Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Formation of curcumin nanoparticles via solution-enhanced dispersion by supercritical CO2

Authors Zhao Z, Xie M, Li Y, Chen AZ, Li G, Zhang J, Hu H, Wang X, Li S

Received 6 January 2015

Accepted for publication 16 March 2015

Published 29 April 2015 Volume 2015:10(1) Pages 3171—3181

DOI https://doi.org/10.2147/IJN.S80434

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Editor who approved publication: Dr Lei Yang

Zheng Zhao,1,3 Maobin Xie,2 Yi Li,2 Aizheng Chen,4 Gang Li,5 Jing Zhang,2 Huawen Hu,2 Xinyu Wang,1,3 Shipu Li1,3

1State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, People’s Republic of China; 2Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong; 3Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, People’s Republic of China; 4College of Chemical Engineering, Huaqiao University, Xiamen, People’s Republic of China; 5National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, People’s Republic of China

Abstract: In order to enhance the bioavailability of poorly water-soluble curcumin, solution-enhanced dispersion by supercritical carbon dioxide (CO2) (SEDS) was employed to prepare curcumin nanoparticles for the first time. A 24 full factorial experiment was designed to determine optimal processing parameters and their influence on the size of the curcumin nanoparticles. Particle size was demonstrated to increase with increased temperature or flow rate of the solution, or with decreased precipitation pressure, under processing conditions with different parameters considered. The single effect of the concentration of the solution on particle size was not significant. Curcumin nanoparticles with a spherical shape and the smallest mean particle size of 325 nm were obtained when the following optimal processing conditions were adopted: P =20 MPa, T =35°C, flow rate of solution =0.5 mL.min-1, concentration of solution =0.5%. Fourier transform infrared (FTIR) spectroscopy measurement revealed that the chemical composition of curcumin basically remained unchanged. Nevertheless, X-ray powder diffraction (XRPD) and thermal analysis indicated that the crystalline state of the original curcumin decreased after the SEDS process. The solubility and dissolution rate of the curcumin nanoparticles were found to be higher than that of the original curcumin powder (approximately 1.4 µg/mL vs 0.2 µg/mL in 180 minutes). This study revealed that supercritical CO2 technologies had a great potential in fabricating nanoparticles and improving the bioavailability of poorly water-soluble drugs.

Keywords: curcumin, crystalline sate, dissolution rate, solubility

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Preparation and clinical evaluation of nano-transferosomes for treatment of erectile dysfunction

Ali MFM, Salem HF, Abdelmohsen HF, Attia SK

Drug Design, Development and Therapy 2015, 9:2431-2447

Published Date: 29 April 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010