Back to Journals » Drug Design, Development and Therapy » Volume 9

Design of a new therapy for patients with chronic kidney disease: use of microarrays for selective hemoadsorption of uremic wastes and toxins to improve homeostasis

Authors Shahidi Bonjar MR, Shahidi Bonjar L

Received 9 July 2014

Accepted for publication 29 July 2014

Published 19 January 2015 Volume 2015:9 Pages 625—629

DOI https://doi.org/10.2147/DDDT.S70852

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 5

Editor who approved publication: Professor Shu-Feng Zhou


Mohammad Rashid Shahidi Bonjar,1 Leyla Shahidi Bonjar2

1School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran; 2Department of Pharmacology, College of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran

Abstract: The hypothesis proposed here would provide near to optimum homeostasis for patients with chronic kidney disease (CKD) without the need for hemodialysis. This strategy has not been described previously in the scientific literature. It involves a targeted therapy that may prevent progression of the disease and help to improve the well-being of CKD patients. It proposes a nanotechnological device, ie, a microarray-oriented homeostasis provider (MOHP), to improve homeostasis in CKD patients. MOHP would be an auxiliary kidney aid, and would improve the filtration functions that impaired kidneys cannot perform by their own. MOHP is composed of two main computer-oriented components, ie, a quantitative microarray detector (QMD) and a homeostasis-oriented microarray column (HOMC). QMD detects and HOMC selectively removes defined quantities of uremic wastes, toxins and any other metabolites which is programmed for. The QMD and HOMC would accomplish this with the help of a peristaltic blood pump that would circulate blood aseptically in an extracorporeal closed circuit. During the passage of blood through the QMD, this microarray detector would quantitatively monitor all of the blood compounds that accumulate in the blood of a patient with impaired glomerular filtration, including small-sized, middle-sized and large-sized molecules. The electronic information collected by QMD would be electronically transmitted to the HOMC, which would adjust the molecules to the concentrations they are electronically programmed for and/or receive from QMD. This process of monitoring and removal of waste continues until the programmed homeostasis criteria are reached. Like a conventional kidney machine, MOHP can be used in hospitals and homes under the supervision of a trained technician. The main advantages of this treatment would include improved homeostasis, a reduced likelihood of side effects and of the morbidity resulting from CKD, slower progression of kidney impairment, prevention of end-stage renal failure, a decreased need for hemodialysis therapy, avoidance of dialysis-related side effects later on in the patient’s life, improved quality of life and increased life expectancy.

Keywords: hemodialysis, uremia, dialysis, homeostasis, microarray, renal failure


Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]