Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Formulation and delivery of itraconazole to the brain using a nanolipid carrier system

Authors Lim W, Rajinikanth PS, Mallikarjun C, Kang Y

Received 14 November 2013

Accepted for publication 22 December 2013

Published 2 May 2014 Volume 2014:9(1) Pages 2117—2126

DOI https://doi.org/10.2147/IJN.S57565

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Wei Meng Lim,1 Paruvathanahalli Siddalingam Rajinikanth,2 Chitneni Mallikarjun,1 Yew Beng Kang1

1School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia; 2School of Pharmacy, Taylor’s University, Selangor, Malaysia

Abstract: The objectives of this study were to develop and characterize itraconazole (ITZ)-loaded nanostructured lipid carriers (NLCs) and to study their potential for drug delivery into the brain. Precirol® ATO 5 and Transcutol® HP were selected as the lipid phase, and Tween® 80 and Solutol® HS15 as surfactants. The ITZ-NLCs were prepared by a hot and high-pressure homogenization method. The entrapment efficiency for the best formulation batch was analyzed using high-performance liquid chromatography and was found to be 70.5%±0.6%. The average size, zeta potential, and polydispersity index for the ITZ-NLCs used for animal studies were found to be 313.7±15.3 nm, –18.7±0.30 mV, and 0.562±0.070, respectively. Transmission electron microscopy confirmed that ITZ-NLCs were spherical in shape, with a size of less than 200 nm. Differential scanning calorimetry and X-ray diffractometry analysis showed that ITZ was encapsulated in the lipid matrix and present in the amorphous form. The in vitro release study showed that ITZ-NLCs achieved a sustained release, with cumulative release of 80.6%±5.3% up to 24 hours. An in vivo study showed that ITZ-NLCs could increase the ITZ concentration in the brain by almost twofold. These results suggest that ITZ-NLCs can be exploited as nanocarriers to achieve sustained release and brain-targeted delivery.

Keywords: lipid nanoparticles, brain delivery, nanostructured lipid carrier

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]