Back to Journals » International Journal of Nanomedicine » Volume 4

Food effect on the bioavailability of two distinct formulations of megestrol acetate oral suspension

Authors Benoit Deschamps, Naomi Musaji, John A Gillespie

Published 2 September 2009 Volume 2009:4 Pages 185—192

DOI https://doi.org/10.2147/IJN.S6308

Review by Single-blind

Peer reviewer comments 3

Benoit Deschamps1, Naomi Musaji2, John A Gillespie2

1SFBC Anapharm, Montreal, Canada; 2Strativa Pharmaceuticals, a division of Par Pharmaceutical, Inc., Woodcliff Lake, NJ, USA

Objective: Megestrol acetate oral suspension (MAOS) is an appetite stimulant indicated for cachexia in patients with AIDS. It is available in its original formulation, Megace® (MAOS), and as a nanocrystal dispersion, Megace® ES (MA-ES). Three studies were conducted to evaluate the pharmacokinetic properties of these formulations under fed and fasting conditions.

Methods: An open-label, crossover trial was conducted in 24 healthy males randomized to MA-ES 625 mg/5 mL given with a high-calorie, high-fat meal, or after an overnight fast. Blood samples were drawn at multiple time points and pharmacokinetic parameters were determined. Two separate, open-label reference studies evaluated MAOS 800 mg/20 mL in 40 fed or 40 fasting healthy male volunteers.

Results: In fasting MA-ES subjects, the average maximum concentration (Cmax) was 30% less than the fed Cmax value. For MAOS, fasting Cmax was 86% less than fed Cmax. In fasting subjects, the area under the curve was 12,095 ng⋅h/mL for MA-ES, and 8,942 ng⋅h/mL for MAOS. In fed subjects, the absorption of the two formulations was comparable.

Conclusion: Bioavailability and absorption are greater for MA-ES than MAOS in fasting subjects. MA-ES may be a preferred formulation of megestrol acetate when managing cachectic patients whose caloric intake is reduced.

Keywords: megestrol acetate, bioavailability, cachexia, nanocrystal technology, appetite stimulant

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF] 

 

Readers of this article also read:

Molecular targets in arthritis and recent trends in nanotherapy

Roy K, Kanwar RK, Kanwar JR

International Journal of Nanomedicine 2015, 10:5407-5420

Published Date: 26 August 2015

Photodynamic therapy of a 2-methoxyestradiol tumor-targeting drug delivery system mediated by Asn-Gly-Arg in breast cancer

Shi J, Wang Z, Wang L, Wang H, Li L, Yu X, Zhang J, Ma R, Zhang Z

International Journal of Nanomedicine 2013, 8:1551-1562

Published Date: 19 April 2013

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

Controlled-release approaches towards the chemotherapy of tuberculosis

Saifullah B, Hussein MZ, Hussein Al Ali SH

International Journal of Nanomedicine 2012, 7:5451-5463

Published Date: 12 October 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Multifunctional targeting micelle nanocarriers with both imaging and therapeutic potential for bladder cancer

Lin TY, Zhang H, Luo J, Li Y, Gao T, Lara Jr PN, de Vere White R, Lam KS, Pan CX

International Journal of Nanomedicine 2012, 7:2793-2804

Published Date: 6 June 2012

Daunorubicin-TiO2 nanocomposites as a “smart” pH-responsive drug delivery system

Zhang H, Wang C, Chen B, Wang X

International Journal of Nanomedicine 2012, 7:235-242

Published Date: 12 January 2012

The efficacy of mitochondrial targeting antiresistant epirubicin liposomes in treating resistant leukemia in animals

Men Y, Wang XX, Li RJ, Zhang Y, Tian W, Yao HJ, Ju RJ, Ying X, Zhou J, Li N, Zhang L, Yu Y, Lu WL

International Journal of Nanomedicine 2011, 6:3125-3137

Published Date: 2 December 2011