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Background and methods: In this study, gelatin was blended with polyglycolic acid (PGA) 

at different ratios (0, 10, 30, and 50 wt%) and electrospun. The morphology and structure of 

the scaffolds were characterized by scanning electron microscopy, Fourier transform infrared 

spectroscopy, and differential scanning calorimetry. The mechanical properties were also 

measured by the tensile test. Furthermore, for biocompatibility assessment, human umbilical 

vein endothelial cells and human umbilical artery smooth muscle cells were cultured on these 

scaffolds, and cell attachment and viability were evaluated.

Results: PGA with 10 wt% gelatin enhanced the endothelial cells whilst PGA with 30 wt% 

gelatin increased smooth muscle cell adhesion, penetration, and viability compared with the 

other scaffold blends. Additionally, with the increase in gelatin content, the mechanical proper-

ties of the scaffolds were improved due to interaction between PGA and gelatin, as revealed by 

Fourier transform infrared spectroscopy and differential scanning calorimetry.

Conclusion: Incorporation of gelatin improves the biological and mechanical properties of 

PGA, making promising scaffolds for vascular tissue engineering.

Keywords: polyglycolic acid, gelatin, nanofiber, vascular tissue engineering, biocompatible 

scaffold

Introduction
The extracellular matrix complex, composed of proteoglycans, collagens, elastin, and 

various glycoproteins, is central to the maintenance of vessel wall cell integrity and 

appropriate signal transduction during important biological functions such as  adhesion, 

differentiation, migration, induction of inflammatory responses, and wound healing 

through the integrin superfamily of receptors.1 Methods influencing cellular func-

tions using electrospun scaffolds remain a challenge because the scaffolds need to 

mimic some of the components of the natural extracellular matrix, whilst providing 

appropriate biochemical and mechanical inputs for the cellular environment.2 Previous 

studies have attempted to develop thromboresistant and long-lasting synthetic fibrous 

scaffolds for tissue engineering in the field of vascular grafts. Subsequently, due to 

poor antithrombogenicity and inconsistent material properties,3 clinical outcomes of 

synthetic vascular grafts have not always proven satisfactory.4 In addition, the bio-

compatibility of tissue-engineered scaffolds is of primary concern because this affects 

cell attachment, proliferation, differentiation, and growth.5

Electrospinning has been used effectively to generate biomimetic nonwoven 

scaffolds for tissue engineering purposes.6–8 Various synthetic biodegradable 

polymers have been electrospun into thin fibers for generating fibrous scaffolds, 
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including poly(3-caprolactone),9–11 polyethylene oxide,11 

poly(L-lactide-co-3-caprolactone) (PLCL),12 polylactic 

acid,13 poly(lactideco-glycolide),14,15 and polyglycolic acid 

(PGA).16 All these scaffolds have been reported to be bio-

compatible and to enhance cell functions in vitro. PGA is 

one of a group of biodegradable aliphatic polyesters cur-

rently exploited in a variety of medical applications. The 

successful clinical use of PGA sutures has demonstrated that 

PGA-containing polymers can be used safely in soft tissue 

applications.17 PGA has also been found to be useful in the 

engineering of many types of tissues18–23 and is also used in 

vascular tissue engineering.24–27

Gelatin is a polymer derived from partial hydrolysis of 

native collagen, with uses in the pharmaceutical and medical 

fields, including as sealants for vascular prostheses,28 carriers 

for drug delivery,29 and wound dressings.30 Furthermore, it is 

known that gelatin contains many integrin binding sites for 

cell adhesion, migration, and differentiation, which are found 

in natural collagen and other extracellular matrix proteins.

In this study, gelatin was added to PGA and electrospun 

with different weight ratios of gelatin to develop novel elec-

trospun PGA/gelatin fibrous scaffolds which are noncyto-

toxic, support cell attachment, maintain viability of the major 

cellular constituents of the vasculature, namely endothelial 

and smooth muscle cells, and have suitable biomechanical 

properties.

Materials and methods
Materials and cells
The PGA and gelatin (type A, porcine skin) were purchased from 

Sigma-Aldrich (St Louis, MO). For electrospinning, PGA and 

gelatin were dissolved in 1,1,1,3,3,3- hexafluoro-2-propanol 

(Merck, Darmstadt, Germany). Cell culture media, growth 

factors, and supplements were purchased from Invitrogen 

(Carlsbad, CA) and disposable tissue culture supplies from 

Orange Scientific (Brussels, Belgium). Tetrazolium salt 

(MTT) was purchased from Sigma-Aldrich. Human umbili-

cal vein endothelial cells (HUVECs) were isolated from 

human umbilical cords according to the method reported in 

our previous work.1 Human umbilical artery smooth muscle 

cells (HUASMCs) were obtained from the Pasteur Institute 

(Tehran, Iran).

electrospinning
A series of PGA/gelatin solutions with different mixing ratios 

were prepared by dissolving them in hexafluoroisopropanol 

at a concentration of 10 wt%. The gelatin contents were 

10, 30, and 50 wt%. The PGA/gelatin solutions were  delivered 

by a syringe pump at a constant flow rate of 5 mL/hour. 

A blunt-ended 18-gauge needle was clamped to the positive 

electrode of a high-voltage power supply generating 25 kV 

of electric field, and the negative electrode was connected 

to an Al foil collector with an air gap distance of 20 cm. 

The PGA/gelatin solutions were electrospun under the 

same conditions, producing fibers of varied diameters. All 

the electrospun PGA/gelatin fibers were vacuum-dried for 

three days at room temperature and stored in desiccators for 

subsequent use.

scanning electron microscopy
The morphology and pore structure of the electrospun PGA/

gelatin blend fibers were observed using a scanning electron 

microscope. Prior to observation, platinum was coated by ion 

sputtering for a few seconds. The average diameter, diameter 

distribution, area of porosity between fibers, and distribu-

tion of fiber orientation angles were obtained by analyzing 

scanning electron microscopy images using a custom code 

image analysis program.

Fourier transform infrared spectroscopy
Chemical analysis of PGA, gelatin, and the PGA/gelatin 

nanofibrous scaffolds was performed by attenuated total 

reflectance-Fourier transform infrared spectroscopy over a 

range of 4000–400 cm−1. Attenuated total reflectance-Fourier 

transform infrared spectra of PGA and PGA/gelatin nano-

fibrous scaffolds were obtained on a Bruker spectrometer 

system (Vertex 80).

Differential scanning calorimetry
A Perkin-Elmer differential scanning calorimeter was 

used for studying the thermal behavior of the samples. The 

 temperature was raised from room temperature to 350°C using 

a linear programmer at a heating rate of 10°C per minute.

Mechanical properties
The mechanical properties of the electrospun PGA/gelatin 

fiber sheets, approximately 60 mm × 10 mm × 0.1–0.2 mm 

(width × length × thickness), were measured using a uniaxial 

testing machine (Santam, STM-20) with a 10 N load cell under 

a cross-head speed of 1 mm/minute and gauge length of 30 mm 

(n = 3). From the stress–strain curves, Young’s  modulus, 

tensile strength, and elongation at break were obtained.

cell culture
PGA/gelatin fibers produced by electrospinning were exam-

ined as scaffolds for growth of HUVECs and HUASMCs. 
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Cells were grown in Dulbecco’s modified Eagle’s medium 

with 4.5 g/L glucose supplemented by 4 mM L-glutamine, 

25 units/mL penicillin/streptomycin, and 10% fetal bovine 

serum under standard culture conditions (37°C, 5% CO
2
). The 

electrospun fiber sheets were cut into small circular pieces 

and rinsed with sterilized phosphate-buffered solution and 

then transferred to 96-well tissue culture polystyrene (TCPS). 

Scaffolds were sterilized with 70% ethanol and ultraviolet 

irradiation, followed by washing with phosphate-buffered 

solution. Fiber scaffolds were soaked in Dulbecco’s modi-

fied Eagle’s medium overnight. The cells were seeded at a 

density of 1 × 104 cells/well onto the sheets, and cultured with 

regular replacement of culture medium every two days. Cell 

adhesion and viability were assayed by a colorimetric MTT 

assay after days 1, 3, and 5, respectively. The morphology of 

cell attachment on the scaffolds after one day of cell culture 

was observed by scanning electron microscopy.

MTT assay
The MTT assay is based on reduction of  the yellow tetrazolium 

salt to purple formazan crystals by dehydrogenase enzymes 

secreted from the mitochondria of metabolically active cells. 

The amount of purple formazan crystals formed is proportional 

to the number of viable cells. First, each sample was incu-

bated at 37°C for four hours with MTT solution 0.5 mg/mL 

without phenol red. After incubation, the MTT solution was 

removed. A buffer solution containing dimethylsulfoxide 

was added into the wells to dissolve the formazan crystals. 

After 30 minutes of rotary agitation, the solutions were 

transferred into a cuvette and placed in a spectrophotometer, 

and absorbance was measured at 570–630 nm.

scanning electron microscopy
To study the morphology of cell attachment, the cell-cultured 

fiber sheets were washed with phosphate-buffered solution 

three times and then fixed with 2.5% glutaraldehyde for three 

hours, followed by formalin fixation (10%) overnight. After 

washing three times with distilled water, the fiber sheets 

were dehydrated through a series of graded ethanol solutions 

(50%, 60%, 70%, 80%, 90%, and 100%). Completely dried 

samples were sputter-coated with platinum and observed 

using scanning electron microscopy.

statistical analysis
The results are presented as the mean ± standard deviation. 

Statistical significance was tested using SPSS software (SPSS 

Inc, Chicago, IL). Values of P , 0.05 were considered to be 

statistically significant.

Results
scaffold characterization
Morphological images of the electrospun PGA/gelatin fibers 

by scanning electron microscopy are shown in Figure 1. 

The scanning electron microscopy images of electrospun 

pure PGA showed a bead-on-string formation (Figure 1A), 

while PGA with 10 wt% gelatin fibers was a bead-free and 

homogeneous structure (Figure 1B). As seen in Figure 1C 

and D, an increase in the concentration of gelatin in the 

solution was accompanied with an increase in fiber size. 

Figure 1E shows a quantitative analysis of at least 50 fibers 

from different blended samples, indicating that the mean 

fiber diameter increased from 87.72 ± 23.34 nm for pure 

PGA fibers to 863.96 ± 265.09 nm for PGA/50 gelatin 

fibers. Statistical analysis revealed that the fiber sizes with 

different weight ratios of gelatin were significantly different 

from each other (P , 0.001). As depicted in Figure 1E, the 

biggest increment in fiber size occurred when the gelatin 

weight ratio was increased from 10 wt% to 30 wt%. The 

mean area of porosity between the fibers is displayed in 

Figure 1F. As seen in Figure 1F, the area between the 

fibers increased with a higher gelatin concentration similar 

to fiber diameter.  Figure 1G represents the distribution of 

fiber orientation angles with respect to the horizontal axis, 

demonstrating that the electrospun nanofiber orientation 

appeared to be random.

Fourier transform infrared spectroscopy
The infrared absorbance spectra for the scaffolds are shown in 

Figure 2A. The typical characteristic features observed in the 

infrared spectra of all scaffolds are reported here. Pure PGA 

was typically around 2960 cm−1 (γ−CH), 2882 cm−1, 2820 cm−1 

(−CH
2
), 1417 cm−1 (δ−CH), 1163 cm−1, and 1090 cm−1 

(γ−C−O), and the group of bands in the region of 1000–

800 cm−1 was possibly due to a mix of vibrational modes of 

[−C−C−]n repeat units and −CH twist. The strong band around 

1744 cm−1 is characteristic of [C=O] groups. In the PGA/gelatin 

scaffolds, the bond groups of PGA are presented; in addition, 

the 3290 cm−1 region is donated by N−H bond-stretching mode 

of hydrogen-bonded amide A groups. Common bands of protein 

appeared at approximately 1642 cm−1 (amide I) and 1539 cm−1 

(amide II), corresponding to the stretching vibrations of C=O 

bond, and coupling of the bending of the N−H bond and stretch-

ing of the C−N bonds, respectively.

Differential scanning calorimetry
The differential scanning calorimetry results of the samples 

are displayed in Figure 2B. As shown in this figure, the first 
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endothermic peaks are at about 210°C–220°C, representing 

the melting point of PGA. When comparing the PGA curve 

and the PGA/gelatin curves, in the presence of gelatin, the 

first peak becomes broader and shifts slightly to a higher 

temperature.

Mechanical properties
The tensile properties of electrospun PGA/gelatin fiber sheets 

were characterized. Young’s modulus, tensile strength, and 

elongation at break were calculated from stress–strain curves, 

as shown in Figure 3. The pure PGA fiber sheet showed 

very rigid and brittle characteristics, so no further studies 

were done. The PGA with 10 wt% gelatin sheets showed a 

tensile strength of 650 kPa. The PGA with 30 wt% gelatin 

sheet showed very soft and flexible characteristics, with a 

Young’s modulus of 32 MPa and a high elongation at break 

of 32%. PGA/gelatin 50 wt% showed an enhanced tensile 

strength of 1907 kPa, which was increased about three-fold 

when compared with that of PGA with 10 wt% gelatin. It 

also showed a high Young’s modulus of 72 MPa and an 

elongation break of 6%. It was observed that the addition 

of gelatin significantly increased tensile strength and the 

Young’s modulus of the structures.

cell study
HUVECs and HUASMCs were seeded at a density of 10,000 

cells/well in triplicate for each experiment. The cells were 

allowed to proliferate for up to five days. Over the five-day 

course, relative viable cell numbers were determined continu-

ously on days 1, 3, and 5 using the MTT assay.  Figure 4 shows 

the number of viable cells on electrospun PGA/gelatin fiber 

and control (TCPS). HUVECs and HUASMCs cells prolif-

erated similarly on all substrates at day 1 of culture period, 

albeit with some slight differences. On day 1, the number of 

viable cells on the fibrous substrates was slightly lower than 

on the controls (P . 0.05).  Conversely, on days 3 and 5, there 
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Figure 1 Scanning electron microscopic morphology of electrospun PGA/gelatin nanofibers (2000× and 20,000× magnification). (A) Pure PGA, (B) PGA/10 wt% gelatin, (C) 
PGA/30 wt% gelatin, and (D) PGA/50 wt% gelatin. (E) Mean diameter (± standard deviation) variations of electrospun PGA/gelatin fibers, (F) mean area (± standard deviation) 
between fibers, and (G) distribution of fiber orientation angles (n = 50). 
Notes: ***P , 0.001, significantly different from the previous group. 
Abbreviation: PgA, polyglycolic acid.
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Discussion
Vascular tissue engineering has emerged as one of the most 

promising approaches for the development of ideal substitutes 

for native tissue with similar properties. The design of these 

scaffolds must meet several physical and chemical criteria 

of the normal vascular system, such as being biocompatible 

and biodegradable, and with mechanical properties close to 

that of native blood vessels.

In the electrospinning process, there are a number of 

parameters affecting fiber morphology and fiber diameter, 

including polymer concentration/viscosity, voltage applied, 

needle diameter, and the delivery rate of polymer solution.6 
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Figure 3 (A) Young’s modulus of PGA/gelatin scaffolds, mean ± standard deviation 
(n = 3), (B) tensile strength of PGA/gelatin scaffolds, mean ± standard deviation 
(n = 3), and (C) elongation at break of PGA/gelatin scaffolds, mean ± standard 
deviation (n = 3). 
Notes: *P , 0.05; ***P , 0.001, significantly different compared with the previous 
group. 
Abbreviation: PgA, polyglycolic acid.

were more endothelial cells on the PGA with 10 wt% gelatin 

(P , 0.05) substrates. Moreover, there was a high number of 

smooth muscle cells on the PGA with 30 wt% gelatin substrate, 

indicating a higher degree of cell viability (P , 0.05).

The enhanced cell adhesion on PGA/gelatin fibers was 

also confirmed by the scanning electron microscopic images 

(Figures 5 and 6). The endothelial cell density on the PGA 

with 10 wt% gelatin increased significantly and enough to 

cover the electrospun sheets confluently. It also had high cell 

adhesion and penetration into the fibers (Figure 5B), whereas 

adherent cells on substrates above this surface displayed 

flattened morphologies. Figure 5D shows a spheroid cell 

with some filapodial extensions onto the scaffold due to high 

concentrations of gelatin. This kind of structure may reduce 

cell spreading, migration, and viability compared with the 

cell culture achieved using the lower concentration of gelatin. 

As shown in Figure 6C, smooth muscle cells can attach to 

the PGA/gelatin fibers, and the larger space between fibers 

aids high cell penetration into the PGA with 30 wt% gelatin. 

The scanning electron microscopy results confirm the data 

obtained by MTT assay.
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Figure 4 Cell viability (MTT results) on PGA/gelatin scaffolds after days 1, 3, and 5. Mean ± standard deviation (n = 3). 
Notes: *P , 0.05; **P , 0.01. 
Abbreviation: PgA, polyglycolic acid.

Figure 5 Scanning electron micrographs of human umbilical vein endothelial cells cultured on PGA/gelatin scaffolds (2000× magnification). (A) Pure PGA, (B) PGA/10 wt% 
gelatin, (C) PGA/30 wt% gelatin, and (D) PGA/50 wt% gelatin. 
Abbreviation: PgA, polyglycolic acid.

Pure PGA solutions of high concentrations have been found 

to be less viscous than PGA/gelatin solutions. Low-viscosity 

solutions are more prone to produce beads, and bead forma-

tion reduces as viscosity is increased by addition of gelatin. 

Kim et al investigated the electrospinning of polyurethane 

and gelatin, and reported that addition of gelatin also 

increased fiber diameter.31 Gu et al also showed that when the 

gelatin concentration was increased to 10%, uniform fibers 

were obtained, suggesting a change from beads-on-string 

structures to smooth fibers.32 Therefore, the addition of 

gelatin to PGA has a significant effect on the spinnability of 

a polymer solution and the fiber morphology, resulting in 

bead-free nanofibers (Figure 1).

Normally, in the Fourier transform infrared spectra of 

gelatin, a free N−H stretching vibration occurs in the range 

of 3400–3440 cm−1. It has been shown that when the N−H 

group of a peptide is involved in a hydrogen bond, the posi-

tion is shifted to lower frequencies.33 At the amide A region, 

a lower amplitude, as well as a lower wave number, was 

found in the PGA/gelatin structure, compared with gelatin, 

indicating that the N−H group of shorter peptide fragments 

in PGA/gelatin was involved in hydrogen bonding. Gelatin 

might also form new covalent intermolecular cross-links 

during electrospinning. The amide A also tends to join with 

the −CH
2
 stretch peak when carboxylic acid groups exist in 

a dimeric intermolecular interaction.34

In the current work, the appearance of an amide group 

in the Fourier transform infrared spectra of PGA/gelatin 

 nanofibrous scaffolds indicates that the PGA chains were 

chemically bonded to the gelatin side chains, leading 
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to  introduction of functional groups, such as −NH
2
 and 

−COOH, on the surface of the PGA/gelatin scaffolds. 

Moreover, the combination of PGA and gelatin with a ratio 

of 30 wt% gave rise to a strong and flexible structure, which 

confirms appropriate interaction between PGA and gelatin.

As shown in the differential scanning calorimetry results 

(Figure 2B), the area under the first peak in the differential 

scanning calorimetry curves was determined as the enthalpy 

of the melting of samples (∆H
m
).35 The broadening of the 

melting peak in the samples containing gelatin shows that 

these samples consume more energy for melting than pure 

PGA. Therefore, the presence of gelatin molecules in the 

scaffolds stabilizes the PGA molecules, based on molecular 

interaction between gelatin and PGA. These results are 

indicative of interactions between PGA and gelatin, thus 

confirming the Fourier transform infrared spectra results.

The mechanical properties of the blended fibrous scaf-

folds that are produced from natural extracellular matrix 

proteins, namely collagen and other byproducts, are not 

sufficient for tissue-engineering applications due to their low 

stability, but nanofibrous membranes made of a polymeric 

blend system have the advantage of suitable mechanical 

strength of both natural and synthetic polymers.31 In this 

study, it was found that PGA nanofibers showed inferior 

mechanical properties with beads present. Nanofibers with 

beads have a lower Young’s modulus, tensile strength, and 

elongation at break. This is due to stress concentrations 

induced by the beads as the nanofibers are stretched. One 

study showed that addition of a natural polymer like collagen 

or gelatin to a synthetic polymer such as PLCL decreased 

the strength of the polymer,36 whereas Zhang et al showed 

that Young’s modulus of electrospun poly(3-caprolactone) 

fiber increased with the addition of gelatin, but the tensile 

strength decreased to some extent.37 Wang et al tested the 

mechanical properties of a normal human saphenous vein 

and showed a Young’s modulus of around 15 MPa and a 

tensile strength of around 1000 kPa for a natural vessel.24 

Our results demonstrate that electrospun PGA with 10 wt% 

and 30 wt% gelatin scaffolds are mechanically suitable for 

vascular tissue engineering, with tensile strength values 

approximating natural vein values and a higher Young’s 

modulus of 30 MPa, which is about twice as high and, 

therefore, stiffer than natural veins.

Matsuda et al studied the cell adhesion and proliferation 

of HUVECs on 0.3 µm, 1.1 µm, and 7 µm PLCL fibers. The 

dense surface of the small fibers (0.3 µm, 1.1 µm) provided 

good cell adhesion, spreading, and proliferation, while on the 

large diameter (7 µm) fibers, cells were sparsely distributed 

with less proliferation.12 Similar to our observations, they 

also reported that addition of collagen (5 wt% or 10 wt%) 

enhanced cell adhesion/proliferation, but the effects were 

diminished for fibers with a higher collagen content.38

It is well known that basement membranes and their 

interaction with endothelial cells play a major role in vascu-

lar development. Endothelial cells can produce a variety of 

basement membrane components. Fibronectin and intersti-

tial collagens seem to promote migration and proliferation, 

whereas basement membrane collagen and laminin stimulate 

attachment and differentiation.39 Reactivity of the synthetic 

peptide analogs of adhesive proteins with regard to the 

interaction of human endothelial cells with the extracellular 

matrix is also well described in the literature.40 As an example, 

endothelial cell attachment on uncoated vascular prostheses 

is very weak, but the vascular graft surface with cell adhesion 

promoting Arg-Gly-Asp (RGD)-containing synthetic peptides 

significantly improves this important step in endothelial cell 

seeding of vascular grafts.4,41 Gelatin also has many integrin 

binding sites (such as RGD) for cell adhesion, migration, and 

differentiation, which are found in natural collagen and other 

extracellular matrix proteins. As expected, blending of PGA 

and gelatin improves cell attachment and proliferation com-

pared with cell growth on pure PGA nanofibrous scaffolds.

Cell penetration is highly important for obtaining cell-

cell contacts and also the outcome of engineered tissue. 

Figure 6 Scanning electron micrographs of human umbilical artery smooth muscle cells cultured on PGA/gelatin scaffolds (2000× magnification). (A) Pure PGA, 
(B) PGA/10 wt% gelatin, (C) PGA/30 wt% gelatin, and (D) PGA/50 wt% gelatin.
Abbreviation: PgA, polyglycolic acid.
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In two-dimensional systems, contact inhibition in a mono-

layer culture caused a decrease in cell proliferation when 

cultured on TCPS as control. In three-dimensional scaffold 

systems, cells can penetrate into the scaffold structure, but 

due to the incorporation of high concentrations of gelatin, 

cell penetration may be hampered even in the presence of 

adhesion molecules, due to the physical obstruction posed by 

the dense matrix.42 Mann et al showed that a low concentra-

tion of cell adhesion ligand (RGD) aids cell migration, while 

a higher concentration impedes cell migration, and cells 

growing on the surfaces with a greater RGD produce less 

matrix.43,44 Neff et al demonstrated that an intermediate RGD 

concentration provides maximum proliferation of fibroblasts, 

indicating that excessive peptide levels on the surface causes 

a decrease in proliferation.45 Other studies have shown that 

maximal migration of cells on surfaces coated with matrix 

proteins, such as RGD, collagen and fibronectin, occurs at an 

intermediate level of cell-substrate adhesiveness.46–49 These 

results reflect the fact that cells require cell adhesion ligands 

for migration, but they also demonstrate that there may be an 

optimal ligand concentration for migration and proliferation, 

and indicate that cell viability decreases in scaffolds with a 

high concentration of gelatin after five days. Therefore, it can 

be concluded that only a certain amount of gelatin (10 wt% 

for endothelial cells and 30 wt% for smooth muscle cells) 

in the PGA/gelatin-blended fiber scaffolds can improve cell 

viability significantly, and show better vascular cell compat-

ibility than PGA fiber scaffolds and controls.

Conclusion
In this study, gelatin was added to PGA and electrospun 

with different weight ratios. The results demonstrate that the 

properties of nanofibrous scaffolds were strongly influenced 

by the concentration of gelatin in the scaffolds. Given the 

suitable mechanical properties of these PGA/gelatin scaf-

folds and favorable biocompatibility with vascular cells, 

it is suggested that tubular scaffolds with an inner layer of 

PGA/10 wt% gelatin and an outer layer of PGA/30 wt% gela-

tin are promising scaffolds for vascular tissue  engineering 

and regeneration in vivo.
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