Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Fiber-optic triggered release of liposome in vivo: implication of personalized chemotherapy

Authors Huang H, Lu P, Yang H, Lee G, Li H, Liao K

Received 1 April 2015

Accepted for publication 26 May 2015

Published 14 August 2015 Volume 2015:10(1) Pages 5171—5185


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Prof. Dr. Thomas J. Webster

Huei-Ling Huang,1 Pei-Hsuan Lu,1 Hung-Chih Yang,1 Gi-Da Lee,1,2 Han-Ru Li,1 Kuo-Chih Liao1

1Graduate Institute of Biomedical Engineering, National Chung Hsing University, 2Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan

Abstract: The aim of this research is to provide proof of principle by applying the fiber-optic triggered release of photo-thermally responsive liposomes embedded with gold nanoparticles (AuNPs) using a 200 µm fiber with 65 mW and 532 nm excitation for topical release in vivo. The tunable delivery function can be paired with an apoptosis biosensor based on the same fiber-optic configuration for providing real-time evaluation of chemotherapy efficacy in vivo to perform as a personalized chemotherapy system. The pattern of topical release triggered by laser excitation conveyed through optical fibers was monitored by the increase in fluorescence resulting from the dilution of self-quenching (75 mM) fluorescein encapsulated in liposomes. In in vitro studies (in 37°C phosphate buffer saline), the AuNP-embedded liposomes showed a more efficient triggered release (74.53%±1.63% in 40 minutes) than traditional temperature-responsive liposomes without AuNPs (14.53%±3.17%) or AuNP-liposomes without excitation (21.92%±2.08%) by spectroscopic measurements. Using the mouse xenograft studies, we first demonstrated that the encapsulation of fluorescein in liposomes resulted in a more substantial content retention (81%) in the tumor than for free fluorophores (14%) at 120 minutes after administration from in vivo fluorescence imaging. Furthermore, the preliminary results also suggested the tunable release capability of the system by demonstrating consecutive triggered releases with fiber-optic guided laser excitation.

Keywords: fiber-optic guided excitation, light excitation triggered release, photo-thermal responsive liposome, gold nanoparticles, tunable release in vivo

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]