Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Formulation of nanotized curcumin and demonstration of its antimalarial efficacy

Authors Ghosh A, Banerjee T, Bhandary S, Surolia A

Received 20 February 2014

Accepted for publication 24 May 2014

Published 20 November 2014 Volume 2014:9(1) Pages 5373—5387

DOI https://doi.org/10.2147/IJN.S62756

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4


Aparajita Ghosh,1 Tanushree Banerjee,2 Suman Bhandary,1 Avadhesha Surolia3

1Division of Molecular Medicine, Bose Institute, Centenary Campus, Kolkata, West Bengal, India; 2Department of Biotechnology, University of Pune, Pune, India; 3Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India

Aim: The present study was conducted to overcome the disadvantages associated with the poor water solubility and low bioavailability of curcumin by synthesizing nanotized curcumin and demonstrating its efficacy in treating malaria.
Materials and methods: Nanotized curcumin was prepared by a modified emulsion-diffusion-evaporation method and was characterized by means of transmission electron microscopy, atomic force microscopy, dynamic light scattering, Zetasizer, Fourier transform infrared spectroscopy, and differential thermal analysis. The novelty of the prepared nanoformulation lies in the fact that it was devoid of any polymeric matrices used in conventional carriers. The antimalarial efficacy of the prepared nanotized curcumin was then checked both in vitro and in vivo.
Results: The nanopreparation was found to be non-toxic and had a particle size distribution of 20–50 nm along with improved aqueous dispersibility and an entrapment efficiency of 45%. Nanotized curcumin (half maximal inhibitory concentration [IC50]: 0.5 µM) was also found to be ten-fold more effective for growth inhibition of Plasmodium falciparum in vitro as compared to its native counterpart (IC50: 5 µM). Oral bioavailability of nanotized curcumin was found to be superior to that of its native counterpart. Moreover, when Plasmodium berghei-infected mice were orally treated with nanotized curcumin, it prolonged their survival by more than 2 months with complete clearance of parasites in comparison to the untreated animals, which survived for 8 days only.
Conclusion: Nanotized curcumin holds a considerable promise in therapeutics as demonstrated here for treating malaria as a test system.

Keywords: curcumin, nanotized curcumin, P. berghei, P. falciparum, antimalarial

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]