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Abstract: This article highlights the evidence linking depression to increased inflammatory drive 

and explores putative mechanisms for the association by reviewing both preclinical and clinical 

literature. The enzyme indoleamine 2,3-dioxygenase is induced by proinflammatory cytokines 

and may form a link between immune functioning and altered neurotransmission, which results 

in depression. Increased indoleamine 2,3-dioxygenase activity may cause both tryptophan deple-

tion and increased neurotoxic metabolites of the kynurenine pathway, two alterations which have 

been hypothesized to cause depression. The tryptophan-kynurenine pathway is comprehensively 

described with a focus on the evidence linking metabolite alterations to depression. The use of 

immune-activated groups at high risk of depression have been used to explore these hypotheses; 

we focus on the studies involving chronic hepatitis C patients receiving interferon-alpha, an 

immune activating cytokine. Findings from this work have led to novel strategies for the future 

development of antidepressants including inhibition of indoleamine 2,3-dioxygenase, moderating 

the cytokines which activate it, or addressing other targets in the kynurenine pathway.

Keywords: depression, inflammation, indoleamine 2,3-dioxygenase, kynurenine, serotonin, 

tryptophan

Introduction
Clinical depression is extremely common and debilitating. It is ranked by the World 

Health Organization as the fourth largest cause of burden amongst all diseases and 

the leading nonfatal disease burden.1 Current treatments have only moderate efficacy, 

with around 35% remission after initial treatment and approximately 70% remission 

after four cumulative treatment trials.2 Therefore it is necessary to look beyond cur-

rently characterized neurotransmitter systems to understand the pathophysiology of 

depression in order to produce more effective treatments in the long-term.

Emerging evidence demonstrates that: a) major depression is associated with 

increased inflammatory drive;3–5 and b) provoking an acute inflammatory response in 

healthy humans can result in depression-like behaviors and symptoms.6,7 The nature 

of these associations has yet to be delineated with respect to causality. Determining a 

plausible biological mechanism remains an important step. In this article we review 

a putative mechanism by which increased inflammation may affect mood, by altering 

activity of the enzyme indoleamine 2,3-dioxygenase (IDO).

Depression, mood, and immune functioning
There is a growing body of literature that suggests that major depression is associ-

ated with an increased inflammatory drive. People with depression display increased 
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plasma concentrations of pro-inflammatory cytokines such 

as: interleukin-1 (IL-1)3,8 (also increased in cerebrospinal 

fluid [CSF]9), interleukin-6 (IL-6),3,4,9–11 tumor necrosis 

factor (TNF)4,12 and other acute phase proteins, such as 

C-reactive protein (CRP),3 haptoglobin11 and neopterin.13 

There have been some negative findings,14,15 but the over-

all picture is sufficient to support both a positive meta-

analysis exploring the associations of CRP, IL-1, IL-6 

and depression3 and the suggestion that plasma IL-6 and 

soluble IL-2-receptor should be considered biomarkers of 

depression.16

Treatment of depression with antidepressants may 

reverse derangements in these inflammatory markers.17 

Fluoxetine treatment for depression reduces serum IL-6 in 

patients.18 Imipramine, clomipramine, venlafaxine, fluox-

etine, sertraline and trazodone have been shown to reduce 

the interferon-gamma (INF-g)/IL-10 ratio of in vitro 

human blood samples (a ratio of pro-inflammatory/anti-

inflammatory drive), consistent with an anti-inflammatory 

effect.19–21 In addition, nonresponders to selective serotonin 

reuptake inhibitor (SSRI) medication continue to exhibit 

raised IL-6 levels, raising the possibility that response to 

treatment is linked to a reduction of IL-6.22 Preliminary 

evidence also exists that an increased body temperature 

may also be present in depression and reversed by suc-

cessful treatment.23

Abnormalities of plasma cytokines may occur in various 

psychiatric disorders. In bipolar disorder, increased IL-1, 

IL-6 and TNF have been reported at differing stages of 

the illness.24 In schizophrenia, less consistent results have 

been found, but a recent meta-analysis reported increased 

plasma IL-6 and IL-1 receptor antagonist levels.25 However, 

exploring these illnesses in detail is beyond the scope of 

this review, which focuses upon the changes seen in major 

depression.

“Sickness behavior” is a characteristic constellation 

of symptoms (hypomotility, hyperthermia, hypophagia, 

hyperalgesia, decreased interest in exploration, decreased 

sexual activity, increased sleep) observed in animals fol-

lowing immune activation26–28 that has been proposed to be 

a model of depression.29 Activating an immune response 

by injecting lipopolysaccharide (LPS),30 IL-1,31 or IFN32 

results in characteristic sickness behavior. In addition, an 

acute inflammatory challenge has been reported to produce 

depression-like responses in two other animal models of 

depression, the tail suppression and sucrose consumption 

tests, after the initial illness behaviors have subsided.33 

The biochemical and behavioral effects of challenges like 

these may also be augmented by social stress,34 analogous 

to social risk factors for depression.35 Pretreatment with 

the antidepressant imipramine has been found to attenuate 

LPS-induced sickness behavior.30

Provoking an acute inflammatory response in healthy 

humans, for example via injection of endotoxin,6,7 IL-6,36 

or IFN-b,37 also produces symptoms similar to those seen 

in depression (such as fatigue, lack of motivation, anorexia, 

poor sleep). Although these symptoms are short-lived, subtle 

cognitive symptoms similar to those seen in depression are 

also present. These include feelings of social isolation6,38 

and psychomotor slowing.37 The symptoms produced by 

challenge tests such as these resolve quickly and are not 

prolonged as is seen in depression.

Immune effects on indoleamine  
2,3-dioxygenase
Indoleamine 2,3-dioxygenase (IDO) and its hepatic 

equivalent tryptophan 2,3-dioxygenase (TDO) oxygenate 

tryptophan to form kynurenine39 (Figure  1, tryptophan 

metabolic pathway). The majority of dietary tryptophan 

is metabolized through this pathway with less than 1% 

eventually being available for conversion (via hydroxyla-

tion by tryptophan hydroxylase, TPH, and decarboxylation) 

into 5HT in the brain.40 Under normal circumstances, 

TDO is the dominant enzyme, but IDO is subject to 

induction during immune activation. At such times the 

effect of increasing the combined availability of IDO and 

TDO means that the overall capacity of the kynurenine 

pathway is much increased. Therefore serum tryptophan 

concentration can be reduced by 25%–50%, leaving pro-

portionally less tryptophan available for conversion to  

serotonin.41–43

IDO is ubiquitous throughout the organs and present in 

human immune cells including macrophages and microglia.44 

Interferons are important in the induction of IDO. The sites 

of action are two IFN-stimulated response elements (ISREs) 

and IFN-g activated site (GAS) element sequences found in 

the 5′ promoter region of the IDO gene.45,46 IDO can be stimu-

lated by INF-g in macrophages and microglia.47,48 However, 

other cytokines such as TNF in combination with IL-6 or 

IL-1 can induce IDO via signal transducer and activator of 

transcription protein (STAT)-independent pathways involv-

ing p38 mitogen-activated protein kinase (p38 MAPK) and 

nuclear factor-kappa B (NF-κB).49

A proxy measure for in vivo IDO activity, like many 

enzymes, is the ratio of product:substrate (in this case 

kynurenine:tryptophan). Thus, an increase in the ratio reflects 
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greater enzyme activity, a decrease indicates lower activity 

and no change implies the same activity.50

Animal models of IDO activation 
and mood
Animal models support the hypothesis that immune-related 

sickness behavior may be related to increased activity of 

IDO. IDO activity, measured by either the plasma concen-

tration of kynurenine pathway metabolites or IDO mRNA 

expression, is increased in animal sickness behavior.51 This 

activation is partly mediated by IFN-g and TNF, since IFN-g 

knockout mice, and animals with prior treatment with the 

TNF antagonist etanercept, both show reduced IDO activa-

tion and depressive behaviors (in the forced swim and tail 

suspension tests).52 IDO knock-out mice lack the expected 

depressive behaviors secondary to an immune challenge, 

despite normal cytokine responses.51 In addition, inhibition 

of IDO blocks the depressive behavior in these models51,53 and 

administration of kynurenine induces depressive behavior in 

a dose-dependent manner.53

A human model of IDO activation 
and depression: hepatitis C cohorts 
treated with IFN-α
As described above, acute inflammatory challenges reproduce 

sickness behavior and depressive cognitions in healthy 

humans. Clearly, it is ethically difficult to continue challenges 

like these for prolonged periods due to the high degree of 

morbidity they cause. Therefore, an alternative is to study 

patient cohorts who require long-term pro-inflammatory 

treatments for an underlying condition.

An ideal high-risk population that can be used to assess 

the effects of increased inflammatory drive is chronic 

hepatitis C (HCV) patients being treated with IFN-α 

therapy. HCV is a common illness, affecting approximately 

170  million people worldwide.54,55 Without treatment, it 

causes considerable morbidity and mortality; it leads to 

chronic infection in approximately 85% of cases, cirrhosis 

in 15%–20%, and in cirrhosis patients, 1%–4% progress 

to hepatocellular carcinoma.56 HCV patients undergo an 

IFN-α-based treatment regime for between 6 and 12 months.  
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Figure 1 Tryptophan metabolic pathway.
Abbreviations: 5-HT, serotonin; 5-HTP, 5-hydroxytryptophan; TPH, tryptophan hydroxylase; TDO, tryptophan dioxygenase; IDO, indoleamine 2,3-dioxygenase; KAT 1, 
kynurenine aminotransferase I; KAT II, kynurenine aminotransferase II; QPRT, quinolinic acid phosphoribosyltransferase; NAD, nicotinamide adenine dinucleotide; NMDA, 
N-methyl-D-asparate.
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During this time there are high rates of depression, estimated 

at approximately 25% 57,58 and 33%59,60 (although some stud-

ies report higher prevalences, a precise figure is difficult to 

determine due to methodological differences between studies; 

those reporting higher rates report self-rated symptoms rather 

than utilizing standardized objective depression scales61).

In HCV, IFN-α increases inflammatory drive with eleva-

tions in pro-inflammatory cytokines (eg, IL-1, IL-6, IL-8 and 

TNF62,63) similar to that observed in depression.3 Although 

IFN-α is peripherally administered, increases in IFN-α, IL-6 

and monocyte chemoattractant protein-1 have been observed 

in the CSF of this group, providing evidence of central 

immunomodulatory effects. In conjunction with the increase 

in pro-inflammatory cytokines, the kynurenine:tryptophan 

ratio is increased (reflecting increased IDO activity) in both 

the blood and CSF.64,65

There are two current hypotheses regarding the mecha-

nism of how increased inflammatory drive and IDO activa-

tion may cause depression in the HCV group – tryptophan 

depletion and kynurenine toxicity.

Tryptophan depletion
Increased IDO activity should reduce the availabil-

ity of its substrate, the dietary essential amino acid 

tryptophan.66 Serotonin (5HT) is produced from tryptophan 

via 5-hydroxytryptophan (5HTP). Under normal conditions 

the rate-limiting enzyme tryptophan hydroxylase is only 

about 50% saturated. Therefore 5HT synthesis varies with 

tryptophan availability.67 The evidence linking 5HT dysfunc-

tion to depressive illness has been well described. Many 

effective antidepressants (such as SSRIs) work primarily on 

increasing serotonin availability in the synaptic cleft.68 This 

antidepressant effect can be temporarily reversed using the 

acute tryptophan depletion (ATD) technique, which acutely 

lowers 5HT by lowering the brain availability of its precursor 

tryptophan.69,70 Lower concentrations of plasma tryptophan 

have also been reported in depression.71 Imaging studies have 

also reported central changes in the 5HT system in depres-

sion including reduced 5HT transporters,72,73 reduced 5HT-1a 

receptors,74,75 and reduced 5HT-2a receptors.76

In the HCV cohort, reductions in plasma tryptophan 

(and 5HT, although this is an inexact measure, as much 

plasma 5HT is stored by platelets and released when they are 

stimulated, such as in venepuncture, resulting in inconsistent 

results77) have been observed.78 SSRIs are highly effective 

at treating or preventing IFN-α associated depression.79,80 

However, tryptophan does not have clear access to the 

brain from the plasma: 95% is protein-bound in the plasma, 

leaving 5% free to access the CNS.81 It is transported across 

the blood–brain barrier via active transport in competition 

with the other large neutral amino acids (LNAAs): valine, 

leucine, isoleucine, methionine, phenylalanine and tyrosine.82 

Plasma tryptophan concentrations correlate poorly with 

those of the CSF.83 Thus, a more accurate measure of brain 

tryptophan availability is the tryptophan:LNAA ratio.84 This 

ratio remains unchanged in IFN-α therapy for hepatitis C 

and does not appear to vary with depressive symptoms.64 

In keeping with this, CSF levels of tryptophan do not change 

during interferon treatment.65 However, this does not entirely 

disprove the 5HT reduction theory, as the 5HT metabolite 

5-hydroxyindoleacetic acid (5HIAA) is reduced and this 

reduction correlates with depressive symptoms.85 Therefore 

although absolute tryptophan levels appear not to be altered, 

an overall reduction in brain 5HT turnover may still be related 

to depression.

Different measures of brain 5HT functioning are required 

to further delineate these changes. A sensitive method is 

polysomnography. 5HT is important in the regulation of 

sleep86 and sleep disturbances prior to interferon treat-

ment have been suggested to predict later depression.87 

Serotonergic compounds (such as SSRIs) increase time 

until onset of rapid eye movement (REM) sleep (increased 

REM latency). Decreasing serotonin availability, by ATD, 

has the opposite effect, decreased REM latency.88–90 Altera-

tions in REM latency have been utilized by our group to 

detect differences in physiological potency between different 

ssris,91 proving this technique’s sensitivity to alterations 

in central 5HT functioning. Using a within-subjects design 

we observed no significant alteration in REM latency after 

6 weeks IFN-α treatment (Pers comm, David N Christmas, 

2011). Our finding of no decrease in REM latency is similar 

to an independent study by a different group that observed 

an REM latency increase during IFN-α treatment.92 The dif-

ference between these studies has yet to be explained, but 

importantly neither observed the decrease in REM latency 

predicted by the 5HT depletion hypothesis.

An alternative explanation for the lack of decrease in 

REM latency is that IDO activation may also affect REM 

sleep via a different mechanism to 5HT depletion. Pre-

clinical evidence suggests that glutamatergic neurons are 

important in the genesis of REM sleep: indeed kynurenic 

acid (which is produced from kynurenine and is an N-methyl-

D-aspartate [NMDA] antagonist) can abolish experimentally 

induced REM sleep.93 The control of REM sleep is complex, 

with 5HT, acetylcholine, glutamate and gamma-amino 

hydroxybutyric acid (GABA) all playing important roles.94 
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At risk of oversimplification, REM-on neurons appear to 

be glutamatergic (under tonic inhibition by GABA neu-

rons) and REM-off neurons serotonergic or noradrenergic. 

Therefore, altering the balance between kynurenic acid and 

quinolinic acid (also on the kynurenine metabolic pathway 

and an NMDA agonist [Figure 1]) may also alter both REM 

latency and duration. However, IFN-α does not alter the 

CSF kynurenic acid:quinolinic acid ratio.65 Therefore the 

preliminary conclusion is that neither central 5HT function-

ing nor NMDA activation is altered during IFN-α treatment. 

However, further research is required to form a conclusive 

picture.

Kynurenine excess
The products of IDO activation have also been hypothesized 

to cause depression. Under normal circumstances the liver 

enzyme TDO95 metabolizes tryptophan into kynurenine. TDO 

is not induced by immune activation, but is constitutively 

active and is induced by tryptophan, tyrosine, histidine, 

glucocorticoids and kynurenine. TDO primarily serves 

nicotinamide adenine dinucleotide synthesis (Figure 1) and 

is the rate-limiting enzyme of the pathway. Under circum-

stances of immune activation, IDO activity is increased, 

causing detectable increases in kynurenine and decreases 

in tryptophan.41,43,96 Kynurenine is mostly hydroxylated 

(kynurenine hydroxylase) into 3-hydroxykynurenine (3-HK). 

Kynureninase acts upon both 3-HK and kynurenine; on 3-HK 

to form 3-hydroxyanthranilic acid (3-HAA); and on kynure-

nine to form anthranilic acid (although the latter conversion 

accounts for only a minority of kynureninase activity). 

3-HAA is converted into quinolinic acid by 3-hydroxyanthra-

nilic acid oxygenase. Kynurenine can also be converted into 

kynurenic acid by kynurenine aminotransferase I and 3-HK 

into xanthurenic acid by kynurenine aminotransferase II.

Some of these kynurenine metabolites modulate neu-

rotransmission and some may be directly neurotoxic. As 

mentioned above, quinolinic acid is an NMDA agonist and 

kynurenic acid an NMDA antagonist. 3-HK is believed to 

be neurotoxic due to increased formation of reactive oxygen 

species involved in neuronal apoptosis.97,98 Quinolinic 

acid may also be neurotoxic due to increased oxidative 

stress,99,100 whereas kynurenic acid has been postulated to be 

neuroprotective.101 Under conditions of immune activation, 

preclinical evidence suggests kynurenine aminotransferase 

activity is unchanged whereas, in addition to IDO, kynure-

nine 3-hydroxylase, kynureninase and 3-hydroxyanthranilic 

acid oxygenase activity may be increased51,102 (although the 

evidence for induction of the last enzyme is contradictory, 

possibly due to species differences). Therefore, kynurenine 

metabolism is shifted toward the 3-HK/quinolinic acid 

pathway and away from the kynurenic acid pathway, which 

should result in greater neurotoxic and reduced neuropro-

tective metabolites. The relative balance of neurotoxic and 

neuroprotective pathways of kynurenine metabolism can 

be assessed indirectly in vivo by the kynurenine:kynurenic 

acid ratio.64,103

During IFN-α treatment, the plasma kynurenine:kynurenic 

acid ratio is increased and this correlates with depressive 

symptoms.64 CSF kynurenine and quinolinic acid also 

increase and these increases correlate with increases in 

depressive symptoms. However, the kynurenine:kynurenic 

acid ratio does not alter as CSF kynurenic acid also rises.65

One cross-sectional study observed increased IDO activ-

ity and a decreased kynurenic acid:kynurenine ratio (reflect-

ing a shift towards neurotoxicity) in otherwise healthy major 

depression sufferers compared to controls.104 However, as yet 

no studies have been undertaken to identify whether these 

differences resolve once the depressive episode has been 

successfully treated.

Future drug targets
Some preliminary studies have already reported possible 

efficacy of anti-inflammatory drugs in depression. A double-

blind, randomized clinical trial reported an advantage of 

reboxetine and the cyclo-oxygenase-2  inhibitor celecoxib 

over reboxetine and placebo.105 In addition, an open pilot 

study reported a benefit of augmentation with aspirin in 

depressed patients with no early response to an SSRI.106 

However, both these cases require larger more robust trials 

to prove their efficacy. A further problem may occur with 

this route; there is a large increased risk of gastrointestinal 

bleeding when SSRIs and nonsteroidal anti-inflammatory 

drugs are combined107 and cyclo-oxygenase-2 inhibitors alone 

have been associated with increased cardiovascular and all-

cause mortality above other anti-inflammatory drugs.108,109 

Therefore alternative strategies may be required to maintain 

a favorable risk–benefit ratio.

Utilizing the above evidence, it is possible to identify 

future novel pharmacological targets for antidepressants. The 

first target could be antagonizing or reducing IDO activity. 

The drug 1-methlytryptophan can inhibit IDO and has been 

successful in reducing depressive behaviors following 

inflammatory challenges in animal models.51 Clinical trials 

using 1-methyltryptophan have commenced in humans as 

a putative anticancer agent (trial identifier NCT00567931, 

http://clinicaltrials.gov). However, there is some debate as 
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to whether it inhibits human IDO in vivo.110 In addition, IDO 

may have immunosuppressive actions in itself, highlighting 

the complexity of immune functioning.110

A different avenue may be to block the pro-inflammatory 

cytokines that are raised in depression and known to induce 

IDO. Monoclonal antibodies are available for human use, to 

treat rheumatoid arthritis or inflammatory bowel disease, to 

block both TNF (such as infliximab or etanercept) and IL-6 

(tocilizumab). Indeed, a clinical trial at Emory University 

evaluating the efficacy of infliximab in treatment resis-

tant depression is approaching completion (trial identifier 

NCT00463580, http://clinicaltrials.gov).

A third approach may be to block the downstream 

actions of excess kynurenine metabolites. As the ratio of 

NMDA receptor agonism:antagonism appears to be shifted 

towards agonism in depression, NMDA antagonists may 

have antidepressant effects. Unfortunately human subjects 

exposed to direct NMDA antagonists have experienced 

serious side effects such as sedation, memory impairment 

and psychosis.111,112 Thus design of NMDA manipulating 

compounds may require novel strategies, such as targeting 

NMDA cotransmitters. Despite this, several small stud-

ies have shown promising results for the use of ketamine, 

an NMDA receptor antagonist, for treatment-resistant 

depression.113–117

Summary
In summary, major depression appears to be accompanied 

by increases in some pro-inflammatory cytokines. In keep-

ing with this, inducing increased inflammation in animals 

or humans results in characteristic sickness behavior, or 

full-blown major depression in the high-risk HCV cohort. 

In tandem with markers of increased inflammation, IDO 

is activated, both peripherally and centrally. Although the 

evidence falls short of proving a causative link between 

inflammation, IDO and mood, the diversity and congruence 

of evidence suggests this pathway is a promising field for 

future drug targets.
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