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Background: Silica nanoparticles have been discovered to exert cytotoxicity and induce 

apoptosis in normal human cells. However, until now, few studies have investigated the cyto-

toxicity of silica nanoparticles in tumor cells.

Methods: This study investigated the cytotoxicity of 7–50 nm silica nanoparticles in human 

HepG2 hepatoma cells, using normal human L-02 hepatocytes as a control. Cell nucleus mor-

phology changes, cellular uptake, and expression of procaspase-9, p53, Bcl-2, and Bax, as well 

as the activity of caspase-3, and intracellular reactive oxygen species and glutathione levels in 

the silica nanoparticle-treated cells, were analyzed.

Results: The antitumor activity of the silica nanoparticles was closely related to particle size, 

and the antiproliferation activity decreased in the order of 20 nm . 7 nm . 50 nm. The silica 

nanoparticles were also cytotoxic in a dose- and time-dependent manner. However, the silica 

nanoparticles showed only slight toxicity in the L-02 control cells, Moreover, in HepG2 cells, 

oxidative stress and apoptosis were induced after exposure to 7–20 nm silica nanoparticles. 

Expression of p53 and caspase-3 increased, and expression of Bcl-2 and procaspase-9 decreased 

in a dose-dependent manner, whereas the expression of Bax was not significantly changed.

Conclusion: A mitochondrial-dependent pathway triggered by oxidative stress mediated by 

reactive oxygen species may be involved in apoptosis induced by silica nanoparticles, and hence 

cytotoxicity in human HepG2 hepatic cancer cells.

Keywords: silica nanoparticles, cytotoxicity, apoptosis, HepG2 cells, mitochondrial-dependent 

pathway, oxidative stress

Introduction
Due to their special physicochemical characteristics, nanoscaled materials with at least 

one dimension in the range of 1–100 nm have been increasingly used in food, cosmetics, 

microelectronics, ceramics, and catalysts. With improvements in their synthesis and 

surface modification in recent years, application of nanoparticles has extended to the 

biomedical and biotechnological fields, including cancer therapy,1 medical imaging,2 

and drug delivery.3 Of the prominent examples reported, some nanoscaled particles, 

such as hydroxyapatite and TiO
2
, have been found to show significant inhibitory effects 

on the metabolic viability of several types of cancer cells.4–6

Silica nanoparticles are a common type of compound, and have not only been widely 

utilized in the industrial field, but also in diagnostics, imaging, and drug delivery.7–9 

Furthermore, in the past few years, several studies have investigated the toxic effects 

of silica nanoparticles in vitro and in vivo. These reports have demonstrated that 

exposure to silica nanoparticles can increase levels of reactive oxygen species and 
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trigger cytokine release and apoptosis in macrophages and 

other human cells.10 For example, Napierska et al found that 

15 nm silica nanoparticles could cause cytotoxic damage and 

decrease cell survival in human endothelial cells.11 Ye et al 

reported that 20–50 nm silica nanoparticles induced obvious 

cytotoxicity and apoptosis in myocardial cells, human hepatic 

cells, and human embryonic kidney cells,12–14 with oxidative 

stress being the main contributor to the cytotoxicity induced 

by silica nanoparticles. Although progress has been made in 

clarifying the interaction of silica nanoparticles with normal 

cells, there is still limited knowledge about the effects of 

silica nanoparticles on tumor cells. Further, the effect of 

particle size and the underlying molecular mechanisms for 

their antitumor activity remain unclear.

In this study, the apoptotic and cytotoxic effects of silica 

nanoparticles on tumor cells were investigated using human 

HepG2 hepatic cells as the model tumor cell line and a human 

L-02 hepatocyte cell line as the control. In particular, we 

studied the effect of silica nanoparticle size on cytotoxicity. 

The HepG2 cell line was selected because hepatoma is a 

common primary malignancy of the liver worldwide and this 

cell line has been widely used as a human hepatoma model 

in the development of new antitumor medicines.15,16

Materials and methods
Nanoparticles
The silica nanoparticles used in this study were sized 7 nm, 

20 nm, and 50 nm, ie, SNP7, SNP20, and SNP50 respec-

tively, and supplied by Shanghai Cabot Chemical Co Ltd. 

Their physicochemical characteristics are shown in Table 1. 

Fluorescein isothiocyanate (FITC)-labeled silica nanopar-

ticles were prepared as follows. Firstly, 1.0 mg FITC, 5 mL 

N, N-dimethylformamide, and 20 µL KH550 were mixed 

by stirring for three hours at room temperature (solution A). 

Next, the silica nanoparticles were dissolved in 500 mL of 

ultrapurified water (solution B). Finally, solution A was added 

dropwise to solution B. The reaction took two hours to com-

plete. FITC-labeled silica nanoparticles were finally obtained 

after washing several times with ultrapurified water.

Cell culture
Human HepG2 hepatoma and normal human L-02 hepatic 

cell lines were purchased from The Cell Bank of the Type 

Culture Collection of the Chinese Academy of Sciences, 

Shanghai, China. HepG2 and L-02 cells were maintained 

in Dulbecco’s modified Eagle’s medium (Gibco, Carls-

bad, CA) supplemented with 10% (v/v) fetal bovine 

serum (Gibco), 100  U/mL penicillin, and 100  µg/mL 

streptomycin, and grown at 37°C in a 5% CO
2
 humidified 

environment.

Cellular uptake and distribution  
of silica nanoparticles
To determine the cellular localization of silica nanoparticles, 

HepG2 and L-02  cells were plated into 6  cm dishes at a 

density of 5 × 104 cells/mL. After 24 hours of exposure to 

FITC-labeled SNP20 at a concentration of 320 µg/mL, the 

dishes were washed twice with phosphate-buffered saline to 

remove the culture medium. The cells were then fixed using 

3.7% paraformaldehyde for 20 minutes and stained with DAPI 

for 30 minutes at 37°C. Localization of the silica nanoparticles 

and cell nuclear morphology were observed by fluorescence 

microscopy. To quantify further the uptake of the silica nano-

particles, HepG2 and L-02 cells were plated into 6 cm dishes 

at a density of 5 × 105 cells/mL. After 24 hours of exposure to 

FITC-labeled SNP7, SNP20, and SNP50 at a concentration 

of 160 µg/mL, the dishes were washed twice with phosphate-

buffered saline to remove the culture medium. The cells were 

collected and centrifuged, then rinsed with 0.1 M phosphate-

buffered saline and resuspended in phosphate-buffered saline at 

a concentration of 1 × 106 cells/mL. Flow cytometry analysis was 

performed at an emission wavelength of 530 nm for FITC.

Cytotoxicity
HepG2 and L-02  cells were plated into a 96-well culture 

plate at a density of 3 × 104 cells/mL, and allowed to attach 

for 12 hours. The silica nanoparticles were then diluted to 

appropriate concentrations and immediately applied to the 

cells. Dose-dependent cytotoxicity was assessed by exposing 

cells to the silica nanoparticles at concentrations of 20, 40, 

80, 160, 320, and 640 µg/mL for 48 hours. A time-dependent 

cytotoxicity study was performed by exposing cells to silica 

nanoparticles at a concentration of 160 µg/mL for 24, 48, and 

72 hours. Viability of the cells was evaluated using the MTT 

reduction method. The cells were incubated with MTT for 

four hours, and 200 µL dimethyl sulfoxide was then added to 

each well to dissolve the dark blue crystal. An optical density 

of 492 nm was used to monitor cell viability.

Table 1 Physicochemical characteristics of the silica nanoparticles

Size and  
distribution  
(nm)

BET surface  
area  
(m2/g)

Crystalline  
structure

SNP7   7.5 ± 1.6 380 Amorphous
SNP20 18.9 ± 2.1 150 Amorphous
SNP50 48.8 ± 5.6 65 Amorphous

Abbreviations: SNP7, size 7 nm silica nanoparticles; SNP20, size 20 nm silica 
nanoparticles; SNP50, size 50 nm silica nanoparticles.
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Nuclear morphology
HepG2  cells were placed in a six-well culture plate, and 

treated with SNP20 particles at a concentration of 160 µg/mL 

for 24 and 48 hours. After rinsing with phosphate-buffered 

saline (pH 7.4) twice, the cells were fixed by 3.7% para-

formaldehyde for 20  minutes. The cell nucleus was then 

stained with DAPI for 30 minutes at 37°C. The cell nuclear 

morphology was observed under a fluorescence microscope 

(excitation 330–380  nm, emission 430–460  nm). Apop-

totic cells were identified by nuclear morphology changes, 

eg, chromatin condensation and fragmentation.

Annexin V-FITC/propidium iodide  
apoptosis assay
HepG2 and L-02 cells were placed in a six-well culture plate 

and treated with 160 µg/mL and 320 µg/mL of SNP20 par-

ticles for 24 hours. Normal, apoptotic, and necrotic cells were 

distinguished using an Annexin V-FITC/propidium iodide 

assay kit (Beyotime Bioengineering Institute, China) accord-

ing to the manufacturer’s instructions. Thereafter, 1.0 × 106 

cells were washed with phosphate-buffered saline, resus-

pended in 400 µL of binding buffer, and 5 µL of Annexin 

V-FITC was then added to the samples. After incubation for 

15 minutes at 4°C in the dark, 10 µL of propidium iodide 

was added and incubated for five minutes at 4°C. The flow 

cytometry analysis was performed within 15 minutes.

Caspase-3 fluorescence assay
HepG2 cells were seeded into a 96-well plate at a density 

of 5 ×  104 cells/well in 100 µL of culture medium. After 

24 hours of attachment, the cells were treated with SNP20 

at concentrations of 160 µg/mL and 320 µg/mL for 24 hours 

and 48 hours, respectively. The detached and attached popu-

lations were then pelleted by centrifugation (1200 rpm, five 

minutes). Thereafter, 200 µL of caspase-3 assay buffer was 

added to each well and the plate was centrifuged at 800 × g 

for five minutes, after which 100 µL of caspase-3 lysis buf-

fer was added to each well and incubated by gentle shaking 

on an orbital shaker for 30 minutes at room temperature. 

After that, the cells were microcentrifuged for 10 minutes 

(10,000 × g), and 90 µL of the supernatant (cytosolic extract) 

were transferred to a fresh tube for protein assay. Finally 

10 µL of caspase-3 assay buffer was added to appropriate 

wells and 100 µL of the caspase-3 substrate solution was 

also added into each well and incubated for 30  minutes. 

After reaction, the fluorescence intensity of each well was 

detected under a fluorescence plate reader (excitation 485 nm, 

emission 535 nm).

Western blotting analysis
HepG2  cells were treated with SNP20 for 48  hours to 

determine the p53, Bcl-2, Bax, and procaspase-9 pro-

teins. The cells were harvested and lysed, and the total 

protein concentration was measured using the Bradford  

protein assay with bovine serum albumin as the standard. 

The protein samples were separated by 10% sodium dode-

cyl sulfate gels and transferred to polyvinylidene difluoride 

membranes (Millipore Corporation, Billerica, MA). After 

blocking with 5% nonfat dry milk, the membranes were incu-

bated with a dilute solution (1:1000) of primary antibodies 

including anti-p53, anti-Bax, anti-Bcl-2 anti-procaspase-9, 

and anti-actin (Santa Cruz Biotechnology Inc, Santa Cruz, 

CA) overnight at 4°C. The membranes were then exposed 

to the secondary antibodies, ie, alkaline phosphatase-labeled 

goat antirabbit immunoglobulin or alkaline phosphatase-

labeled goat antimouse immunoglobulin (Santa Cruz), at a 

dilution of 1:1000. The membrane was washed three times 

with phosphate-buffered saline containing 0.05% Tween-20 

between every antibody binding reaction. Immunodetection 

using the secondary peroxide-conjugated antibody and 

chemiluminescence were performed according to the manu-

facturer’s instructions. Equal protein loading was verified by 

probing with the anti-β actin antibody.

Reactive oxygen species  
and glutathione assays
To compare particles with different sizes in the reactive 

oxygen species and glutathione assays, we chose SNP7 and 

SNP20, which have been shown to have strong cytotoxic 

effects on HepG2  in MTT assays. Intracellular reactive 

oxygen species were detected using 2′, 7′-dichlorofluorescin 

diacetate (DCFH-DA, Sigma, Shanghai, China), which is an 

oxidation-sensitive fluorescence probe. After treatment with 

80, 160, and 320 µg/mL of SNP7 and SNP20 for 24 hours, 

the cells were washed twice with phosphate-buffered saline 

and then loaded with DCFH-DA 10 µM diluted in serum-

free medium and incubated at 37°C for 30  minutes. The 

intensities of fluorescence were detected using a Synergy 

2  multimode microplate reader (BioTek, Beijing, China), 

with an excitation wavelength of 485 nm and an emission 

wavelength of 528 nm.

To assay for glutathione, the L-02 cells and HepG2 cells 

were plated in 6 cm Petri dishes, and treated with 80, 160, 

and 320 µg/mL of SNP7 and SNP20 for 24 hours. After that, 

the cells were scraped off, collected, rinsed with phosphate-

buffered saline to remove culture medium, and then resus-

pended in 0.5% cold Triton X-100. Complete cell disruption 
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was achieved by freeze-thawing twice and centrifugation 

(12,000 g for 15 minutes at 4°C). The supernatant was used 

for the following assays. Protein concentrations were deter-

mined using the bovine serum albumin method. Glutathione, 

an antioxidant, protects cells from free radicals. Glutathione 

activity was assayed using a glutathione assay kit (Jiancheng 

Bioengineering Institute, Nanjing, China) according to the 

manufacturer’s instructions. The assay utilizes a colorimetric 

method, and the absorbances at 420  nm were quantitated 

using spectrophotometry.

Statistical analysis
All experiments were done at least three times unless oth-

erwise indicated. Data are expressed as means ±  standard 

deviation, and statistical significance was tested among and 

between groups using one-way analysis of variance followed 

by Dunnett’s post hoc test. Differences with P , 0.05 were 

considered to be significantly significant.

Results
Physicochemical characteristics
Typical physicochemical properties of the silica nanopar-

ticles are summarized in Table 1. As shown, all silica nano-

particles used in this study were in an amorphous phase, and 

BET surface areas dramatically increased, with reduction 

in particle size. Transmission electron microscopic images 

(Figure  1) also confirmed sphere-like silica nanoparticles 

with approximate diameters of 7 nm, 20 nm, and 50 nm.

Cellular uptake and sublocalization
FITC has been extensively used as a fluorescence marker 

to label nanoparticles. In this work, in order to explore the 

localization and distribution of silica nanoparticles in dif-

ferent cells, FITC was used as the fluorescence marker to 

label the silica nanoparticles in advance. Cellular uptake and 

subsequent localization of FITC-labeled silica nanoparticles 

in HepG2 cells and L-02 cells after 48 hours of incubation 

are shown in Figure 2B and D. Figure 2A and D are the cor-

responding images of HepG2 cells and L-02 cells without 

silica nanoparticle exposure for comparison. It can be seen 

from Figure 2A and C that the untreated HepG2 cells and 

L-02 cells were large and spindle-shaped in appearance, and 

the cell nuclei were round with homogeneous chromatin.

After exposure to silica nanoparticles, as shown in 

Figure  2B, many silica nanoparticles were located in the 

cytoplasm and inside the nucleus (Figure 2B, green color) 

of HepG2 cells, and cells exposed to silica nanoparticles for 

48 hours changed greatly in morphology (eg, cell lysis and 

loss of spindle shape). More cell debris was also found in 

these samples. However, in the case of L-02 cells, very few 

silica nanoparticles were inside the cells, and were mainly 

in the perinuclear region (Figure 2D, green color) and not 

inside the nucleus. Almost all the L-02 cells were intact and 

of typical spindle-shaped appearance.

Figure  2E and F show the flow cytometry analysis of 

HepG2 and L-02 cells incubated with 160 µg/mL of differ-

ent sized FITC-silica nanoparticles for 24 hours. As shown, 

in HepG2, distinct peaks of high fluorescence intensity 

were observed for cells with internalized FITC-SNP20, but 

fluorescence intensity was lower for cells incubated with cells 

having internalized FITC-SNP7 and FITC-SNP50. However, 

in L-02 cells, slight fluorescence intensity was detected for 

all kinds of cells with internalized silica nanoparticles.

Cytotoxicity
The cytotoxicity of silica nanoparticles at various sizes to 

HepG2 and L-02 cells was assessed using the MTT reduction 

method and the results are shown in Figure 3. HepG2 cells 

exposed to SNP7 and SNP20 for 48 hours at dose levels of 

80–640 µg/mL showed decreased cell viability as a function 

A

50 nm

B C

50 nm 50 nm

Figure 1 Transmission electron microscopic images of silica nanoparticles of three diameters: (A) 7 nm, (B) 20 nm, and (C) 50 nm.
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A B

C D

Figure 2 Fluorescence micrographs of HepG2 and L-02 cells treated for 48 hours (200× magnification). (A) vehicle (HepG2), (B) FITC-labeled SNP20 at 160 µg/mL (HepG2), 
(C) vehicle (L-02), (D) FITC-labeled SNP20 at 160 µg/mL (L-02). Cells were stained with DAPI to visualize nuclear morphology (blue). FITC-labeled SNP20 (green) were 
localized inside HepG2 cells. The top left quadrants represent the cell nuclei (blue) stained with DAPI. The top right quadrants represent the phase contrast image, the 
bottom left quadrants represent the FITC-labeled (green) silica nanoparticles, the bottom right quadrants represent the overlay of the top left quadrants and the bottom left 
quadrants. Also shown are flow cytometry analyses of (E) HepG2 and (F) L-02 cells incubated with 160 µg/mL FITC-labeled silica nanoparticles for 24 hours.
Abbreviations: FITC, fluorescein isothiocyanate; SNP7, size 7 nm silica nanoparticles; SNP20, size 20 nm silica nanoparticles; SNP50, size 50 nm silica nanoparticles.
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of concentration. Also, in contrast, SNP20 particles showed 

much higher cytotoxicity than SNP7 particles, while SNP50 

particles did not have a significant cytotoxic effect on 

HepG2 cells at any concentration. Also, cell viability after 

exposure to SNP20 decreased markedly with an increase 

in concentration. Specifically, when the concentration of 

SNP20 reached 320 µg/mL, cell viability fell to less than 20% 

of the control value. Figure 3B shows the cell viability of 

L-02 cells after treatment with silica nanoparticles of different 

sizes. It can be seen that when the concentration was below 

160  µg/mL, silica nanoparticles 7–50  nm in size showed 

negligible cytotoxicity. Upon increasing the concentration 

further to 320 µg/mL and 640 µg/mL, the SNP20 and SNP7 

began to show slight toxicity.

Figure 3C shows that the cell viability of HepG2 cells 

after exposure to SNP7 and SNP20 at 160 µg/mL decreased 

dramatically with the passage of time. For SNP20, after 

72  hours of exposure, cell viability dropped to 18.5%. 

However, viability of HepG2  cells decreased slightly by 

2%–5% within 72 hours of treatment with SNP50. In the case 

of L-02 cells, as shown in Figure 3D, no obvious cytotoxicity 

was observed even after 72 hours of incubation with SNP7, 

SNP20, and SNP50. Therefore, it can be concluded that the 

cytotoxicity of silica nanoparticles acted in a size-, dose-, 

time- and cell-dependent manner. Therefore we used mainly 

SNP20 particles in the subsequent study.

Apoptosis
To investigate the influence of particle size on apoptosis, we 

stained HepG2 cells with DAPI after 24 hours and 48 hours 

of exposure to SNP20, and checked for cell morphology 

changes under fluorescence microscopy. Figure  4  shows 

significant morphological changes in nuclear chromatin 

after SNP20 treatment for 24 hours and 48 hours. It can be 
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A B C 400x

Figure 4 Fluorescence micrographs of HepG2 cells treated by SNP20 at 160 µg/mL with (A) vehicle, (B) at 24 hours, and (C) at 48 hours (400× magnification). Cells were 
stained with DAPI to visualize nuclear morphology. Note that vehicle-treated HepG2 cells contained round nuclei with homogeneous chromatin. The cells treated with 
SNP20 showed chromatin condensation, reduction of nuclear size, and nuclear fragmentation.
Abbreviation: SNP20, size 20 nm silica nanoparticles.

seen that untreated cells (controls) contain round nuclei with 

homogeneous chromatin and exhibit a less bright blue color 

(Figure 4A). In contrast, in cells treated with silica nano-

particles, particularly the 48-hour group, the blue emission 

light in the apoptotic cells is much brighter than that in the 

untreated cells. The nucleus shows the classical morpho-

logical characteristics of apoptosis, ie, reduction in nuclear 

size, chromatin condensation, and DNA fragmentation 

(Figure 4B and C).

To quantify cell apoptosis further, the HepG2 cells and 

L-02 cells exposed to SNP20 particles at concentrations of 

160  µg/mL and 320  µg/mL were stained using Annexin 

V-FITC/propidium iodide double-staining and analyzed by 

flow cytometry. Apoptotic cells that lose asymmetry of their 

membrane phospholipids leave phosphatidylserine behind 

on the outer leaflet of the plasma membrane. Annexin V, 

a calcium-dependent phospholipid-binding protein with a 

high affinity for phosphatidylserine, can therefore be used 

as a sensitive probe for the presence of phosphatidylserine 

on the cell membrane and hence as a marker of apoptosis. 

Propidium iodide is a nonspecific DNA intercalating agent, 

which is excluded by the plasma membrane of living cells, 

and thus can be used to distinguish necrotic cells from apop-

totic and living cells by supravital staining without prior 

permeabilization. The results are shown in Figure 5, where 

A–F correspond to the representative dot plots of Annexin 

V/propidium iodide staining in HepG2 cells and L-02 cells, 

and Figure 5G shows the calculated percentages of apoptotic 

cells. For L-02  cells, we can see from Figure  5A–C that 

almost no apoptotic cells were detected in controls or cells 

treated with silica nanoparticles. There were also no apop-

totic cells detected in the control HepG2 cells (Figure 5D). 

However, in the SNP20-treated groups, many apoptotic 

cells could be found. After 24  hours of incubation with 

160 µg/mL of SNP20 particles, the number of HepG2 cells 

undergoing apoptosis and in late-stage apoptosis are 29.65% 

and 12.9%, respectively, and the corresponding numbers in 

the 320 µg/mL group are 41.14% and 21.14% (Figure 5G), 

indicating that apoptosis induced in HepG2 cells by SNP20 

is dose-dependent. These results confirm again that silica 

nanoparticles induce apoptosis in HepG2 cells and initiate 

apoptosis in L-02 cells.

Effect on apoptotic proteins
In order to understand the effect of silica particles on 

apoptosis-related proteins in HepG2  cells, two sets of 

experiments were carried out, ie, one investigating changes 

in caspase activity and the other investigating alteration in 

expression of apoptosis-related proteins.

Caspase-3 plays a pivotal role in the terminal phase 

of apoptosis induced by diverse stimuli, and its activity 

in HepG2 cells was first measured. As shown in Figure 6, 

SNP20  induced a dramatic increase of DEVD-specific 

caspase-3 activity. In the 160 µg/mL and 320 µg/mL groups, 

caspase-3 activity was about 2–3-fold higher than that of 

controls after 24  hours of incubation and about 3–5-fold 

after 48  hours of incubation. These results indicate that 

SNP20  induced caspase-3 activity in a dose- and time-

dependent manner.

Levels of p53, procaspase-9, Bcl-2, and Bax in 

HepG2 cells after treatment with silica nanoparticles are shown 

in Figure 7. It can be seen that after 24 hours of exposure to 

SNP20 at 160 µg/mL and 320 µg/mL, the level of p53, a tumor 

suppressor, increased significantly, and expression of Bcl-2 

and procaspase-9 decreased in an obvious dose-dependent 

manner, while Bax showed little change (Figure 7).
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Figure 5 Annexin V-FITC/PI double staining analysis of apoptosis in HepG2 cells and L-02 cells (24 hours). (A) L-02 control cells, (B) L-02 cells with SNP20 160 µg/mL, 
(C) L-02 cells with SNP20 320 µg/mL, (D) HepG2 control cells, (E) HepG2 cells with SNP20 160 µg/mL, (F) HepG2 cells with SNP20 320 µg/mL. Top right quadrant, dead 
cells in late stage of apoptosis; bottom right quadrant, cells undergoing apoptosis; bottom left quadrant, viable cells. (G) Percentages of apoptosis in L-02 and HepG2 cells. 
The total percentage of viable cells, cells undergoing apoptosis, apoptotic cells, and necrosis cells is taken as 100%. Typical data are shown from one of three independent 
experiments with similar results versus control group).
Note: *P , 0.05.
Abbreviations: FITC, fluorescein isothiocyanate; PI, propidium iodide; SNP20, size 20 nm silica nanoparticles.
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Figure 6 Activation of caspase-3 during apoptosis induced by silica nanoparticles. 
HepG2 cells were treated with size 20 nm silica nanoparticles at 160 and 320 µg/mL 
for 24 hours and 48 hours (versus control group).
Note: *P , 0.05.

Intracellular reactive oxygen species  
and glutathione levels
Levels of reactive oxygen species and glutathione serve as 

reliable indicators of oxidative stress. Results in Figure 8A 

and B show that exposure to SNP7 and SNP20 caused a 

dose-dependent increase in reactive oxygen species level. 

Reactive oxygen species was strongly increased in cells 

exposed to 80, 160, and 320 µg/mL of SNP7 and SNP20 

compared with the control group. Figure 8C and D show  

that SNP7 and SNP20 induced a dose-dependent decrease 

P53

Bcl-2

Bax

Procaspase-9

β-actin

53 kD

0 160

Concentration (µg/mL)

320

26 kD

21 kD

37 kD

47 kD

Figure 7 Effects of size 20 nm silica nanoparticles on p53, Bax, and Bcl-2 protein 
levels in HepG2 cells. Western blot analysis of p53, Bax, Bcl-2, procaspase-9, and 
β-actin protein abundances in HepG2 cells. Shown are typical data from one of three 
independent experiments with similar results.

in glutathione levels. However, no significant alteration of 

reactive oxygen species and glutathione levels was seen in 

L-02 cells exposed to silica nanoparticles at all the concen-

trations tested. There was a significant reverse correlation 

between reactive oxygen species levels and glutathione levels 

(R2 = 0.98849, 0.99427). This phenomenon implies that SNP7 

(Figure 9A) and SNP20 (Figure 9B) generate oxidative stress 

in hepatic tumor cells.

Discussion
With their dramatically increasing applications in the indus-

trial and biomedical fields, the in vitro and in vivo biodis-

tribution and biosafety of silica nanoparticles have attracted 

more and more attention in recent years.17–19 Previous reports 

have shown that silica nanoparticles can cause marked pro-

liferative inhibition in myocardial cells, human embryonic 

kidney cells, and human hepatic cell lines in vitro.9,12,13 It has 

also been suggested that induction of apoptosis is involved 

in cytotoxicity. In this study, we wanted to investigate  

further the effect of silica nanoparticles on cytotoxicity and 

apoptosis in human hepatoma HepG2 cells. With this classic 

model cell line, the results reported here may be valuable in 

the discovery and development of tumor chemotherapy and 

other antitumor-related research.

Data obtained from in vitro MTT research show that 

silica nanoparticles 7–50 nm in size induce sharp growth 

inhibition of HepG2  cells above 80  µg/mL and that the 

strength of the antiproliferative effect is in the order of 

SNP20 .  SNP7 .  SNP50. Also, the results showed that 

the cytotoxicity of silica nanoparticles occurred in a dose-

dependent and time-dependent manner, which is consistent 

with a trend reported previously.12,13,20 Meanwhile, our data 

reveal that in normal human L-02 cells, SNP7 and SNP20 

exhibited slight cytotoxicity at concentrations of 160 and 

320 µg/mL, whereas SNP50 showed almost no cytotoxicity. 

These results are consistent with a previous report from 

Ye et  al which found that 21  nm silica nanoparticles at 

concentrations above 300  µg/mL could induce oxidative 

stress, apoptosis, and cytotoxicity in L-02 cells, but 48 nm 

and 86 nm silica nanoparticles, even at the concentration of 

600 µg/mL, did not exhibit obvious cytotoxicity.13

This noticeable cell- and size-dependent cytotoxicity 

in human normal and tumor cells aroused our attention. 

Because of their small size, nanoparticles can interact readily 

with biomolecules either on the surface of or within cells. 

Cellular/subcellular distribution of the particles has a con-

siderable influence on protein aggregation, gene expression, 
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Figure 8 Effects of SNP7 and SNP20 on reactive oxygen species and glutathione levels in HepG2 and L-02 cells. (A) Effect of SNP7 on reactive oxygen species levels, 
(B) effect of SNP20 on reactive oxygen species levels, (C) effect of SNP7 on glutathione levels, and (D) effect of SNP20 on glutathione levels. (versus control group).
Note: *P , 0.05.
Abbreviations: GSH, glutathione; SNP7, size 7 nm silica nanoparticles; SNP20, size 20 nm silica nanoparticles.
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and cell cytotoxicity.21,22 Previously, Nel et al had suspected 

that nanomaterials could penetrate cell membranes, lodge in 

mitochondria, and trigger injurious responses.23 Recent stud-

ies have confirmed that nanomaterials can trigger cytotoxic 

effects by injuring the plasma membrane.24–26 Therefore, 

from this point of view, understanding how silica nanopar-

ticles induce cytotoxicity requires study of the trafficking 

of silica nanoparticles within different cells. In our study, 

SNP20 which had the greatest difference in cytotoxicity in 

HepG2 and L-02 cells were used to track the biodistribution 

of silica nanoparticles. As expected, cellular localization of 

FITC-labeled 20 nm silica nanoparticles at 160 µg/mL in 

HepG2 and L-02 cells was very different. Also, the amount 

of FITC-labeled SNP20 localized inside the HepG2  cells 

was much greater than that localized in the L-02 cells. Since 

silica nanoparticles of the same size and from the same batch 

were used for both types of cells, it can be inferred that the 

distinct responses of silica nanoparticles to different cells 

(HepG2 and L-02) might be related to the cell surface prop-

erties or uptake capacity of the different cells. Correlating 

cellular uptake and cytotoxicity in the different cells, it can 

be hypothesized that few silica nanoparticles translocated 

into L-02 cells thereby causing little cytotoxicity, whereas 

more silica nanoparticles localizing inside HepG2  cells 

initiated more cytotoxicity. Based on this premise, it can be 

inferred that the size-dependent cytotoxicity of silica nano-

particles in HepG2 might also be related to the amount of 

silica nanoparticles taken by the HepG2 cells. To investigate 

this, flow cytometry analysis was used to detect the silica 

nanoparticle uptake rate by both types of cells. As expected, 

the results showed that fluorescence intensity was present in 

a cell- and size-dependent manner, which is consistent with 

our MTT results.

Apoptosis, or programmed cell death, is an important 

way to maintain homeostasis in terms of cell division and 

cell death. Dysregulation of apoptosis is implicated in the 

development of most cancers. Thus, induction of apoptosis 

in cancer cells is an important focus in the discovery of 

anticancer drugs.27 To study the cytotoxicity initiated by 

silica nanoparticles further, we investigated apoptosis using 

silica nanoparticles in HepG2. Morphological changes in 

the nucleus and Annexin V-FITC/PI staining showed dis-

tinct dose-dependent induction of apoptosis after 24 hours 

in HepG2 cells treated with SNP20. It is well accepted that 

apoptosis requires the activation of a series of caspases, 

including initiator and effector caspases, which are ubiqui-

tously and constitutively expressed as inactive zymogens in 

the cytosol.28 The initiator caspase, the hallmark promoter of 

apoptosis, can be activated by the mitochondria or by death 

receptors on the cell surface. Because most anticancer drugs 

are believed to trigger apoptosis via a mitochondria-mediated 

pathway,26,29 we hypothesize that silica nanoparticles, as a 

new anticancer biomaterial, might also initiate apoptosis 

via a mitochondria-mediated pathway. On this premise, we 

studied changes in mitochondrial-dependent apoptotic pro-

tein levels, including caspase-3 activity, which is the most 

important effector caspase, and the apoptosis-related Bcl-2 

family of proteins which control the mitochondrial death 

pathway. The results show that SNP20 was a potent inducer 

of caspase-3 activity in HepG2 cells. Furthermore, as men-

tioned earlier, there are two major apoptotic pathways, ie, the 

extrinsic pathways (death receptors) and intrinsic pathways 

(mitochondria), which are initiated by the caspase family 

of proteins. Therefore, it is feasible to differentiate between 

them by evaluating the activities of these proteins.30,31 The 

results of this study indicate that silica nanoparticles could 

activate caspase-3 and downregulate procaspase-9, which 

might indicate an activation of caspase-9  in HepG2 cells. 

These results suggest that silica nanoparticles can potentially 

change apoptotic protein expression and trigger apoptosis 

in mitochondria-dependent pathways in HepG2  cells. In 

addition, HepG2 cells exposed to SNP20 showed decreased 

expression of Bcl-2, while expression of Bax was equal in 

each group. In other investigations, the change in Bax/Bcl-2 

ratio has resulted in significant activation of caspases, and 

led to cell death.32,33 These results obtained here suggest that 

silica nanoparticles could potentially alter apoptotic protein 

expression and thus trigger apoptosis in a mitochondria-

dependent pathway in HepG2 cells.

Recent studies have suggested that p53  has a critical 

role in the cellular response to DNA damage and apoptosis 

induced by reactive oxygen species.34,35 Our data for Western 

blotting (Figure 7) suggest that SNP20-activated p53 medi-

ated the apoptosis response in a dose-dependent manner. This 

result is consistent with a study by Mroz et al, which showed 

that nanoparticles and reactive oxidative species could induce 

DNA damage, activate p53, and mimic irradiation-related 

carcinogenesis pathways.36

Oxidative stress is now considered to be one of the main 

triggers of apoptosis in response to the damage done to DNA. 

With a high amount of oxidative stress, nanomaterials are 

suspected to be involved in perturbing mitochondrial pores, 

resulting in apoptosis.23 Roberts et al found that hydroxy-

lated fullerenes at concentrations higher than 20 µM would 
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induce apoptosis in lens cells whether or not the cells were 

irradiated.37 Foucaud et al stated that the oxidative potential 

of nanoparticles was a central consideration in measuring 

their toxicity.38 It is also well established that reactive oxygen 

species and glutathione are two important biochemical and 

physiological indicators of intracellular oxidative stress. 

Previous papers have reported that oxidative stress mediated 

by reactive oxygen species play a pivotal role in the ability 

of some materials (nano-TiO
2
, nano-CeO

2
, and nano-C

60
) 

to disrupt normal cellular function.20,39–41 Our data show 

that the level of reactive oxygen species in HepG2  cells 

in the SNP20-exposed group increased substantially when 

compared with the control group and SNP7-exposed group 

(Figure  8). In addition to the increase in reactive oxygen 

species, the reduced glutathione level indicated lipid per-

oxidation in HepG2 cells. Therefore, concomitant cellular 

oxidative stress was manifested by elevated reactive oxygen 

species levels and reduced glutathione levels. The inverse 

linear relationship between the reactive oxygen species level 

and the glutathione level shown in Figure 9  indicates that 

free radical species were generated by exposure to silica 

nanoparticles, which reduced intracellular antioxidant levels 

(R2 = 0.98849 in the SNP7-exposed group; R2 = 0.99427 in 

the SNP20-exposed group).

Conclusion
In this study, we have demonstrated that silica nanoparticles in 

the 7–50 nm size range exhibited obvious proliferative inhi-

bition in human hepatoma HepG2 cells in a size-, time-, and 

dose-dependent manner, whereas they appeared to be less 

toxic in human normal L-02 cells. Furthermore, oxidative 

stress mediated by reactive oxygen species, activation of p53, 

upregulation of Bax/Bcl-2 ratio, and activation of procaspase-9 

and caspase-3 expression were involved in the mitochondrial-

dependent pathways of apoptosis induced by silica nanopar-

ticles. These findings provide the valuable information that 

silica nanoparticles alternatively induce antiproliferation 

effects in HepG2 cells, and a mitochondria-dependent path-

way is involved in this nanoparticle-induced apoptosis. Based 

on these results, it can be concluded that oxidative stress is 

the possible mechanism underlying the etiology of cytotox-

icity and apoptosis induced by silica nanoparticles.
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