Back to Journals » Drug Design, Development and Therapy » Volume 9

Gelatin nanoparticle-mediated intranasal delivery of substance P protects against 6-hydroxydopamine-induced apoptosis: an in vitro and in vivo study

Authors Lu CT, Jin RR, Jiang YN, Lin Q, Yu WZ, Mao KL, Tian FR, Zhao YP, zhao YZ

Received 8 November 2014

Accepted for publication 10 February 2015

Published 7 April 2015 Volume 2015:9 Pages 1955—1962


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Professor Shu-Feng Zhou

Cui-Tao Lu,1,2 Rong-Rong Jin,2 Yi-Na Jiang,2 Qian Lin,2 Wen-Zhe Yu,2 Kai-Li Mao,2 Fu-Rong Tian,2 Ya-Ping Zhao,1,* Ying-Zheng Zhao2,*

1The Second Affiliated Hospital, Wenzhou Medical University, 2School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People’s Republic of China

*These authors contributed equally to this work

Background: The aim of this study was to investigate the protective role of intranasally administered substance P-loaded gelatin nanoparticles (SP-GNPs) against 6-hydroxydopamine (6-OHDA)-induced apoptosis in vitro and in vivo, and to provide a new strategy for treating brain pathology, such as Parkinson’s disease.
Methods: SP-GNPs were prepared by a water-in-water emulsion method, and their stability, encapsulating efficiency, and loading capacity were evaluated. PC-12 cells were used to examine the enhancement of growth and inhibition of apoptosis by SP-GNPs in vitro using MTT assays. In the in vivo study, hemiparkinsonian rats were created by intracerebroventricular injection of 6-OHDA. The rats then received intranasal SP-GNPs daily for 2 weeks. Functional improvement was assessed by quantifying rotational behavior, and the degree of apoptosis was assessed by immunohistochemical staining for caspase-3 in the substantia nigra region.
Results: PC-12 cells with 6-OHDA-induced disease treated with SP-GNPs showed higher cell viability than their untreated counterparts, and cell viability increased as the concentration of substance P (SP) increased, indicating that SP could enhance cell growth and inhibit the cell apoptosis induced by 6-OHDA. Rats with 6-OHDA-induced hemiparkinsonism treated with SP-GNPs made fewer rotations and showed less staining for caspase-3 than their counterparts not treated with SP, indicating that SP protects rats with 6-OHDA-induced hemiparkinsonism from apoptosis and therefore demonstrates their functional improvement.
Conclusion: Intranasal delivery of SP-GNPs protects against 6-OHDA-induced apoptosis both in vitro and in vivo.

Keywords: gelatin nanoparticles, intranasal delivery, substance P, 6-hydroxydopamine, apoptosis, Parkinson’s disease

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]