the smaller wavelengths (blue shift) indicates a change in 

particle size to smaller dimensions (Figure 1B). It is well 

known from the literature that a polaritonic blue shift occurs 

with decreasing cluster size and a red shift occurs with 

increasing cluster size, due to electromagnetic retardation.33 

Shifting of the absorption band to shorter wavelengths also 

indicates that the particles became more spherical with the 

addition of PGA. Although it was expected that this trend 

would continue with further increases in PGA concentration, 

Figure 1 shows that this did not happen for the PGA (0.2), 

(0.4) or (0.5)-capped silver nanoparticles. With increases 

in PGA concentration beyond 0.1%, the absorption spectra 

become broader, with a decrease in absorbance, and also 

showed red-shifted peaks at 412 nm, 413 nm, and 416 nm 

for PGA (0.02), (0.4) and (0.5)-capped silver nanoparticles, 

respectively (Figure 1A, B, and C). It was observed that 

the absorption spectrum for PGA (0.4)-capped silver 

nanoparticles became very broad, with a decrease in absor-

bance at 413 nm and a shoulder appearing around 485 nm. 

Resonances of higher multipolar order appeared in addi-

tion to the usual dipolar resonance when the cluster size 

increased, so the optical field became nonuniform across 

the cluster. In clusters of nonspherical shape, the single 

dipolar resonance of the spherical case splits into two or 

more nondegenerate plasmon modes that differ in their 

oscillation directions.33,34 All these observations indicate 

that the optimum concentration of PGA for formation of 

PGA-capped silver nanoparticles is 0.1%.
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Table 1 Assignment, vibrational modes, and positions (wave number in cm-1) of FTIR bands in the spectra of PGA, AgNpPGA (0.1), 
and AgNpPGA (0.4)

Assignment Vibrational modes Band position (cm-1) Appearance

PGA AgNpPGA (0.1) AgNpPGA (0.4)

O-H Stretching 3380 3410 3400 Broad and strong
Amide I Associated amides 1650 1600 1630 Medium to strong
C=O Symmetric 1400 1400 1390 Medium to strong

N-H (δ) In-plane bending or scissoring 1300 1300 1300 Weak to medium

C-N Stretching 1050 1080 1150 Broad and strong

N-H (ω) Out-of-plane bending or wagging 760 730 750 Weak

Abbreviations: FTIR, Fourier transform infrared spectroscopy; PGA, poly-α, γ, L-glutamic acid; AgNpPGA, PGA-capped silver nanoparticles.
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The stability of nanoparticle dispersions is a key factor in 

their successful application. In order to prevent agglomeration 

of the nanoparticles, different concentrations of capping 

agent were added to the reaction media. The absorption 

spectra of solutions containing PGA (0.1)-capped silver 

nanoparticles, recorded immediately after preparation and 

after three months of storage, confirmed very good stability 

of the samples as opposed to samples containing bare silver 

nanoparticles or silver nanoparticles capped with more than 

0.1% PGA (Figure 1D).

Fourier-transform infrared spectroscopy
The origins of the bonding between the silver nanoparticle 

surface and the capping molecule were investigated by 

FTIR spectroscopy. In the FTIR analysis, PGA was used 

as a comparison sample. The infrared spectra of the PGA 

and PGA-capped silver nanoparticles in the KBr pellet 

showed strong characteristic C–N stretching at about 1000–

1150 cm-1, carbonyl absorption at about 1390–1420 cm-1, 

and strong hydroxyl absorption at 3200–3550  cm−1.36 

The absorption peaks at 3380–3410  cm−1 were indicative 

of N–H stretching.37,38 The absorption peaks at around 

1600–1690 cm−1 and 1395–1400 cm−1 were characteristic of 

amide groups and C=O groups. Glutamic acid, the building 

monomer of polyglutamic acid, possesses three chemically 

active functional groups, ie, α-NH
2
, α-COOH, and γ-COOH. 

The chemical reactivity of these three functional groups 

follows the order α-NH
2
  .  α-COOH, .  γ-COOH.41 The 

FTIR spectra for PGA and the PGA-capped silver nano-

particles confirmed the presence of carboxyl, hydroxyl, 

carbonyl, and amide groups.

Comparing the FTIR spectra obtained for PGA (0.1)-

capped silver nanoparticles and PGA (0.4)-capped silver 

nanoparticles with the characteristic FTIR spectra of PGA, it 

is reasonable to believe that the silver nanoparticles obtained 

were capped with PGA. Details of the spectra interpretation 

and band assignments are shown in Table 1.

Field emission scanning electron 
microscopy
The morphological characteristics of the bare silver nanopar-

ticles and those capped with different amounts of PGA were 

observed by FESEM. The FESEM images show the crucial 

influence of the amount of capping agent on the morphol-

ogy of silver nanoparticles. Figure 2A shows the FESEM 

micrographs recorded for the bare silver nanoparticles, from 

which one can see that the particles are much agglomerated. 

The bare silver nanoparticles have been joined together and 

assembled, forming clusters, fibers, and a rope-like structure. 

The main reason for this phenomenon is lack of use of a 

stabilizer in the experiment.

Figure 2B shows the FESEM images for the microstruc-

ture of silver nanoparticles capped with 0.4% of PGA. These 

particles are much agglomerated and have formed a film, on 

which cracks and roughness can be seen, and sporadically 

distributed spherical particles of smaller and larger sizes 

are still present. From these results, it is obvious that the 

concentration of capping agent must be optimized in order to 

obtain the smallest particle dimensions using this method, as 

well as to keep agglomeration to a minimum. A 0.4% PGA 

concentration is clearly too high for this method.

The micrograph for silver nanoparticles capped with 0.1% 

of PGA shows that the particles have a nearly spherical shape, 

are smooth-surfaced, and have a low level of agglomeration 

and a high level of uniformity (Figure 3). The size distribu-

tion of all nanoparticles was unimodal, with particle sizes 

of about 5–45 nm.

Transmission electron microscopy
The silver nanoparticles obtained at various capping agent/

silver ratios were also examined by TEM. Silver nanopar-

ticles obtained in the experiment without PGA showed 

irregular morphology with a broad size distribution. From 

Figure 4A it can be seen that lack of a stabilizer in the system 

leads to formation of agglomerates. Further analyses of the 
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Figure 3 (A) Scheme of the green synthesis of the bare and capped silver nanoparticles. (B) FESEM images of capped silver nanoparticles with 0.1% PGA (inset shows 
arbitrarily magnified particle).
Abbreviations: AgNp, silver nanoparticles; FESEM, Field Emission Scanning Electron Microscope; PGA, PGA, poly-α, γ, L-glutamic acid.
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Figure 2 Images of AgNp particles obtained in the experiment without PGA (A) 
and with 0.4% PGA (B).
Abbreviations: FESEM, field emission scanning electron microscope; PGA, poly-a, 
γ, L-glutamic acid
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0.1% PGA-capped silver nanoparticles using TEM showed 

nearly spherical nanoparticles with diameters in the range 

of 5–45 nm. From Figure 4B, it is clear that the particles 

had a low level of agglomeration and a high level of uni-

formity. TEM images of silver nanoparticles capped with 

0.4% PGA confirm the majority of the previously mentioned 

considerations. These nanoparticles have irregular shapes and 

are very much agglomerated (Figure 4C). Both the FESEM 

and TEM images demonstrate that the use of different 

amounts of PGA leads to nanoparticles with significantly 

different morphologies.

The proposed mechanism for formation of colloidal 

PGA-capped silver nanoparticles is shown in Figure 5. The 

observations reported here suggest that formation of PGA-

capped silver nanoparticles from AgNO
3
 comprises several 

steps. In the first step, silver ions are reduced, leading to 

formation of silver clusters. In the second step, absorption 

of PGA onto the surface of silver clusters, further reduction 

of adjacent silver ions, and their accumulation on silver 

clusters occurs, followed by growth of the silver particles 

and colloidal stabilization by PGA. Flexible linkage of PGA 

and the large number of molecules in the reaction solution 

leads to isotropic growth and the formation of stable spherical 

silver nanoparticles. With further increases in PGA concen-

tration, large-sized silver nanoparticles and agglomerates 

are formed. As a consequence, in a colloidal suspension of 

given concentration, excessive concentration of polymers 

leads to an increasing number of bridges (polymers intercon-

necting different aggregates), and finally to the formation 

of a three-dimensional polymer network (see Figures  2B, 

4C, and 5).38
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Figure 4 TEM images of bare silver nanoparticles (A), capped with 0.1% PGA (B) and with 0.4% PGA (C).
Abbreviations: TEM, transmission electron microscope; PGA, poly-α, γ, L-glutamic acid.

A
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Figure 5 Scheme representing proposed formation of colloidal silver nanoparticles 
without PGA (A) with optimal (B) and excessive (C) concentration of PGA.
Abbreviation: PGA, poly-α, γ, L-glutamic acid.
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Zeta potential
The results of zeta potential determination for the bare and 

PGA-capped silver nanoparticles are shown in Table 2. The 

zeta potential was reported as the average of five readings 

taken per sample, including the standard deviation. The zeta 

potential is directly proportional to the stability of a colloid. If 

all the particles in a colloid have a large negative or positive 

zeta potential, they will tend to repel each other and there will 

be a low likelihood of the particles coming together. PGA 

was used as a stabilizer, creating negatively charged silver 

particles with a specific zeta potential.

The particle size was lower for silver nanoparticles stabi-

lized and capped with 0.05% and 0.1% PGA compared with 

the bare nanoparticles. Although the PGA layer contributes to 

the size of the particles, this serves as evidence of reduction in 

particle size, aiding precipitation of the silver nanoparticles, 

presumably by adsorbing onto the growing particle facets. 

However, this is not the case for particles capped with 0.4% 

PGA. The polydispersity index, which is a dimensionless 

number indicating the width of a size distribution and having 

a value between 0 and 1, was also determined. Narrow disper-

sions have polydispersity index values ,0.2, broader disper-

sions have values of 0.2–0.5, and very dispersed particles 

have values .0.5.39,40 According to Table 2, dispersions of 

PGA (0.05)-capped and (0.1)-capped silver nanoparticles had 

polydispersity index values slightly higher than 0.2, which 

is in good agreement with the results obtained by FESEM 

and TEM. It is also shown in Table 2 that PGA (0.4)-capped 

silver nanoparticles are widely dispersed particles.

Zeta potentials for all the samples, except for PGA 

(0.4)-capped silver nanoparticles, are higher than -30 mV, 

indicating good stability of this colloidal system.41 Electro-

phoretic mobility is inversely proportional to the viscosity 

of the medium, and viscosity is directly proportional to 

PGA concentration, so electrophoretic mobility decreases 

with increasing concentrations of PGA.42 The zeta potential 

is directly proportional to electrophoretic mobility42 

(according to the Henry equation: U
E
 = 2εzf(ka)/3η, where 

U
E
 =  electrophoretic mobility, ε =  the dielectric constant, 

z  =  the zeta potential, η  =  viscosity and f(ka) =  Henry’s 

function), and both the zeta potential and colloidal stability 
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Table 2 Zeta potential results for bare and PGA-capped silver nanoparticles

Sample Particle size (nm) pH PDI Zeta potential (mV)

AgNp   69.2 ± 5.0 4.30–4.37 0.235 -38.5 ± 11.5
AgNpPGA (0.05)   47.5 ± 5.0 0.201 -49.1 ± 19.0
AgNpPGA (0.1)   44.9 ± 5.0 0.206 -43.7 ± 12.0
AgNpPGA (0.4) 179.0 ± 5.0 0.707 -10.8 ± 3.8

Note: Values are mean ± standard deviation (n = 5). 
Abbreviations: PDI, polydispersity index; PGA, poly-α, γ, L-glutamic acid; AgNpPGA, PGA-capped silver nanoparticles.
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Figure 6 Viability of HepG2 cells treated with AgNp or AgNpPGA (0.1) for 24 h. 
The data are presented as mean values of three independent experiments (each with 
five replicates) ±SD. 
Note: *P , 0.05 statistically significant difference (ANOVA, Kruskal-Wallis).
Abbreviations: AgNp, silver nanoparticles; AgNpPGA, PGA-capped silver nanopar-
ticles; SD, standard deviation; PGA, poly-α, γ, L-glutamic acid.
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decreased with increasing PGA concentrations, which 

is in good agreement with the ultraviolet-visible results 

(Figure 1D).

In vitro cytotoxicity of bare  
and PGA-capped silver nanoparticles
The cytotoxicity of the bare and PGA (0.1)-capped silver 

nanoparticles was determined by MTT assay after exposure 

of HepG2 cells to 0%, 0.01%, 0.1%, 1%, and 10% v/v of sil-

ver nanoparticles and PGA (0.1)-capped silver nanoparticles 

for 24 hours. Cell viability data for the vehicle control are 

not shown in Figure 6 because they were almost identical to 

the negative control. At concentrations up to 1% (v/v), both 

types of particles exerted a similar effect on the viability 

of HepG2 cells. At these concentrations, the viability was 

not reduced by more than 20% compared with nontreated 

controls. At 10% (v/v), the silver nanoparticles reduced 

cell viability by 35% compared with the control, while the 

viability of cells exposed to 10% (v/v) PGA (0.1)-capped 

silver nanoparticles was reduced by 17% (Figure 6).

Induction of intracellular reactive  
oxygen species
To establish the influence of bare and PGA (0.1)-capped 

silver nanoparticles on intracellular reactive oxygen species 

formation, we measured the kinetics of their formation in 

HepG2 cells by DCFH-DA assay. Reactive oxygen species 

induction data for the vehicle control are not shown in 

Figure 7, because they were almost identical to those of the 

negative control.

Both samples induced a significant increase in forma-

tion of intracellular reactive oxygen species, but only at the 

highest tested concentration (10% v/v), whereas the bare 

silver nanoparticles had a stronger influence on formation of 

reactive oxygen species compared with PGA (0.1)-capped 

silver nanoparticles. Reactive oxygen species formation 

increased by 2.2-fold after five hours of exposure to the bare 

silver nanoparticles and was 1.8-fold higher than in control 

cells after exposure to PGA (0.1)-capped silver nanoparticles 

(Figure 7).

Conclusion
In conclusion, bare and PGA-capped silver nanoparticles 

were successfully synthesized using a new, simple, green, 

one-pot, four-component method. The cytotoxic potential 

and influence of these nanoparticles on formation of intra-

cellular reactive oxygen species was investigated in vitro. 

A naturally occurring anionic polymer was used as the organic 

layer to protect the silver nanoparticles from agglomeration 

and render them biocompatible, and glucose was used as a 

reducing agent. One of the advantages of this method is that 

ammonia (a caustic and hazardous chemical) is not used 

during synthesis. This method represents an attractive, rapid, 

and low-cost process with the potential for industrial scale-up. 

However, appropriate optimization is necessary to be able to 

develop silver nanoparticles with a narrow size distribution. 

Observations using ultraviolet-visible spectroscopy, FESEM, 

TEM, and zeta potential measurement indicate that these 

silver nanoparticles agglomerate if PGA is not used during 

synthesis and if there is an excessive concentration of PGA. 

The capped silver nanoparticles obtained in this experiment 

using the optimum concentration of PGA 0.1% were uniform 

and nonagglomerated, had a narrow particle size distribution, 

and were highly stable for several months. This PGA concen-

tration should be used for manufacture of PGA-capped silver 

nanoparticles when scaled up to large batches. The MTT assay 
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Figure 7 AgNp and AgNpPGA (0.1)-induced intracellular ROS formation in HepG2 cells. Kinetic of ROS formation during 5 hour exposure to AgNp or AgNpPGA (0.1) 
(A and B); each point represents the mean of five replicates (±SD) of representative experiment. Increase of DCFH fluorescence intensity in cells exposed to AgNp or 
AgNpPGA (0.1) after 5 hour exposure (C); each bar represent means (±SD) of three independent experiments. PC (0.5 mM t-BOOH). 
Note: *P , 0.05; statistically significant difference (ANOVA, Kruskal-Wallis).
Abbreviations: DCF, 2-7-dichlorofluorescin; PGA, poly-α, γ, L-glutamic acid; AgNp, silver nanoparticles; AgNpPGA, PGA-capped silver nanoparticles; ROS, reactive oxygen 
species; DCFH, 2-7-dichlorofluorescin; SD, standard deviation; PC, positive control.
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results indicated that PGA (0.1)-capped silver nanoparticles 

have good biocompatibility, and do not increase the produc-

tion of reactive oxygen species by HepG2 cells in vitro.
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