Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Formulation development and optimization of palm kernel oil esters-based nanoemulsions containing sodium diclofenac

Authors Rezaee M, Basri M, Rahman RNZRA, Salleh AB, Chaibakhsh N, Karjiban R

Received 11 June 2013

Accepted for publication 1 August 2013

Published 17 January 2014 Volume 2014:9(1) Pages 539—548


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Malahat Rezaee,1 Mahiran Basri,1,2 Raja Noor Zaliha Raja Abdul Rahman,3 Abu Bakar Salleh,3 Naz Chaibakhsh,4 Roghayeh Abedi Karjiban2

1Institute of Bioscience, 2Faculty of Science, 3Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 4Faculty of Science, University of Guilan, Rasht, Iran

Abstract: Response surface methodology was employed to study the effect of formulation composition variables, water content (60%–80%, w/w) and oil and surfactant (O/S) ratio (0.17–1.33), as well as high-shear emulsification conditions, mixing rate (300–3,000 rpm) and mixing time (5–30 minutes) on the properties of sodium diclofenac-loaded palm kernel oil esters-nanoemulsions. The two response variables were droplet size and viscosity. Optimization of the conditions according to the four variables was performed for preparation of the nanoemulsions with the minimum values of particle size and viscosity. The results showed that the experimental data could be sufficiently fitted into a third-order polynomial model with multiple regression coefficients (R2) of 0.938 and 0.994 for the particle size and viscosity, respectively. Water content, O/S ratio and mixing time, quadrics of all independent variables, interaction between O/S ratio and mixing rate and between mixing time and rate, as well as cubic term of water content had a significant effect (P<0.05) on the particle size of nanoemulsions. The linear effect of all independent variables, quadrics of water content and O/S ratio, interaction of water content and O/S ratio, as well as cubic term of water content and O/S ratio had significant effects (P<0.05) on the viscosity of all nanoemulsions. The optimum conditions for preparation of sodium diclofenac nanoemulsions were predicted to be: 71.36% water content; 0.69 O/S ratio; 950 rpm mixing rate, and 5 minute mixing time. The optimized formulation showed good storage stability in different temperatures.

Keywords: response surface methodology, nanoemulsions, palm kernel oil esters, optimization, particle size, viscosity

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]