Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Free radical scavenging in vitro and biological activity of diphenyl diselenide-loaded nanocapsules: DPDS-NCS antioxidant and toxicological effects

Authors Stefanello ST, Dobrachinski F, de Carvalho NR, Amaral GP, Barcelos RP, Oliveira VA, Oliveira CS, Giordani CFA, Pereira ME, Rodrigues OED, Soares F

Received 23 April 2015

Accepted for publication 28 May 2015

Published 4 September 2015 Volume 2015:10(1) Pages 5663—5670


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Prof. Dr. Thomas J. Webster

Sílvio Terra Stefanello,1 Fernando Dobrachinski,1 Nélson Rodrigues de Carvalho,1 Guilherme Pires Amaral,1 Rômulo Pillon Barcelos,1 Vitor Antunes Oliveira,1 Cláudia Sirlene Oliveira,1 Camila Ferrazza Alves Giordani,2 Maria Ester Pereira,1 Oscar Endrigo Dorneles Rodrigues,2 Félix Alexandre Antunes Soares1

1Departamento de Bioquímica e Biologia Molecular, 2Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil

Abstract: Selenium compounds, such as diphenyl diselenide (DPDS), have been shown to exhibit biological activity, including antioxidant effects. However, the use of DPDS in pharmacology is limited due to in vivo pro-oxidative effects. In addition, studies have shown that DPDS-loaded nanocapsules (DPDS-NCS) have greater bioavailability than free DPDS in mice. Accordingly, the aim of this study was to investigate the antioxidant properties of DPDS-NCS in vitro and biological activity in mice. Our in vitro results suggested that DPDS-NCS significantly reduced the production of reactive oxygen species and Fe(II)-induced lipid peroxidation (LPO) in brain. The administration of DPDS-NCS did not result in death or change the levels of endogenous reduced or oxidized glutathione after 72 hours of exposure. Moreover, ex vivo assays demonstrated that DPDS-NCS significantly decreased the LPO and reactive oxygen species levels in the brain. In addition, the highest dose of DPDS-NCS significantly reduced Fe(II)- and sodium nitroprusside-induced LPO in the brain and Fe(II)-induced LPO in the liver. Also, δ-aminolevulinate acid dehydratase within the brain was inhibited only in the highest dose of DPDS-NCS. In conclusion, our data demonstrated that DPDS-NCS exhibited low toxicity in mice and have significant antioxidant characteristics, indicating that nanoencapsulation is a safer method of DPDS administration.

Keywords: diphenyl diselenide, DPDS-NCS, lipid peroxidation, antioxidant properties, δ-ALA-D

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]