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Abstract: The belief that obesity is protective against osteoporosis has recently come into 

question. The latest epidemiologic and clinical studies have shown that a high level of fat mass 

might be a risk factor for osteoporosis and fragility fractures. Further, increasing evidence seems 

to indicate that different components of the metabolic syndrome, ie, hypertension, increased 

triglycerides, reduced high-density lipoprotein cholesterol, are also potential risk factors for 

the development of low bone mineral density and osteoporosis. This review considers both the 

older and more recent data in the literature in order to evaluate further the relationship between 

fat tissue and bone tissue.
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Introduction
Obesity and osteoporosis are two important global health problems with an increas-

ing prevalence and a high impact on both mortality and morbidity.1–4 Interestingly, 

during recent decades, both diseases have become a major health threat worldwide.2 

Age and female gender increase the risk of developing both obesity and osteoporosis, 

which affect millions of women.3,5–7 Age-related changes in body composition, 

metabolic factors, and hormonal levels after menopause, accompanied by a decline in 

physical activity, may all provide mechanisms for the propensity to gain weight and, 

in particular, for the increase in fat mass often characterized by replacement of lean 

mass by adipose tissue.3,4

Obesity is due to an imbalance in which energy intake exceeds energy expenditure 

over a prolonged period.2 In healthy adults, body weight is tightly regulated despite 

day-to-day variations in food intake and energy expenditure. Several environmental, 

nutritional, and hormonal factors appear to influence body weight.1–3 For instance, 

postmenopausal women often show increased body weight, likely due to a decrease in 

basal metabolism, alteration of hormonal levels, and reduced physical activity.8 More-

over, obese postmenopausal women are often affected by hypertension, dyslipidemia, 

diabetes mellitus, and cardiovascular disease, and have an increased risk of developing 

some cancers.3,9,10 Interestingly, these women have always been considered protected 

against osteoporosis.5,6,11

Osteoporosis is a metabolic bone disease characterized by excessive skeletal fragil-

ity (due to a reduction in both bone quantity and quality), leading to an increased risk 

of developing spontaneous and traumatic bone fractures.7 More than 40% of postmeno-

pausal women, on average, will suffer at least one osteoporosis fracture, often leading 
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to permanent and severe disability, nursing home placement, 

and even death.11,12 The rate of bone loss in adults reflects 

the interaction between genetic and environmental factors, 

which also influences the extent of bone acquisition during 

growth, known as peak bone mass.13

It is known that fractures in childhood have been associ-

ated with alterations in body composition, such as increased 

adiposity and bone structure, suggesting that these might 

be the earliest signs of skeletal insufficiency.14 Soon after 

menopause, the process of bone loss begins in women, 

due to increased bone resorption by osteoclasts, which 

overcomes bone formation by osteoblasts.13 Moreover, 

osteoblast function declines with aging, determining the 

imbalance between bone resorption and bone formation.15 

Traditionally, osteoporosis has been regarded as a disorder 

associated only with fracture and skeletal disability in old 

age, but recent studies demonstrate that bone mineral density 

appears to be a better long-term predictor of death than blood 

pressure or cholesterol.12,16 Further data published in recent 

decades indicate that low bone mineral density is a strong 

and independent predictor of all-cause mortality, including 

cardiovascular mortality.12,16

Body fat and lean mass are correlated with bone mineral 

density, with obesity apparently confering protection against 

bone loss after menopause.5,6,17 The pathophysiological role 

of adipose tissue in skeletal homeostasis probably lies in 

the role that several adipokines play in bone remodeling 

via their effects on either bone formation or resorption. 

Since the demonstration that bone cells express several 

specific hormone receptors, the skeleton has come to be 

considered an endocrine target organ.18–21 Additionally, 

recent observations have shown that bone-derived factors, 

such as osteocalcin and osteopontin, may affect body weight 

control and glucose homeostasis,22–24 suggesting a possible 

role of bone tissue as an endocrine organ with the presence 

of a potential feedback mechanism between the skeleton 

and endocrine organs.25 Thus, the cross-talk between fat 

and bone likely constitutes a homoeostatic feedback system 

in which adipokines and molecules secreted by osteoblasts 

and osteoclasts represent the link of an active bone-adipose 

axis. However, the mechanism(s) by which all these events 

occur remains unclear.

Fat and bone correlation:  
evidence-based observations
In the last three decades, the association between obesity 

and osteoporosis has been actively investigated from epi-

demiological, clinical, and basic research points of view, 

and common pathophysiological links have been proposed: 

both obesity and osteoporosis are influenced by genetic and 

environmental factors, or the interaction between them; aging 

is associated with both diseases and with a high incidence 

of bone loss and bone marrow adiposity; bone remodeling 

and adiposity are both regulated via a complex interplay of 

adipokines and hormones; and adipocytes and osteoblasts 

derive from a common progenitor, ie, the mesenchymal stem 

cell,11 as shown in Figure 1.

Extensive data have shown that, in healthy pre-

menopausal and postmenopausal women, total body fat  

is positively related to bone mineral density, an important 

and measurable determinant of fracture risk,26–27 that high 

body weight (or body mass index) is correlated with high 

bone mineral density, and that decreased body weight leads 

to bone loss.28–32 Furthermore, fat mass, the most important 

index of obesity, has been demonstrated to have a similarly 

beneficial effect, leading to an increase in bone mass,17,33 

while a beneficial effect of fat mass on bone mineral density 

is confirmed in white women but not in white men.34

Although these data indicate that obesity exerts a protec-

tive effect on bone tissue, more recent studies have described 

an opposite event. In particular, although cross-sectional and 

longitudinal studies have shown that bone mass is positively 

related to body weight and body mass index, there are con-

troversial issues as to whether lean mass or fat mass might 

be the most important determinant of bone mineral density.6 

In particular, the evidence suggests an inverse relationship 

between obesity and osteoporosis depending on how obesity 

is defined. In the studies where obesity is defined on the basis 

of body mass index or body weight, obesity appears to act as 

a protective factor against bone loss and fractures; however, 

if obesity is considered as a percentage of body fat and distri-

bution, as in the study published by Zhao et al in a Chinese 

population,11 it becomes a risk factor for osteoporosis.

In particular, there are data indicating that women with a 

high body mass index (25–29.9 kg/m2) are protected from osteo-

porosis, but there is increasing evidence conflicting with this 

observation, suggesting that obesity (body mass index . 30) 

might actually interfere with bone health.11

In accordance with the data reported by Zhao et al,11 Hsu 

et al showed that matching of Chinese subjects by body mass 

index, across 5 kg strata of body weight, revealed a negative 

relationship between fat and bone mass, and the risk of osteo-

porosis and nonspinal fractures was significantly higher for 

subjects with a higher proportion of body fat, independent of 

body weight.35 Our group has recently demonstrated that 37% 

of 395 obese adult subjects had significant skeletal changes. 
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In particular, this subpopulation showed a lower bone mineral 

density at the lumbar spine than expected for both their young 

age and high body mass index.36 Further characterization 

showed that different grades of adiposity could affect skeletal 

health status differently. In fact, stratification of the popula-

tion into three different groups according to body mass index 

status, showed a slightly different bone mineral density pattern 

among the groups. Overweight subjects (body mass index 

26–29) did not show any change in skeletal health, while 

obese and severely obese subjects (body mass index . 30) 

had significant alteration in their bone mineral density levels, 

with an increased number of individuals having a lower bone 

mass than would be expected for their age and body weight.36 

Evaluation of hormonal, metabolic, and lipid profiles did not 

show significant differences between the groups, athough 

more detailed analysis seemed to show higher inflammatory 

markers and lower levels of circulating vitamin D (Migliaccio 

et al, unpublished data). Indeed, data published by Blum et al 

from a cohort of 153 premenopausal women demonstrated 

that a high amount of fat mass is negatively associated with 

bone mass.37 Thus, all these data suggest an important role 

for fat distribution as total fat mass itself. A recent study of 

907 healthy postmenopausal women by Kim et al demon-

strated that body weight was positively related to bone mineral 

density and vertebral fracture risk, whereas percentage of 

body fat and waist circumference were related to a low bone 

mineral density and to a higher risk for vertebral fractures.38

Even racial differences appear to influence fat and bone 

interaction. Castro et al reported that obesity is negatively 

associated with bone mineral density in black women, but 

not in white women,39 while Afghani and Goran reported an 

inverse correlation between subcutaneous abdominal adipose 

tissue and bone mineral density in whites, but not in blacks. 

In the same study, the authors reported an inverse association 

between visceral fat and bone mineral density in blacks, but 

not in whites.40 These conflicting results suggest a complex 

effect of fat mass on bone tissue related to sample size, ethnic-

ity, gender, study design, methods of statistical analysis, and 

population structure. Nevertheless, several lines of evidence 

from environmental and medical interventions support an 

inverse correlation between fat and bone mass, ie, physical 

exercise increases bone mass while reducing fat mass,41 

supplementation with calcium and vitamin D appears ben-

eficial for the prevention of both osteoporosis and obesity,42 

and menopause is also associated with increased fat mass, 

increased bone loss, and decreased lean mass.43 Estrogen 

replacement therapy in postmenopausal women improves 

both lean mass and bone mass, and reverses menopause-

related weight gain.44 Whereas estrogens reduce the risk of 

bone loss and obesity, other pharmacological interventions 

have been shown to increase both osteoporosis and obesity, 

such as treatment with gonadotropin-releasing hormone ago-

nists and the use of glucocorticoids.45–48 Additionally, recent 

findings have indicated that some antidiabetic drugs, which 

Fibroblast

Endothelial cell

Chondrocytes

Chondroblasts

Osteocytes

Adipocyte

Mesenchymal cell

Osteoblast

Figure 1 Several cell lines deriving from a common mesenchymal stem cell. The presence of different stimuli may induce differentiation of the progenitor into one cell line 
instead of another. However, this event might underscore the presence of a certain degree of plasticity among the cell lineages.
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interfere with peroxisome proliferator-activated receptor 

gamma (PPARγ) and thus with adipocyte differentiation, 

also appear to influence skeletal homeostasis and fracture 

risk significantly.

Thiazolidinedione and other selective PPARγ agonists, 

such as rosiglitazone and pioglitazone, play a prominent role 

in the treatment of type 2 diabetic patients. In vitro analyses 

demonstrate that various PPARγ ligands not only induce 

murine bone marrow stromal cell adipogenesis, but also 

inhibit osteogenesis,49 and in vivo studies demonstrate that 

PPARγ agonists reduce bone mineral density and increase 

fracture rates, notably distal extremity fractures in female 

type 2 diabetic patients.50

Fat and bone correlation: potential 
mechanisms of interaction
Several potential mechanisms have been proposed to explain 

the complex relationship between adipose tissue and bone 

tissue. Fat has long been viewed as a passive energy reservoir, 

but since the discovery of leptin and identification of other 

adipose tissue-derived hormones and serum mediators,51–53 fat 

has come to be considered as an active endocrine organ which 

modulates energy homeostasis. Adipose tissue also secretes 

various inflammatory cytokines, including interleukin (IL)-6 

and tumor necrosis factor-alpha,54 and altered production of 

these proinflammatory mediators is thought to have adverse 

metabolic and cardiovascular consequences. All these mol-

ecules, which include resistin, leptin, adiponectin, and IL-6, 

affect human energy homeostasis and may well be involved 

in bone metabolism, contributing to the complex relationship 

between adipose tissue and bone tissue (Figure 2).55

Fat tissue is one of the major sources of aromatase, an 

enzyme also expressed in the gonads, which synthesizes 

estrogens from androgen precursors. Estrogens are steroid 

hormones which play a pivotal role in the maintenance of 

skeletal homeostasis, protecting against osteoporosis by 

reducing bone resorption and stimulating bone formation. 

This extragonadal estrogen synthesis in fat tissue becomes 

the dominant estrogen source in postmenopausal women, due 

to the lack of ovarian function.6 Additionally, in obese post-

menopausal women, increased estrogen synthesis by adipose 

tissue has been suggested as one of the potential mechanisms 

for the protective effect of fat mass on bone.

On the other hand, studies in humans lacking aromatase 

and in estrogen receptor-α and receptor-β knockout mice 

indicate that estrogens protect against bone loss, and support 

the hypothesis that these hormones may inhibit the develop-

ment of obesity,56–61 as suggested also by the prevention of 

menopause-induced fat mass gain62–64 and reduction of the 

incidence of osteoporotic fractures by estrogen replacement 

therapy.65 In support of this hypothesis, decreased endog-

enous estrogen levels have been shown to be coupled with 

an increase in adipocyte numbers and decreased osteoblast 

counts in the bone marrow of postmenopausal women.66

As mentioned above, several adipokines are involved in 

the fat-bone interaction. Leptin suppresses appetite, increases 

energy expenditure, and regulates bone remodeling, and is the 

most important adipocyte-derived hormone.67–70 The effect of 

leptin on bone is complex, and both negative37,71 and positive 

actions72–74 on bone mineral density have been reported in 

humans. Leptin-deficient ob/ob mice and leptin receptor-

deficient db/db mice are extremely obese, with increased 

vertebral trabecular bone volume due to increased bone 

formation, despite hypogonadism and hypercortisolism.69 

Interestingly, intracerebroventricular infusion of leptin 

in both ob/ob and wild-type mice was shown to decrease 

vertebral trabecular bone mass.69 In vivo studies indicate 

that the effect of leptin may depend on its site and mode of 

action,75–77 and it has been proposed that peripheral admin-

istration of leptin could increase bone mass by inhibiting 

bone resorption78 and increasing bone formation,52,79 while 

inhibiting bone formation through a central nervous system 

effect.69 In vitro studies also found that leptin can act directly 

on bone marrow-derived mesenchymal stem cells to enhance 

their differentiation into osteoblasts and to inhibit their dif-

ferentiation into adipocytes.79,80

Leptin,  Adiponectin, Resistin

Adipocyte

TNF-α, IL-6 Osteoblast

Osteoclast

+

Figure 2 A complex link between adipocytes and bone cell exists. Several cytokines 
are secreted by fat tissue and act on bone cells. In particular, several proinflammatory 
cytokines (eg, IL-6 and TNF-α) act as osteoclastogenic factors with a potentially 
stimulating mechanism.
Abbreviations: IL-6, interleukin-6; TNF-α, tumor necrosis factor alpha.
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Takeda et  al expanded these observations further, 

demonstrating that the effects of intracerebroventricular 

leptin are mediated by the sympathetic nervous system, 

and that osteoblasts express β-adrenergic receptors via 

which it is probable that administration of β-adrenergic 

agonists decreases trabecular bone volume by inhibiting 

bone formation.70 Noradrenaline also seems to increase bone 

resorption by promoting nuclear factor kappa-B ligand expres-

sion and inhibiting osteoblast proliferation.81–83 The effect of 

leptin on obesity is mediated via proopiomelanocortin neurons 

and neuropeptide Y.84 Leptin reduces food intake and increases 

energy expenditure by stimulating proopiomelanocortin neu-

rons to secrete α-melanocyte-stimulating hormone,85 which, 

in addition to having an effect on obesity, might contribute to 

bone resorption82 but not bone formation.70 Interestingly, type 

4 α-melanocyte-stimulating hormone receptor knockout mice 

have high bone mass due to decreased bone resorption.82

Leptin also inhibits expression of neuropeptide Y, 

a hypothalamus-derived peptide, essential for the regula-

tion of food consumption, energy homeostasis, and bone 

remodeling.86,87 Hypothalamus-specific NPY knockout mice 

show a significant decrease in body weight, a significant 

increase in food intake, and a two-fold increase in trabecular 

bone volume compared with wild-type animals.88,89

Adiponectin is another adipocyte-derived hormone 

which has anti-inflammatory and antiatherogenic effects, 

regulating energy homeostasis and bone remodeling.90–94 In 

contrast with leptin, serum adiponectin levels are reduced in 

obese and diabetic subjects95 and increase after weight loss.92 

Human osteoblasts express adiponectin and its receptors,92 

but both negative and positive links between adiponectin 

and bone mineral density have been reported.96,97 Other in 

vivo and in vitro studies show that adiponectin increases 

bone mass by suppressing osteoclastogenesis and activating 

osteoblastogenesis,92–94 suggesting that a rise in adiponectin 

levels caused by fat reduction could have a beneficial effect 

on bone mineral density.

Thommesen et al showed that resistin may play a role in 

bone remodeling, indicating that it is expressed in mesenchy-

mal stem cells, osteoblasts, and osteoclasts in bone marrow. 

Resistin increases osteoblast proliferation and cytokine 

release, as well as osteoclast differentiation,98 so the effect 

of resistin on bone is still unclear, and further studies are 

needed to understand its role better.

IL-6 is a pluripotent inflammatory cytokine, released from 

adipocytes, adipose tissue matrix, osteoblast, and elsewhere 

in the body.99 In particular, adipose tissue accounts for one-

third of circulating levels of IL-6. Obese subjects have high 

circulating levels of this proinflammatory cytokine,100,101 and 

genetic polymorphism of IL-6 is associated with obesity.102 

Moreover, peripheral administration of IL-6 induces hyper-

lipidemia, hyperglycemia, and insulin resistance in rodents 

and humans.103 In contrast, administration of IL-6  in the 

central nervous system increases energy expenditure and 

decreases body fat in rodents.103 IL-6 is also a well recognized 

stimulator of osteoclastogenesis and bone resorption104,105 but 

some data show that IL-6 mRNA is expressed in preosteo-

blasts and osteoblasts,106 and that IL-6 stimulates osteoblast 

proliferation and differentiation107 by controlling the pro-

duction of local factors,108 and it might play a role in bone 

formation in conditions of high bone turnover.108,109

In addition to adipocytes, adipose tissue contains various 

stromal and vascular cells, including fibroblasts, vascular 

endothelial cells, and inflammatory cells. Adipocytes were 

initially thought to be the major source of adipose-derived 

mediators, but recent studies have shown that macrophages 

infiltrate adipose tissue, and that these macrophages, along 

with other cells that reside in the stroma, also contribute to the 

production and secretion of humoral mediators, particularly 

inflammatory cytokines.54 A paracrine loop involving free 

fatty acids and inflammatory cytokines has been postulated 

to establish a vicious cycle between adipocytes and mac-

rophages, thereby propagating inflammation.110,111 Therefore, 

it is important to define interactions between adipocytes, 

osteoblasts, and stromal cells in obese subjects.

Adipocytes and osteoblasts:  
a common origin
Adipocytes and osteoblasts originate from a common 

progenitor, ie, a pluripotential mesenchymal stem cell,112 

which has an equal propensity for differentiation into adi-

pocytes or osteoblasts (or other lines) under the influence 

of several cell-derived transcription factors. This process is 

complex, suggesting significant plasticity and multifaceted 

mechanism(s) of regulation within different cell lineages, 

among which are adipocytes and osteoblasts.113,114 Several 

studies have examined the function of adipocytes in bone 

marrow. Mesenchymal stem cells isolated from marrow in 

postmenopausal osteoporotic patients express more adipose 

differentiation markers than those from subjects with normal 

bone mass.115

As mentioned earlier, adipocytes secrete endocrine and 

paracrine factors that strongly influence bone differentiation 

and remodeling. Estrogens are among these factors, explain-

ing why increased body weight in postmenopausal women is 

associated with slower rates of bone loss.113,116,117 However, 
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the interaction between estrogens and fat appears to be 

complex. Martin and Zissimos showed pronounced fatty 

infiltration in the bone marrow of rats following oophorec-

tomy, suggesting a pivotal role of estrogen in regulating 

adipocyte recruitment.118 On the other hand, the presence of 

aromatase in fat cells allows higher intramarrow conversion 

of testosterone into estrogens which, in turn, can inhibit 

bone resorption.113

The effect of estrogen on bone and adipose tissue for-

mation has long been recognized in experimental animal 

models.118,119 In humans, changes in estrogen status due to 

advancing age and menopause have been correlated with 

increased levels of IL-6 and IL-11, which are both associ-

ated with bone loss.120 It is interesting to speculate whether 

the increase in adipogenesis subsequent to menopause 

is due to a relief of repression or to an induction of the 

adipogenic phenotype, even though in vitro data suggest 

that the default “switch” might be adipogenesis, a process 

which might normally be inhibited in vivo prior to estrogen 

depletion.24

Other members of the nuclear hormone receptor family 

contribute to control of adipogenesis and osteogenesis. 

PPARγ plays a central role in initiating adipogenesis.113 

Mutations of the PPARγ gene are associated with an altered 

balance between bone and fat formation in the bone marrow. 

The nuclear hormone receptor family of transcriptional regu-

latory proteins is activated by a range of ligands, including 

steroid hormones, naturally occurring metabolites, synthetic 

chemicals, and as yet unidentified endogenous compounds 

(orphan receptors).

Thiazolidinedione and other PPARγ ligands, such as 

rosiglitazone and pioglitazone, play a prominent role in the 

treatment of type 2 diabetes. However, in vitro analyses 

demonstrate that various PPARγ ligands not only induce 

murine bone marrow stromal cell adipogenesis but also 

inhibit osteogenesis.49 In particular, PPARγ-2 is the dominant 

regulator of adipogenesis, and ligand activation of PPARγ-2 

favors differentiation of mesenchymal stem cells into adipo-

cytes rather than into osteoblasts.116 Akune et al showed that 

PPARγ insufficiency led to increased osteoblastogenesis in 

vitro and higher trabecular bone volume in vivo, confirming 

the key role of mesenchymal stem cell lineage allocation in 

the skeleton.112 Interestingly, aged mice exhibit fat infiltra-

tion into bone marrow and enhanced expression of PPARγ-2, 

along with reduced mRNA expression of bone differentiation 

factors.121 Mice with premature aging (the SAM-P/6 model) 

show nearly identical patterns of adipocyte infiltration, with 

impaired osteoblastogenesis,122 indicating that aging, or 

events that accelerate aging, result in significant bone marrow 

adiposity and a defect in osteoblastogenesis in mice.123

The Wnt signaling pathway works in a coordinated man-

ner with other transmembrane signals, including multiple 

ligands, antagonists, receptors, coreceptors, and transcriptional 

mediators, such as β-catenin.124 Specific elements of the Wnt 

signaling pathway have been found to inhibit adipogenesis125,126 

while promoting osteogenesis.127–131 Wnt inhibition of adipo-

genesis is mediated via β-catenin, which interferes with PPARγ 

transcriptional activation of downstream targets.132 Following 

exposure to transforming growth factor beta, human bone 

marrow mesenchymal stem cells increase their expression of 

various Wnt receptors and ligands.133

Members of the epidermal growth factor family, such as 

protein Pref-1, influence both adipogenesis and osteogenesis. 

In vitro analysis of human bone marrow mesenchymal stem 

cells has shown that Pref-1 overexpression blocks both adi-

pogenesis and osteogenesis. This finding is consistent with 

the hypothesis that Pref-1 maintains mesenchymal stem cells 

in a multipotent state.134

Further experimental tools, such as gene microarrays, 

are being used to document the relationship between clas-

sical steroid hormones and bone and fat formation in the 

marrow. One study has examined the skeletal phenotype 

of mice deficient in both thyroid receptors α and β. These 

mice showed increased mRNA levels for adipocyte-specific 

genes, increased numbers of bone marrow adipocytes, and 

reduced trabecular and total bone mineral density.135 The 

inbred SAM-P/6 murine strain provides a model of acceler-

ated senescence characterized by osteopenia and increased 

fat mass in bone marrow.136 Recent studies have found 

that 1,25(OH)2 vitamin D treatment inhibits adipogenesis 

and enhances osteogenesis in SAM-P/6 mice, with a 50% 

reduction in PPARγ mRNA and protein levels.123 Moreover, 

gene microarray analyses demonstrated coordinated induc-

tion of osteoblastogenic genes and a reduction of adipogenic 

genes after 1,25 (OH)2 vitamin D treatment, which stimulates 

not only bone formation but also bone resorption, according 

to circulating biomarkers of bone turnover.137 Overall, these 

recent findings involving classical steroid receptors support 

the inverse relationship between adipogenic and osteogenic 

differentiation in the bone marrow microenvironment. This 

is mediated, in part, by cross-talk between the pathways 

activated by steroid receptors, PPARs, and other cytokines 

and paracrine factors.

Finally, other factors, such as total caloric intake, type 

of nutrients, alcohol consumption, oxygen tension, and cel-

lular oxidation-reduction pathways influence bone marrow 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2011:4 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

279

Obesity and osteoporosis

adipogenesis despite osteoblastogenesis,24 showing that the 

bone marrow mesenchymal stem cell may consider multiple 

differentiation pathways during its lifetime and, indeed, may 

dedifferentiate and transdifferentiate in response to changes 

in the microenvironment.

Conclusion
Obesity and osteoporosis are two major global health prob-

lems with an increasing prevalence and a high impact on 

mortality and morbidity. Menopause is characterized by the 

cessation of ovarian estrogen production and is associated 

with increased bone loss, increased fat mass, and decreased 

lean mass. Age-related changes in hormone levels, in asso-

ciation with changes in body composition, metabolic fac-

tors, and decreased physical activity, probably provide the 

mechanisms for the propensity to postmenopausal gain of 

fat mass, and thus increased body weight. Estrogen synthesis 

in adipose tissue, through aromatase, becomes the dominant 

estrogen source in postmenopausal women. In particular, in 

obese postmenopausal women, increased estrogen synthesis 

by fat tissue has been suggested as one of the potential mecha-

nisms for the protective effect of fat mass on bone.

Even though there are data indicating that women with 

high body mass index are protected from osteoporosis, 

increasing evidence seems to show conflicting results regard-

ing this issue, suggesting that obesity might actually interfere 

with bone health. In particular, the relationship between 

obesity and osteoporosis depends on how obesity is defined. 

If obesity is defined on the basis of body mass index or body 

weight, it appears to protect against bone loss and fractures. 

However, if obesity is based on the percentage of body fat, 

it may be a risk factor for osteoporosis.

The existence of a cross-talk between fat and the skeleton 

suggests a homoeostatic feedback system in which adipok-

ines and bone-derived molecules form part of an active bone-

adipose axis. However, the mechanism(s) by which all these 

events occur remains unclear. Of course, further basic science 

research and epidemiological studies with large sample sizes, 

robust study design, and careful data analysis will be needed 

to show the true effect of fat mass on bone.

The relationship between fat mass and bone is confounded 

by complex genetic backgrounds and by interactions between 

metabolic factors and regulatory pathways influencing 

both obesity and osteoporosis. Although the evidence that 

adipose tissue exerts a protective effect against bone loss is 

greater than that showing a negative association, the recent 

increasing data on this issue suggest that both obese and 

nonobese postmenopausal women should be considered at 

risk for alteration in bone mineral density and osteoporosis. 

Specific and careful characterization of skeletal metabolism 

and further studies evaluating skeleton changes may be use-

ful in obese women, because aging itself might also increase 

their risk of developing fractures later in life.
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