Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Folate-targeted paclitaxel-conjugated polymeric micelles inhibits pulmonary metastatic hepatoma in experimental murine H22 metastasis models

Authors Zhang Y, Zhang H, Wu W, Zhang F, Liu S, Wang R, Sun Y, Tong T, Jing X

Received 18 November 2013

Accepted for publication 10 January 2014

Published 23 April 2014 Volume 2014:9(1) Pages 2019—2030


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Yan Zhang,1 Hui Zhang,2 Wenbin Wu,2 Fuhong Zhang,3,4 Shi Liu,3 Rui Wang,3 Yingchun Sun,1 Ti Tong,1 Xiabin Jing3

1Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China; 2Department of Thoracic Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, People's Republic of China; 3State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, People's Republic of China; 4Department of Otolaryngology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China

Abstract: Hepatocellular carcinoma shows low response to most conventional chemotherapies; additionally, extrahepatic metastasis from hepatoma is considered refractory to conventional systemic chemotherapy. Target therapy is a promising strategy for advanced hepatoma; however, targeted accumulation and controlled release of therapeutic agents into the metastatic site is still a great challenge. Folic acid (FA) and paclitaxel (PTX) containing composite micelles (FA-M[PTX]) were prepared by coassembling the FA polymer conjugate and PTX polymer conjugate. The main purpose of this study is to investigate the inhibitory efficacy of FA-M(PTX) on the pulmonary metastasis of intravenously injected murine hepatoma 22 (H22) on BALB/c mice models. The lung metastatic burden of H22 were measured and tissues were analyzed by immunohistochemistry and histology (hematoxylin and eosin stain), followed by survival analysis. The results indicated that FA-M(PTX) prevented pulmonary metastasis of H22, and the efficacy was stronger than pure PTX and simple PTX-conjugated micelles. In particular, the formation of lung metastasis colonies in mice was evidently inhibited, which was paralleled with the downregulated expression of matrix metalloproteinase-2 and matrix metalloproteinase-9. Furthermore, the mice bearing pulmonary metastatic hepatoma in the FA-M(PTX) group gained significantly prolonged survival time when compared with others given equivalent doses of PTX of 30 mg/kg. The enhanced efficacy of FA-M(PTX) is theoretically ascribed to the target effect of FA; moreover, the extensive pulmonary capillary networks may play a role. In conclusion, FA-M(PTX) displayed great potential as a promising antimetastatic agent, and the FA-conjugated micelles is a preferential targeted delivery system when compared to micelles without FA.

Keywords: pulmonary metastasis, folate receptor, paclitaxel, polymer–drug conjugate, targeted drug delivery

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]