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Background: With a US Food and Drug Administration-labeled indication to treat 

attention-deficit/hyperactivity disorder (ADHD), the nonstimulant guanfacine has become the 

preferred α
2
-agonist for ADHD treatment. However, significant interindividual variability has 

been observed in response to guanfacine. Consequently, hypotheses of a contributing interac-

tion with the ubiquitously expressed drug transporter, P-glycoprotein (P-gp), have arisen. We 

performed an in vitro study to determine if guanfacine is indeed a substrate of P-gp.

Methods: Intracellular accumulation of guanfacine was compared between P-gp expressing 

LLC-PK1/MDR1 cells and P-gp-negative LLC-PK1 cells to evaluate the potential interac-

tion between P-gp and guanfacine. Cellular retention of guanfacine was analyzed using a 

high-performance liquid chromatographic-ultraviolet method. Rhodamine6G, a known P-gp 

substrate, was included in the study as a positive control.

Results: At guanfacine concentrations of 50 µM and 5 µM, intracellular accumulation of 

guanfacine in LLC-PK1/MDR1 cells was, 35.9% ± 4.8% and 49.0% ± 28.3% respectively, of 

that in LLC-PK1 cells. In comparison, the concentration of rhodamine6G, the positive P-gp 

substrate, in LLC-PK1/MDR1 cells was only 5% of that in LLC-PK1 cells.

Conclusion: The results of the intracellular accumulation study suggest that guanfacine is, at 

best, a weak P-gp substrate. Therefore, it is unlikely that P-gp, or any genetic variants thereof, 

are a determining factor in the interindividual variability of response observed with guanfacine 

therapy.
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Introduction
Guanfacine, initially marketed as an antihypertensive agent, is a selective 

α
2
-adrenergic agonist believed to exert its antihypertensive activity by decreasing 

sympathetic tone in the central nervous system and reducing vascular resistance.1 

However, because of its preferential effects on α
2A

-adrenoreceptors, which are 

believed to play a role in attentional and organizational functions in the prefron-

tal cortex, guanfacine became a drug of interest in the treatment of attention-

def icit/hyperactivity disorder (ADHD).2,3 Although psychostimulants, such 

as methylphenidate and amphetamine, are considered first-line treatments for 

ADHD, they are discontinued in approximately 5% of patients due to lack of 

efficacy or unwanted side effects.4 When psychostimulants are ineffective or 

only partially effective in reducing target symptoms, clinicians may opt to utilize 

nonstimulant medications, such as the α
2
-agonists clonidine and guanfacine, as 

either adjunctive treatments or monotherapy. Because of its greater selectivity for 

N
eu

ro
ps

yc
hi

at
ric

 D
is

ea
se

 a
nd

 T
re

at
m

en
t d

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.

www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/NDT.S24153
mailto:jmarkowitz@cop.ufl.edu


Neuropsychiatric Disease and Treatment 2011:7submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

502

Gillis et al

the α
2A

-adrenoreceptor, a longer half-life, a potentially 

decreased side effect burden, and a US Food and Drug 

Administration-labeled indication to treat ADHD as 

monotherapy or as an adjunct to stimulant medications, 

guanfacine has become the preferred α
2
-agonist for use in 

ADHD.5 Additionally, a number of published studies have 

demonstrated the efficacy of guanfacine in reducing target 

symptoms of ADHD in children and adolescents.5–7

As is the case with the more traditional psychostimu-

lants, methylphenidate and amphetamine, significant inter-

individual variability in response to guanfacine has been 

reported. For example, in a prospective trial of guanfacine 

in children with comorbid pervasive developmental disorder 

and ADHD, the improvement from baseline ADHD symptom 

scores ranged widely (ie, -1 to 41 points).8 Similarly, in a 

large retrospective chart review of children with pervasive 

developmental disorders receiving guanfacine, the rate of 

positive response ranged from 13% to 39%, depending 

on the patient population assessed.9 A trend indicating 

clear superiority of guanfacine over placebo, albeit with 

significant interindividual variability in endpoint ratings of 

ADHD symptoms, is a consistent finding in the published 

literature.6,10

Interindividual variation in drug response and disposi-

tion may be attributed to varied drug transporter activity, 

which is mediated by an array of single nucleotide poly-

morphisms (SNPs), as well as other endogenous and exog-

enous substances that may serve as transporter inhibitors or 

inducers.11,12 P-glycoprotein (P-gp) is the most thoroughly 

studied member of the adenosine triphosphate-binding cas-

sette transporter superfamily, and is expressed throughout 

the body in the intestinal epithelium, hepatocytes, renal 

tubular cells, adrenal gland, blood–brain barrier, blood–

testis barrier, and blood–placenta barrier.13 In humans, 

P-gp is encoded by the ABCB1/MDR1 gene.14,15 Because 

of its ubiquitous expression and broad specificity, changes 

in P-gp expression or efflux activity induced by drug treat-

ments, diet, environmental factors, or SNPs can greatly 

impact drug disposition, pharmacokinetics, and clinical 

response.16,17 Hence, identification of P-gp substrates is 

important for therapeutic optimization and the avoidance 

of drug–drug interactions.

Several published studies have investigated the potential 

interaction between guanfacine and P-gp. Mahar Doan et al 

conducted an in vitro study to determine whether guanfacine 

is a substrate of P-gp utilizing a Transwell cell culture model 

with P-gp-expressing Madin Darby canine kidney cells. The 

ratio of the transport velocity of guanfacine in the direction 

of basolateral-to-apical to apical-to-basolateral was found to 

be 1.2, indicating that guanfacine is not a P-gp substrate.18 

Similarly, based upon a computational method (topological 

substructural molecular design approach), other investiga-

tors predicted that guanfacine would be unlikely to serve as 

a P-gp substrate.19

Although these data suggest that guanfacine is not a 

P-gp substrate, a recently published clinical study examined 

the potential influence of the known SNPs variant of P-gp, 

C3435T, on response to guanfacine treatment in children 

diagnosed with ADHD. The authors concluded that patients 

genotyped and found to carry the C3435T variant showed 

significantly less clinical improvement in ADHD symptoms 

relative to patients who were wild-type for the gene.20 The 

C3435T variant has previously been shown to influence 

both gene expression and substrate specificity of P-gp.17,21 

Thus, the association between therapeutic response and 

the C3435T SNPs suggests that P-gp plays a role in the 

transport of guanfacine. Therefore, the purpose of this study 

was to use a different cell line (human P-gp-overexpressing 

porcine kidney epithelial cell line LLC-PK1/MDR1) and a 

different in vitro model (intracellular uptake) relative to that 

previously published to determine if guanfacine is indeed a 

P-gp substrate.

Materials and methods
Materials
The porcine kidney epithelial cell line LLC-PK1 and 

human P-gp-overexpressing mutant LLC-PK1/MDR1 cells 

were kindly provided by Dr Kari Kivistö (Dr Margarete 

Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, 

Germany). Fetal bovine serum, trypsin, and Dulbecco’s 

Modified Eagle Medium containing 4500  mg/L glucose, 

4 mM l-glutamine, and sodium pyruvate were obtained from 

Hyclone Co (Logan, UT). Dulbecco’s phosphate-buffered 

saline, penicillin, and streptomycin were purchased from 

Mediatech Inc (Herndon, VA). Guanfacine and rhodamine6G 

were obtained from Sigma Co (St Louis, MO). The Pierce 

bicinchoninic acid protein assay kit (Thermo Scientific, 

Rockford, IL) was used to determine protein concentrations. 

All other agents were of high analytical grade and commer-

cially available.

Cell cultures and intracellular  
uptake studies
LLC-PK1 and LLC-PK1/MDR1 cells were cultured at 37°C 

in Dulbecco’s Modified Eagle Medium supplemented with 

10% fetal bovine serum, 1% penicillin, and streptomycin 
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in an atmosphere of 5% CO
2
 and 95% relative humidity. 

Cells (1 mL) were seeded into 24-well plates at a density 

of 1 ×  105 cells/mL. Culture medium was replaced every 

two days until cells reached confluence. To investigate 

the potential influence of P-gp on guanfacine transport, 

intracellular accumulation of guanfacine was measured in 

LLC-PK1/MDR1 cells and P-gp-negative LLC-PK1 cells. 

Rhodamine6G, a well-known P-gp substrate, was included 

as a positive control. After cells reached confluence, the 

culture medium was replaced by transport buffer (serum-free 

Dulbecco’s Modified Eagle Medium) for a 30-minute prein-

cubation at 37°C. Transport buffer was then removed and the 

test compounds (5 µM rhodamine6G, 5 µM guanfacine, or 

50 µM guanfacine) were added, and an additional 60-minute 

incubation period commenced. Next, the solutions were dis-

carded, and the cells were washed three times with ice-cold 

Dulbecco’s phosphate-buffered saline and solubilized with 

1% Triton X‑100. Intracellular accumulation of rhodamine6G 

was measured using a fluorescent microplate reader with 

a 530  nm excitation and a 580  nm emission wavelength, 

which is a well established method.22 Cellular retention of 

guanfacine was analyzed by the high-performance liquid 

chromatographic assay described below. The concentrations 

of rhodamine6G and guanfacine were calculated from their 

respective standard curves, and standardized with the cel-

lular protein content determined by a Pierce bicinchoninic 

acid protein kit.

High-performance liquid  
chromatographic analysis
A novel high-performance liquid chromatographic-ultraviolet 

detection method for guanfacine quantification was devel-

oped for this study. Briefly, 100 µL of acetonitrile containing 

the internal standard, p-nitrophenol 100 µM, was added to a 

100 µL sample and vortexed. Samples were centrifuged at 

13,200 rpm at 4°C for 30 minutes to remove proteins. The 

supernatant (50 µL) was injected into the high-performance 

liquid chromatography column for analysis. Separation 

was performed on a reverse-phase column (Luna 5µ C8, 

250 × 4.6 mm) at 40°C. The mobile phase consisted of 25% 

acetonitrile and 75% KH
2
PO

4
 (10 mM, pH 4), and the flow 

rate was 1.0 mL/min. Guanfacine was detected by ultraviolet 

absorption at 220 nm.

Data analysis
All data are presented as means  ±  standard deviation. 

Intracellular concentrations of rhodamine6G and guanfacine 

in LLC-PK1/MDR1 cells are expressed as the percentages 

of that in LLC-PK1 cells. A two-tailed unpaired Student’s 

t-test was used for data analyses, with a P value of #0.5 

considered statistically significant.

Results
The P-gp substrate properties of guanfacine were assessed 

by measuring intracellular drug accumulations in LLC-

PK1 and LLC-PK1/MDR1  cells. The results shown in 

Figure  1  indicate that, at a guanfacine concentration of 

50 µM, the intracellular concentration of guanfacine was 

three-fold higher in LLC-PK1  cells than in LLC-PK1/

MDR1  cells (35.9%  ±  4.8% of LLC-PK1 cell uptake, 

P , 0.01). Similarly, at a guanfacine concentration of 5 µM, 

the intracellular concentration of guanfacine was two-fold 

higher in LLC-PK1  cells than in LLC-PK1/MDR1  cells 

(49.0% ± 28.3%, P , 0.05). By comparison, the concentra-

tion of the positive P-gp control substrate, rhodamine6G, 

in LLC-PK1/MDR1  cells was only 5% of that in LLC-

PK1 cells. Overall, these results suggest that guanfacine is, 

at best, a weak substrate for P-gp.

Discussion
An estimated 100,000 patients die each year of adverse 

drug reactions in the US, thus making adverse drug reac-

tions one of the leading causes of death in hospitalized 

patients.23 Some of these deaths are caused by drug–drug 

interactions. Most drug interactions occur as an unexpected 

result of changes in pharmacokinetics due to drug coadmin-

istration. Combined pharmacotherapy in child, adolescent, 

and adult psychiatric patients has recently become a grow-

ing practice.24–26 Because ADHD therapeutic agents are 

the most commonly used psychotropic drugs in children 

0
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In
tr

ac
el

lu
la

r 
co

n
ce

n
tr

at
io

n
 o

f
g

u
an

fa
ci

n
e 

(%
 o

f 
L

L
C

-P
K

1 
ce

ll 
u

p
ta

ke
)

5 µM guanfacine

20

40

60

80

100

120

LLC-PK1

MDR1**

*

Figure 1 Intracellular concentrations of guanfacine in LLC-PK1 and LLC-PK1/
MDR1  cells. Each column represents the mean percentages of intracellular 
guanfacine concentrations relative to that in LLC-PK1 cells, with a bar representing 
the standard deviation of three independent measurements. 
Notes: *P , 0.05; **P , 0.01.
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and adolescents and are often used in combination with 

other therapeutic agents on an acute or chronic basis, the 

potential for drug–drug interactions, at least in theory, is 

extremely high.27–29

Interaction of psychotropic drugs with P-gp has been well 

documented in recent years. For example, Uhr et al demon-

strated that a series of antidepressant medications, includ-

ing venlafaxine and paroxetine, are substrates for P-gp.30 

Additionally, Wang et  al reported that the antipsychotic 

risperidone and its active metabolite, 9-hydroxy-risperidone, 

are both P-gp substrates.31 Other psychotropic agents 

that have been documented as substrates of P-gp to some 

degree include (R)-methadone, (S)-methadone, olanzapine, 

d-modafinil, l-modafinil, and d-methylphenidate.29,32,33 

Because P-gp is the most important efflux transporter at 

the blood–brain barrier, entry of these substrates into the 

central nervous system is greatly limited. Furthermore, a 

number of psychotropic drugs have been found to be P-gp 

inhibitors, which may affect disposition of coadministered 

P-gp substrates.29,34,35

Prominent variability of response has been reported in 

patients taking guanfacine to treat ADHD.6,8–10 In a recent 

study, variation in response to guanfacine correlated to a 

single nucleotide polymorphism of the MDR1 gene, the gene 

encoding for human P-gp.20 The present study was therefore 

performed to determine if guanfacine, like many other psy-

chotropic drugs, is a P-gp substrate.

The results of the intracellular accumulation study of 

guanfacine in P-gp-expressing cells suggest that guanfa-

cine is, at best, a weak P-gp substrate. Specifically, the 

accumulation of guanfacine in LLC-PK1/MDR1  cells 

was approximately 30%–50% of that in LLC-PK1  cells 

under our experimental conditions. In comparison, the 

intracellular concentration of the established P-gp substrate 

rhodamine6G in LLC-PK1/MDR1  cells was only 5% of 

that in control cells. Thus, it appears the role of P-gp in 

guanfacine transport is minor, and P-gp is unlikely to be 

one of the determinants of the interindividual variability in 

response to guanfacine therapy. Thus, the reported effect 

of the MDR1 SNP C3435T on the response to guanfacine 

treatment must be interpreted carefully and warrants further 

investigation.
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