Back to Journals » Drug Design, Development and Therapy » Volume 9

A novel small-molecule inhibitor of HIV-1 entry

Authors Heredia A, Latinovic O, Barbault F, de Leeuw E

Received 27 May 2015

Accepted for publication 10 July 2015

Published 1 October 2015 Volume 2015:9 Pages 5469—5478

DOI https://doi.org/10.2147/DDDT.S89338

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Professor Shu-Feng Zhou


Alonso Heredia,1,3 Olga S Latinovic,2,3 Florent Barbault,4 Erik PH de Leeuw3,5

1Department of Medicine, 2Department of Microbiology and Immunology, 3Institute of Human Virology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA; 4Univ Paris Diderot, Sorbonne Paris Cité, ITODYS, UMRCNRS7086, Paris, France; 5Department of Biochemistry and Molecular Biology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA

Background: Antiretroviral therapy has transformed HIV-1 infection into a managed condition with near-normal life expectancy. However, a significant number of patients remain with limited therapeutic options due to HIV-1 resistance, side effects, or drug costs. Further, it is likely that current drugs will not retain efficacy, due to risks of side effects and transmitted resistance.
Results: We describe compound 5660386 (3-ethyl-2-[3-(1,3,3-trimethyl-1,3-dihydro-2H-indol-2-ylidene)-1-propen-1-yl]-1,3-benzothiazol-3-ium) as a novel inhibitor of HIV-1 entry. Compound 5660386 inhibits HIV-1 entry in cell lines and primary cells, binds to HIV-1 envelope protein, and inhibits the interaction of GP120 to CD4. Further, compound 5660386 showed a unique and broad-range activity against primary HIV-1 isolates from different subtypes and geographical areas.
Conclusion: Development of small-molecule entry inhibitors of HIV-1 such as 5660386 may lead to novel classes of anti-HIV-1 therapeutics. These inhibitors may be particularly effective against viruses resistant to current antiretroviral drugs and could have potential applications in both treatment and prevention.

Keywords: HIV-1, defensin, drug, entry, antiviral therapy, CD4

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]